
 i

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS
SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

DESIGN AND IMPLEMENTATION OF AN EMBEDDED CONTROL

FOR A RECYCLING MACHINE

Tesina para obtener el grado de:

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presentan: Antonio Rodríguez Soto

Director: Dr. Luis Rizo Domínguez

San Pedro Tlaquepaque, Jalisco. 17 de Octubre de 2018.

 ii

 iii

ACKNOWLEDGEMENTS

My special appreciations to my parents Rosa y Antonio and my wife Jacqueline who helped me

plan this career since the beginning and provided me with enough tools and inspiration along the

way.

To MBA. Ricardo García, Ing. Diego Haro, and Ph.D. Joel Chavoya, they paved the way that

allowed me to take off in the embedded world.

Many thanks also to my teachers, MSE. Abraham Tezmol and MSE. Luis Puebla, for your

compromise and dedication. I would like to continue learning from you.

Thanks to my teachers and friends, Ph.D. Luis Rizo Dominguez and Ph.D. Lorena Michele

Brennan Bourdon, who always look forward to selflessly help others to improve.

 v

 vi

Abstract

México is recycling around 60 % of all PET bottles consumed in its internal market and is

the leader in food-grade recycled PET. México leads this industry above the USA and Canada,

and its contribution is not just economical but more so, a measure to improve our environment.

The PET recycling industry faces the challenge of the inefficient process to recover a PET bottle

from waste. The aim of this work is to facilitate the recovery process of a PET bottle for recycling

by designing and implementing an affordable recycling machine. There are two key components

devised in this work to accomplish this goal: the infrared sensor stage and the operative system;

both components are embedded into the same low power microcontroller from the Cortex M4

family. The sensor stage is based on infrared pairs connected to the microcontroller ADC input, a

self-calibration sequence calculates the necessary offset to compensate for the hardware bias. This

calibration takes place one time during initialization. Several tests were performed to tune the

sensor output so that it could be used as a threshold level to distinguish a PET bottle. A second

sensor used is the E3ZM-B OMRON, this device reinforces the sensor stage as the output is

connected to the microcontroller input, which determines if a PET bottle is on the conveyor. The

second key component of this work is the operative system, a multi task, and fully preemptive

system is embedded into the microcontroller, it manages the machine operations by means of tasks

processed depending on its priorities, a high priority task can interrupt a lower priority task, this

is known as preemption which is achieved by a context switch. In this work, the context switch lead

to a not deterministic microcontroller behavior and the PC register was loaded with the wrong

return address needed to continue with the program execution. As a result, the periodical tasks

were processed correctly but they should last no longer than 1ms, as it is not possible to preempt

them. On the other hand, the sensor stage worked as expected with the sole condition of avoiding

a beam of light.

.

https://rei.iteso.mx/bitstream/handle/11117/5550/Wiener%20filtering%20for%20myoelectric%20signal.pdf?sequence=2

 vii

 viii

Resumen

 México recicla alrededor del 60% de todas las botellas de PET que se consumen en su

mercado interno y es el líder en PET reciclado de grado alimenticio. México encabeza la industria

por encima de EE. UU. Y Canadá. La contribución no solo es económica sino que también es una

medida para mejorar nuestro medio ambiente. La industria de reciclaje de PET se enfrenta al

desafío del ineficiente proceso para recuperar una botella de PET de los residuos. El objetivo de

este trabajo es facilitar el proceso de recuperación de una botella de PET para su reciclaje

mediante el diseño e implementación de una máquina de reciclaje asequible. Hay dos

componentes clave diseñados en este trabajo para lograr este objetivo, estos son la etapa del

sensor infrarrojo y el sistema operativo. Ambos componentes están integrados en el mismo

microprocesador, se eligió a la familia Cortex M4 por su baja potencia de consumo. La etapa del

sensor se basa en pares de infrarrojos conectados a la entrada ADC del microprocesador, para

que la secuencia de auto calibración calcule el nivel de compensación necesaria para corregir la

desviación del voltaje inherente a los defectos del hardware. Esta calibración tiene lugar solo una

vez durante la inicialización. Se realizaron varias pruebas para ajustar la salida del sensor de

modo que se pueda utilizar como un nivel de umbral para distinguir una botella de PET; el proceso

de exploración lleva 32 ms por cada par de sensores infrarrojos. Un segundo sensor E3ZM-B

OMRON es utilizado, este sensor refuerza la etapa del sensado ya que la salida está conectada a

la entrada del micro controlador quién determina si hay una botella de PET en la banda

transportadora. El segundo componente clave de este trabajo es el sistema operativo, un sistema

multitarea y preventivo diseñado para este micro controlador administra las operaciones de la

máquina mediante tareas que son procesadas según sus prioridades, una tarea de alta prioridad

puede interrumpir una prioridad menor prioridad, esto se logra mediante un cambio de contexto.

