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Abstract—In this paper a sliding-mode observer for a batch
bioprocess, the δ-endotoxins production of bacillus thuringiensis
(BT), is presented. The proposed observer is based on the
equivalent control method and a class of second-order sliding
mode operators. The use of these operators in the observer design
allows the fixed-time convergence of the measured variables,
while the unmeasured variables converge exponentially. This
structure allows to estimate the biomass in the δ-endotoxins
production of BT, even, under noisy measurement conditions.
Simulations show the feasibility of the proposed observer.
Convergence proofs are also presented.

I. INTRODUCTION

State estimation is a topic with a great interest in real
applications such as automatic control, process monitoring
and fault detection. Several results has been obtained using
structures such as Kalman filters, Luenberger observers among
others. In these type of estimation techniques the mainly idea
is either, to obtain the estimation state by reducing the effect of
noise or to design the observer to reach a specific performance
in the error of the estimation [1].

Additionally, controllers or observers based on sliding
mode (SM) are obtained by means of a non-smooth
terms depending on the output error, into the controlling
or observing system [2]. The SM approaches have been
widely used for the problems of dynamic systems control
and observation due to their characteristics of finite time
convergence, robustness to uncertainties and insensitivity to
external bounded disturbances [3], [4]. In this sense, by using
that non-smooth function of the error to drive the sliding mode
observer, the observer trajectories become insensitive to many
forms of noise. Hence, some sliding mode observers have
attractive properties similar to those of the Kalman filter (i.e.
noise resilience) but with simpler implementation [5].

Taking advantage of the noise resilience feature, in this
paper a SM observer design for the process of δ-endotoxins
production is considered. The observer structure is based on
the observer presented in [2] and it is an improved version
of a previous work presented in [6]. The observer inputs are
proposed applying the generalized super twisting algorithm
(GSTA) [7], a fixed-time stable extension of the well known
super twisting algorithm [8]. The proposed observer allows
a filtered reconstruction of the biomass (vegetative cells and
sporulated cells) in the reactor.

In the following, the Section II presents some mathematical
preliminaries in order to introduce the basics of the GSTA
and the fixed time stability. The Section III presents the
mathematical model δ-endotoxins production with BT. The
estimation structure is presented in Section IV. The Section V
presents simulation results of the proposed observer. Finally,
the conclusions of this paper are exposed in the Section VI.

II. MATHEMATICAL PRELIMINARIES

A lot of processes can be modeled by the dynamic system

ξ̇ = f(t, ξ) (1)

where ξ ∈ Rn and f : R+ × Rn → Rn. If the function f is
discontinuous (or non-smooth), the equation (1) is understood
in Filippov sense [9]. The following definition is necessary in
order to design controllers and observers.

Definition 2.1 (Globally fixed-time attraction [10]): Let a
non-empty set M ⊂ Rn. It is said to be globally fixed-time
attractive for the system (1) if any solution ξ(t, ξ0) of (1)
reaches M in some finite time moment t = T (ξ0) and the
settling-time function T : Rn → R+ ∪ {0} is bounded by
some positive number Tmax, i.e. T (ξ0) ≤ Tmax for ξ0 ∈ Rn.

With the definition of a globally fixed-time attractive set,
it is presented the GSTA [7], a fixed-time stable extension of
the super twisting algorithm [8], as follows:

ξ̇1 = −λ1φ1(ξ1) + ξ2

ξ̇2 = −λ2φ2(ξ1) + ∆,
(2)

where, for ξ ∈ R, φ1(ξ) = bξe 1
2 + θbξe 3

2 and φ2(ξ) =

φ1(ξ)∂φ1(ξ)
∂ξ = 1

2bξe
0 + 2θξ + 3

2θ
2bξe2, with the parameter

θ ≥ 0, the function bξeα = |ξ|αsign(ξ) is defined for α ≥ 0,
where sign(ξ) = 1 for ξ > 0, sign(ξ) = −1 for ξ < 0 and
sign(0) ∈ {−1, 1}; and λ1, λ2 > 0.

The fixed-time stability of the system (2) in spite of a
persistent and bounded disturbance ∆ and an estimation of
its settling time are presented in [7], both based on Lyapunov
stability analysis.



III. BATCH PROCESS MODEL

A model of the δ-endotoxins production of BT, which is
proposed on [11], [12] is used here. The model equations are:

ṡp = −
(

µ

yx/s
+ms

)
xv

ȯd = K3QA (o∗d − od)−K1 (µ− ke(t))xv −K2 (xv + xs)

ẋv = (µ− ks − ke(t))xv
ẋs = ksxv,

(3)

where sp is the substrate concentration, od is the dissolved
oxygen concentration, xv is the vegetative cells concentration,
xs is the sporulated cells concentration, µ is the specific
growth rate, yx/s is the growth yield, ms is the maintenance
constant, QA is the airflow that enters the bioreactor, o∗d
is the oxygen saturation concentration, K1 is the oxygen
consumption dimensionless constant by growth, K2 is the
oxygen consumption constant for maintenance, K3 is the
ventilation constant, ks is the spore formation kinetics and
ke(t) is the specific cell death rate. For the observer design
purposes, it is assumed that continuous measurements of the
outputs sp and od are available.