En este trabajo, el cambio de contexto conduce a un comportamiento no determinista del micro

controlador, el registro PC se carga con la dirección de retorno incorrecta para continuar con la

ejecución del programa, como resultado, sólo las tareas periódicas se procesan correctamente,

pero no deben durar más que 1ms ya que no es posible realizar el cambio de contexto. Por otro

lado, la etapa del sensor funciona como se espera con la única condición de evitar al máximo los

rayos de luz externos.

 ix

List of figures

Figure 1-1. Recycling machine Block Diagram and element identification. 17

Figure 2-1. Static analysis it shows which functions call Activate Task process. 21

Figure 2-2. All OS tasks shall call the Disptacher function before terminating themselves. 22

Figure 2-3. Dispatcher flow diagram. ... 23

Figure 2-4. Graphical representation of how the scheduler works on the priority buffers 25

Figure 2-5. Task Control Block representation during task management. 27

Figure 2-6. Arrows indicate periodic tasks and OsTick are calling restore_context 28

Figure 2-7. Stack pointer model, after initialization all SP are pointing to the lower address of the

task assigned memory known as “thumb bit” ... 31

Figure 2-9. Return Address Compensation ... 33

Figure 2-10. RAM memory distribution after Os_Init () is finished. ... 36

Figure 2-11. Attending GPIO PortF Interruption. .. 37

Figure 2-12. SYSDIV2 of RCC2. ... 38

Figure 4-1. ADC0_OffsetCalc .. 42

Figure 4-2. Omron sensor-reflector polarizes with PET bottle... 44

Figure 5-1. The H Bridge Schematic, the DC motor is connected between J1 and J2. 45

Figure 5-2. H Bridge controls the DC motor that feeds the machine. .. 46

Figure 5-3. Signal used to Feed the machine .. 47

Figure 5-4. Signal used to Return the Bottle... 47

Figure 6-1, Recycling machine, feeding stage prototype ... 48

file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478216
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478218
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478219
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478220
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478221
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478223
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478223
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478226
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478229
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_tesinaV5.rev%2006.11.18.docx%23_Toc529478234

 xi

List of Tables

Table 1-1. The list of components from the feeding stage of the recycling machine. 18

Table 2-1. Binary progression. ´A´ denotes activation of 32ms and 8ms Task. 24

Table 2-2, Task Control Block Elements. ... 26

Table 2-3. Code segment to restore context. ... 29

Table 2-4, Stack distribution per TASK. .. 32

Table 2-5, Filing Task Control Block information. .. 33

Table 2-6, Padding as memory guard ... 34

Table 2-7, Systick Registers address. ... 38

Table 2-8, RCC2 (PLL registers) in TM4C microcontroller. ... 39

Table 4-1, Real Voltage (VoltPD3) vs. Converted Voltage (Volt). .. 43

file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_versión%20final.09-11-18.docx%23_Toc529712867
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_versión%20final.09-11-18.docx%23_Toc529712868
file:///C:/Users/Asoto/Documents/Especialidad/tesis/Documentando/Informacion/AntonioRodriguez_Soto_versión%20final.09-11-18.docx%23_Toc529712874

 xii

List of acronyms and abbreviations

API Application program interface

BPS Binary Progression Scheduler

FIFO First input First output buffer

TT Trigger task.

TADL Task descriptor list.