Defining x1 = sp, x2 = od, x3 = xv , x4 = xs, the model
(3) can be written as:

ẋ1 = b1(x1, x2)x3

ẋ2 = f2(x2) + b21(x1, x2)x3 + b22x4

ẋ3 = b3(x1, x2)x3

ẋ4 = b4(x1, x2)x3

(4)

with

b1(x1, x2) = −
(

µ

yx/s
+ms

)
f2(x2) = K3QA (o∗d − od)

b21(x1, x2) = −K1 (µ− ke(t))−K2

b22 = −K2

b3(x1, x2) = µ− ks − ke(t)
b4(x1, x2) = ks

The nominal parameters and the constitutive equations
details for the system (4) were given in reference [6].
Additionally, an observability analysis was performed in the
same reference, concluding that since the function b1(x1, x2)
is positive, then the system (4) with the measurements of the
outputs sp and od is observable.

IV. OBSERVATION SCHEME

A. Observer Structure

From the system model (4), inspired in the equivalent
control observer structure [2] (to take advantage of its filtering

capabilities), and using the GSTA algorithm (2) the following
observer is proposed:

˙̂x1 = b1(x̂1, x̂2)x̂3 + λ11φ1(x̃1) + v1

v̇1 = λ12φ2(x̃1)

˙̂x2 = f2(x̂2) + b21(x̂1, x̂2)x̂3 + b22x̂4+

λ12φ1(x̃2) + v2

v̇2 = λ22φ2(x̃2)

˙̂x3 = b3(x̂1, x̂2)x̂3 + λ3 [λ11φ1(x̃1) + v1]

˙̂x4 = b4(x̂1, x̂2)x̂3 + λ4 [λ12φ1(x̃2) + v2] ,

(5)

where x̂1, x̂2, x̂3 and x̂4 are the estimates of x1, x2, x3 and
x4, respectively; x̃1 = x1− x̂1 and x̃2 = x2− x̂2 are the error
variables; the observer input injections φ1(·) and φ2(·) are of
the form presented in (2), and λ11, λ12, λ21, λ22, λ3, λ4 are
the observer gains.

B. Convergence Analysis

Defining the additional error variables x̃3 = x3 − x̂3
x̃4 = x4 − x̂4, it follows

˙̃x1 = b1(x1, x2)x3 − b1(x̂1, x̂2)x̂3 − λ11φ1(x̃1)− v1
v̇1 = λ12φ2(x̃1)

˙̃x2 = f2(x2)− f2(x̂2) + b21(x1, x2)x3 − b21(x̂1, x̂2)x̂3

+ b22x̃4 − λ12φ1(x̃2)− v2
v̇2 = λ22φ2(x̃2)

˙̃x3 = b3(x1, x2)x3 − b3(x̂1, x̂2)x̂3

− λ3 [λ11φ1(x̃1) + v1]

˙̃x4 = b4(x1, x2)x3 − b4(x̂1, x̂2)x̂3

− λ4 [λ12φ1(x̃2) + v2] ,

(6)

Define now the perturbation variables ∆1 and ∆2 as

∆1 = b1(x1, x2)x3 − b1(x̂1, x̂2)x̂3 (7)
∆2 = f2(x2)− f2(x̂2) + b21(x1, x2)x3

− b21(x̂1, x̂2)x̂3 + b22x̃4. (8)

and the auxiliary variables

q1 = ∆1 − v1 (9)
q2 = ∆2 − v2. (10)

Then, with the new variables (7)-(10), the error system (6)
is transformed into:

˙̃x1 = q1 − λ11φ1(x̃1)

q̇1 = −λ12φ2(x̃1) + ∆̇1

˙̃x2 = q2 − λ12φ1(x̃2)

q̇2 = −λ22φ2(x̃2) + ∆̇2

˙̃x3 = b3(x1, x2)x3 − b3(x̂1, x̂2)x̂3

− λ3 [λ11φ1(x̃1) + v1]

˙̃x4 = b4(x1, x2)x3 − b4(x̂1, x̂2)x̂3

− λ4 [λ12φ1(x̃2) + v2] ,

(11)



where the disturbances ∆1 and ∆2 are assumed to be unknown
but with bounded dynamics. Therefore,

∣∣∣∆̇1

∣∣∣ < δ1 and∣∣∣∆̇2

∣∣∣ < δ2, and δ1, δ2 are known positive constants.
If the gains λ11, λ12, λ21 and λ22 are chosen such that

0 < λ11 ≤ 2
√
δ1, 0 < λ21 ≤ 2

√
δ2, λ12 >

λ2
11

4 +
4δ21
λ2
11

and

λ22 >
λ2
21

4 +
4δ21
λ2
21

; or λ11 > 2
√
δ1, λ21 > 2

√
δ2, λ12 > 2δ1

and λ22 > 2δ2, then a sliding mode appears in the system (11)
on the manifold (x̃1, x̃2, q1, q2) = (0, 0, 0, 0) in a fixed-time
tq > 0 [7].