RTOS Real Time Operative System

OS Operative System

Hz Hertz

KHz Kilo Hertz

MHz Mega Hertz

XTAL Crystal

SP Stack Pointer

LR Link Register

PSR Program Status Register

PC Program Counter

ISR Interrupt Service Register

PLL Phase Locked Loop

RCC2 Run Mode Clock Configuration

TCB Task Control Block

OSEK Open Systems and their Interfaces for the Electronics in Motor Vehicles

 xiii

Table of contents

List of figures .. ix

List of Tables .. xi

List of acronyms and abbreviations .. xii

Introduction ..16

1. Recycling machine description ...17

1.1. OPERATIVE SYSTEM REQUIREMENTS 19

2. Operative System Elements ..20

2.1. TASK ID 20
2.2. TRIGGERED TASKS, (TASK ACTIVATION) 20
2.1. BACKGROUND TASK 20

2.2. ACTIVATE TASK (TASKTYPE TASKID) 21
2.3. DISPATCHER 22

 23
2.4. SCHEDULER MECHANISM 24
2.5. PRIORITY BUFFER 25

2.6. TASK CONTROL BLOCK 26
2.7. PRIORITY BUFFERS AND TASK CONTROL BLOCK 27

2.8. TASK PRIVATE VARIABLES (MEMORY ALLOCATION) 27
2.9. RESTORE CONTEXT 28

2.10. TASK STATE 29
2.11. TASKS CALLS 30

2.12. TASK TERMINATION 30
2.13. TASK STACK 31
2.14. STACK DISTRIBUTION PER TASK 32
2.15. INITIALIZATION 34

2.16. CONTEXT SWITCH 35
2.17. SYSTICK 38
2.18. PLL INITIALIZATION STEPS 39

3. Serial driver configuration ..41

3.1. SERIAL PORTS CONFIGURATION FILE 41

4. Photoelectric Sensors ...42

4.1. INFRARED PAIRS 42
4.2. OMRON SENSOR 44

5. Measurements ..45

 xiv

5.1. FEEDING MACHINE, BOTTLE TO INSIDE 47
5.2. RETURNING BOTTLE TO OUTSIDE 47

6. Prototype ...48

7. Conclusion ..50

8. References ...53

 15

 16

Introduction

Recycling PET is a measure to improve our environment. In 2014, México recycled 2

million bottles, equivalent to 6.6 million tons and thus, less CO2 expelled into the environment

[10]. However, this recycling rate represents just the 58% of the local consumption [13], meaning

that Mexico is still a the early stages on this topic, the main problem in the PET recycling process

is the inefficient means to recover a PET bottle from the waste [13]. The purpose of this work is

to design and implement an affordable PET bottle recycling machine which could be installed in

a collection center. In Chapter 1 is shown the prototype of the machine feeding stage.

 The challenge comes with Chapter 2 and 3 the larger chapters in this work since

intermediate and advanced programming skills ought to be applied for a scalable and real life

solution. This machine will shred plastic by means of iron scissors spinning at a high speed and

safety is priority. Furthermore, the machine operations must be controlled by a preemptive and

deterministic control, a multi-task fully preemptive system is suited to be running on a low cost/low

power microcontroller using free KEIL compiler tools for its design [9].

Chapters 4 and 5 detail the proposed algorithm that allows the use of low cost infra-red

sensors devised as four transmitter-receiver pairs connected to an ADC, a self-calibration sequence

calculates the necessary offset to compensate the hardware bias, an average is calculated out of 4K

samples per pair and used to subtract the noise to each of the four pairs. This operation takes 32ms

per channel. A second sensor for industrial applications is used to accurately distinguish between

glass and PET bottle. The sensor output is 5V when a PET bottle is detected or 0V for other

different materials. It is the E3ZM-B OMRON PET Bottle sensor [11], the only requirement is to

block the sensor stage from any beam of light.

The final prototype shown in Figure 6-1, was implemented by one engineer and the goal to

implement an affordable bottle recycle machine was tackled in this thesis.

 17

1. Recycling machine description

A recycling machine is a system build around a conveyor devised to identify if the

introduced bottle can be recycled. A user deposits the PET bottle on this conveyor, which

transports the bottle in front of a bar code reader or scanner. The conveyor spins the bottle until

the barcode printed on its label is read by a scanner, then the data from the bottle label is processed

and allocated in a database. The recycling machine performs the lookup task and takes the decision

whether the bottle is in the database or not, this sort of test determines if the bottle is approved to

be recycled. If the test is passed, the bottle is sent to a post-processing stage where the bottle is

transformed in PET flakes. This work is focused on developing a prototype of the entrance stage

of the recycling machine, this includes a PET sensor and infrared scanner controlled by a multitask

OS. The recycling machine prototype is depicted in Figure 1-1, and the machine elements are

listed in Table 1-1.

One of the requirements to build the recycling machine is to make it as inexpensive as

possible, this is achieved by reducing the cost of the PET sensor stage by using the set of paired

IR sensors [3] shown in Figure 1-1 and compensate the bias offset by using (1-1).

DC Motor Control

MC33931

2 5

1

TM4C123GXL

Cortex M4

6
8. LCD

4
3

TM4C123GXL

Cortex M4

Figure 1-1. Recycling machine Block Diagram and element identification.

 18

On the left side of Figure 1-1, the sensor [2] completes the sensor stage. It is an industrial

sensor devised to detect PET material. It was the only sensor considered at the beginning of the

project but testing results showed a certain tendency to error, and the data read from IR sensors

complement the measurements for accurate results.

Element Name

1 Black housing , the Sensor holder

2 E3ZM-B OMRON PET Bottle sensor

3 Tx/Rx Infra-red LED

4 Conveyor, Measurement 6cm x45cm

5 12V Motor

6 TM4C123GXL Cortex M4 DevBoard

7 NXP H-Bridge for DC motor Control

8 Nokia 5110 Graphical display

Table 1-1. The list of components from the feeding stage of the recycling machine.

The system manager is embedded in a Cortex M4 development board TM4C123GXL

element [6] shown in Figure 1-1. It coordinates the tasks for the elements operation, such as [4]

conveyor speed, [7] conveyor direction, [8] printing messages on the LCD screen, and sensor [2,

3] calculations.

 19

1.1. Operative System Requirements

To control the recycling machine, a preemptive kernel based on a switch and restore context

was designed with the following requirements [5].

Each task shall be associated with a data structure, called a Task Control Block TCB. This

data structure contains at least a PC, register contents, an identification string or number, a task

status, and a task priority [2].

 The system stores these TCBs in one or more data structures, such as a linked list shown below:

 Task Stack shall be allocated with Memory Allocation interface [3].

 Each task shall contain its own stack including the Background Task

 Stack size will depend on the project memory model

The project shall support event-driven tasks:

 Button Task 1 -> On Board Button 1 ISR (This will be connected to the knives door lock)

 Button Task 2 -> On Board Button 2 ISR (enabled for future capacities)

 Background Task shall toggle onboard green led

 Increment a counter on the event-driven task Timed Task 1

 All tasks shall set a high and low pin level when entering or terminating a task respectively.

 SaveContext and RestoreContext interfaces shall be provided to support Context Switch

mechanism.

 20

2. Operative System Elements

2.1. Task ID

It is the given name to a target service or function. The task is going to be identified with

this name along the OS system. In other words, there is no other task with the same name.

2.2. Triggered Tasks, (Task activation)

Triggered tasks, also called the ActivateTask() function, however, these are asynchronous,

they do not need a scheduler to be serviced. The READY to RUNNING state change receives the

same treatment than in periodic tasks

2.1. Background Task

The background task is the process with the lowest priority. Nonetheless, it is the first

process to run in the OS as a non-interrupt-driven task [12]. The background processing should

include anything that is not time critical and is proceeded by the following steps:

1. Disable interrupts.

2. Set up interrupt vectors and stacks.

3. Perform system initialization.

 21

2.2. Activate Task (TaskType taskID)

This API receives as input the taskID parameter and switches its state from SUSPENDED

to READY if no error occurred, it pushes this task into the priority buffer according to its task

priority. There are two types of tasks, periodic task and triggered task, Figure 2-1 shows how the

first type takes one additional step in order to be activated (turned to READY state), it calls to

Task_sch_activate(), whereas, the second type just calls ActivateTask(TaskType taskID).

Figure 2-1, Static analysis shows which functions call Activate Task process.

 22

2.3. Dispatcher

The dispatcher searches on the priority buffer FIFO and picks up the next task to be

executed. It finds the highest priority and oldest task in a READY state to switch its status to

RUNNING and returns the pointer to the next task to be executed but it does not execute it, that is

the function of restore_context() explained later in this document, Figure 2-2 shows the dispatcher

being called from each OS task (event driven, periodical and interrupt task) before they terminate

themselves as detailed in chapter 2.12.

Figure 2-2.All OS tasks shall call the Disptacher function before terminating themselves.

 23

Dispatching a task implies its previous activation. As shown in Figure 2-1,

ActivateTask(TASKID) is cyclically running inside SchM_OsTick and later it calls the

Dispatcher, meaning it shall be possible to interrupt the current task (Task1) to allocate the next

entry in the execution buffer, Figure 2-3 shows the flow diagram devised to carry out the operation.