Once the dynamics (11) is constrained to the manifold
(x̃1, x̃2, q1, q2) = (0, 0, 0, 0) the following two equivalent
control signals are given as [3]:

{λ11φ1(x̃1) + v1}eq = b1(x1, x2)x̃3

{λ12φ1(x̃2) + v2}eq = b21(x1, x2)x̃3 + b22x̃4

and, therefore, the sliding mode dynamics is

˙̃x3 = b3(x1, x2)x̃3 − λ3b1(x1, x2)x̃3
˙̃x4 = b4(x1, x2)x̃3 − λ4b21(x1, x2)x̃3 − λ4b22x̃4.

(12)

The equation (12) is an affine system with vanishing
disturbances. Since, the function b1(x1, x2) is positive, the
gains λ3 and λ4 can be selected large enough such the the
system is asymptotically stable [13].

V. SIMULATION RESULTS

The observer was applied to the model of δ-endotoxins
production of bacillus thuringiensis (BT) and probed by mean
of simulation. All simulations presented here were conducted
using the Euler integration method, with a fundamental step
size of 1 × 10−5[h]. The model parameters are shown in
reference [6]. The parameters were taken according to the
range to 20 [g · L−1] < sp,max < 32 [g · L−1]. The value sp,max
corresponds to the initial condition of sp since ṡp ≤ 0.

The initial conditions for the model were selected as:
x1(0) = 32 [g · L−1], x2(0) = 0.74 × 10−2 [L · h−1],
x3(0) = 0.645 [g · L−1] and x4(0) = 1× 10−5 [g · L−1]; and
for the observer: x̂1(0) = 32.64 [g · L−1], x̂2(0) = 0.7252 ×
10−2 [L · h−1], x̂3(0) = 1.29 [g · L−1], x̂4(0) = 0.5 [g · L−1],
v1(0) = 0 and v2(0) = 0. The observer gains were adjusted
to λ11 = 10, λ12 = 5, λ21 = 4.4721, λ22 = 5, λ3 = −10
and λ4 = −6.8587× 103. Finally, for the functions φ1(·) and
φ2(·) it is taken θ = 1.

This section is divided into two parts. In the first part,
noiseless measurements of the substrate concentration sp =
x1 and the dissolved oxygen concentration od = x2 were
assumed; in the second part instead, these measurements were
assumed to be corrupted by a normally distributed random
signal.

A. Noiseless Measurements

In this subsection, there is assumed no noise in the
measurements. Figs. 1-4 show the comparison between the
actual and estimated variables corresponding to substrate
concentration sp = x1, dissolved oxygen concentration od =
x2, vegetative cell concentration xv = x3 and sporulated

cells concentration xs = x4, respectively, for noiseless
measurements.
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Figure 1. Substrate concentration sp (actual and estimated).
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Figure 2. Dissolved oxygen concentration od (actual and estimated).
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Figure 3. Vegetative cells concentration xv (actual and estimated).
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Figure 4. Sporulated cells concentration xs (actual and estimated).

B. Noisy Measurements

In this subsection, the measurements of substrate concen-
tration sp = x1 and dissolved oxygen concentration od = x2
were assumed to be corrupted by a normally distributed
random signals with zero mean, and variances of

(
2
3

)2
and(

5×10−4

3

)2

, respectively, which correspond to concentration
sensors with an accuracy of ±2[g/L] and ±5 × 10−4[g/L],
respectively. Figs. 5-8 show the comparison between the actual
and estimated variables corresponding to substrate concen-
tration sp = x1, dissolved oxygen concentration od = x2,
vegetative cell concentration xv = x3 and sporulated cells
concentration xs = x4, respectively, for noisy measurements.
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Figure 5. Substrate concentration sp (measured, actual and estimated). Noisy
measurements.
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Figure 6. Dissolved oxygen concentration od (measured, actual and
estimated). Noisy measurements.
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Figure 7. Vegetative cells concentration xv (actual and estimated). Noisy
measurements.
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Figure 8. Sporulated cells concentration xs (actual and estimated). Noisy
measurements.

Based on the presented figures, it can be observed a good
performance of the proposed scheme in both noiseless and



noisy measurement conditions. A correct and fast estimation
of the state using the equivalent control based observer is
achieved. Furthermore, under noisy measurement conditions,
the estimations of the measured variables are much closer
to their actual values than their measurements (Figs. 5 and
6). This performance is very important in real applications
because, for instance, the variations in the estimated variables
will generate errors in a control system, or false alarms in a
fault detection system.

VI. CONCLUSION

An observer to estimate the biomass in a batch bioprocess
was presented in this paper. The proposed observer structure
was based on a class of second order sliding mode algorithms
and the equivalent control method. This structure allowed
a robust estimation of the biomass, even, under noisy
measurement conditions. Convergence proofs were given and
and numerical simulations showed the feasibility of the
proposed observer.

Future work would be focus on the optimal selection of
the observers gains, because this selection still depends on the
designer expertise.
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