Y

Dispatcher

Status(R)=ready

Pull(R)

Push(R)

Put task on a tail

End

Determine higher priority task

Task2 Priority

> Task1 Priority

Figure 2-3, Dispatcher flow diagram, it determines the task to be executed

but it does not execute it. If Task2 is triggered and it has a higher priority

than the currently running Task 1, Task1 is placed on tail according to its

priority and the context change is performed.

 24

2.4. Scheduler Mechanism

In an embedded software the processing power is commonly limited, so managing the

access to CPU resources is crucial [1]. The need of a mechanism based on a counter tick that

launches the right task at the right moment in a controlled way is crucial.

In this work, each task control was encoded in a structure called tSchM_Task_Descriptor

that contains each mask and offset information used in a cyclic Binary Progression Scheduler

technique to activate the next task as shown in Table 2-1. The Binary Progression column indicates

the 7 bit counter that is incremented by each clock tick

Table 2-1. Binary progression. ´A´ denotes activation of 32ms and 8ms Task.

When the binary counter and the mask matches, the task is executed, the rate is

calculated by 𝑡𝑎𝑠𝑘 𝑟𝑎𝑡𝑒 = 𝑂𝑆 𝑡𝑖𝑐𝑘 ∗ (𝑚𝑎𝑠𝑘 + 1) (2-1)

𝑡𝑎𝑠𝑘 𝑟𝑎𝑡𝑒 = 𝑂𝑆 𝑡𝑖𝑐𝑘 ∗ (𝑚𝑎𝑠𝑘 + 1) (2-1)

The ActivateTask() function is called changing to READY the state of the corresponding

task, the Scheduler sweeps through the priority buffers and picks up the next task to be launched

as shown in Figure 2-4. If a task is started, the operating system informs the task of its activation

time, which is synchronized within the cluster.

This schedule considers the required precedence and mutual relationships among the tasks,

such that an explicit coordination of the tasks by the operating system at runtime is not necessary.

 25

The tSchM_Task_Descriptor structure must be allocated in the flash memory with the command

const as declared in file Os_task_cfg.c.

2.5. Priority buffer

This buffer arrange contains as many FIFO queues as the number of tasks priorities.

.

ActivateTask(TaskType taskID) changes the identified task state to READY and pushes it

into the corresponding priority buffer. Figure 2-4 shows all tasks in the priority buffer are in

READY state and are waiting for the Dispatcher, which selects the next task to update its status

to RUNNING. Then, the dispatcher updates the function pointer with the address of the next

function to execute but it does not executes it.

Task Control Block

TaskId;

priority;

ptrTask;

READY;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

READY;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

READY;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

READY;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

READY;

StackInfo;

deadline;

Priority buffers

Low priority High priority

Scheduler performs a sweep on the priority buffer

0 1 N

Figure 2-4, Graphical representation of how the scheduler works on the priority buffers.

 26

2.6. Task Control Block

A Task Control Block TCB, is a data structure that contains all the information related to

the operative system tasks. As shown in Table 2-2, it contains the task ID or number, a task status,

and a task priority. This structure is a sort of template utilized by all tasks at the time it is created.

The context level variable on the Task control block informs the level of the interrupt context [5].

The advantage of having a TCB is the flexibility and order it brings to the OS, the TCB

serves as the information template during the declaration of new tasks.

typedef struct

{

 enum tSchedulerTasks_ID TaskId;

 UINT8 priority;

 UINT8 ContextLevel;

 tPtr_to_function ptrTask;

 enum tTaskStates enTaskState;

 tStackInformation StackInfo;

 tDeadline deadline;

 UINT8 StackBuffer[100];

}tTaskControlBlock;

Table 2-2, Task Control Block Elements.

 27

2.7. Priority Buffers and Task Control Block

The priority buffer only saves the TaskID of the tasks in a READY state. The priority buffer

operates as FIFO, such as the first task entering the buffer, is the first to be executed.

Figure 2-5, shows the structure of the buffers interrupt and the Task Control Block

structure, which are located in RAM.

2.8. Task private variables (memory allocation)

The operative system uses memory allocation functions to make Task variables private to

other modules, memory allocation allocates the amount of memory for internal status and control

structures, the amount of memory is calculated by (2-2). Function Os_Init () reserve memory for

ISR and status.

𝑝𝑡𝑟_𝑡𝑎𝑠𝑘_𝑐𝑡𝑟𝑙_𝑏𝑙𝑜𝑐𝑘 = (𝑡𝑇𝑎𝑠𝑘𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵𝑙𝑜𝑐𝑘 ∗) 𝐻𝑒𝑎𝑝_𝑀𝑎𝑙𝑙𝑜𝑐(𝑠𝑖𝑧𝑒𝑇𝐶𝐵_𝑇𝑠𝑘𝑁𝑢𝑚); (2-3)

Task Control Block, Tasks Set to SUSPENDED after initialization

TaskId;

priority;

ptrTask;

SUSPENDED;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

SUSPENDED;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

SUSPENDED;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

SUSPENDED;

StackInfo;

deadline;

TaskId;

priority;

ptrTask;

SUSPENDED;

StackInfo;

deadline;

Low priority High priority

0 1

After Activation, each Task is set to READY and queued in a priority buffer

N Priority buffers

Figure 2-5, Task Control Block representation during task management.

 28

2.9. Restore Context

As described in chapter 2.3, the dispatcher selects which is the following task by loading

the static pointer with the address of the next function to be executed and updates its status to

RUNNING, restore_context() function shifts the stack for the recently updated RUNNING task

and POPS data to run it [5].

The relationship between periodically activated tasks and restore_context function is

depicted in Figure 2-6.

Figure 2-6, Arrows indicate periodic tasks and OsTick are calling [LMBB1]restore_context

 29

The code shown in Table 2-3, loads the pointed task addressed by the dispatcher and

updates the register values that correspond to it. There is where the context switch occurs.

2.10. Task state

A task typically can be in any one of the four following states [2]:

1. Running

2. Ready

3. Suspended (or blocked)

In a single-processing system, there can be only one task running. A task can enter the

running state when it is created (if no other tasks are ready), or from the ready state (if it is eligible

to run based on its priority or its position in the scheduler list). When a task is completed, it returns

to the suspended state. Tasks in the ready state are those that are ready to run but are not running.

A running task enters the ready state if it was executing and its time slice runs out, or it was

preempted. If it was in the suspended state, then it can enter the ready state if an event that initiates

it, occurs.

Asm_restore_context

 CPSID I

 LDR R2,=newSP

 LDR sp, [R2] ; new thread SP = newSP

 POP {R4-R11} ; restore regs r4-11

 POP {R0-R3} ; restore regs r0-3

 LDR R2,=EndSP

 LDR sp, [R2] ; new thread SP = newSP

 POP {R12}

 POP {LR} ; discard LR from initial stack

 CPSIE I ; Enable interrupts at processor level

 BX LR

Table 2-3. Code segment to restore context.

 30

There are two types of tasks, periodic task and triggered task, the task type is defined in a

variable within the task descriptor structure explained below. The main difference between them

is that the first type takes one additional step to be activated (turned to READY state), it calls to

Task_sch_activate(), whereas the second type just calls ActivateTask(TaskType taskID).

In the case of periodic tasks, the SUSPENDED to READY state switch is managed by the

Binary Progression Scheduler within Task_sch_activate(). A mechanism based on a counter tick,

a task mask and offset to manage the access to the CPU resources by launching the right task at

the right moment in a controlled manner.

2.11. Tasks Calls

In OSEK, each task shall terminate itself at the end of its code. Then, three functions must

be called at the end of overall tasks, these functions are described below.

1. statusOS = TerminateTask() ;

2. Dispatcher();

3. restore_context();

2.12. Task Termination

Both types of tasks terminate themselves by calling TerminateTask(). This function

terminates the task transferring it from RUNNING to a SUSPENDED state and the operating

system makes the results of the task available to other tasks and informs whether the function

terminated normally “E_OK” or wrongly mean “E_OS_LIMIT. Both results will be saved in the

result variable statusOS (statusOS = TerminateTask()).

 31

2.13. Task stack

The execution of the main program is called the foreground thread, and the executions of

the various interrupt service routines are called background threads [2]. Any time an interrupt is

asserted, we need to perform a context switch to store all information running during foreground,

complete background, and save its results and return to foreground thread recovering the

information previously stored.

Managing the stack during context switch could result in a complex task, especially when

the microcontroller automatically saves eight registers. The integrator should design a strategy to

keep safe each piece of task information while the microcontroller handles the registers in the

designated stack.

Each task has its own stack area on memory, such as it is shown in Figure 2-7.

Stack Task 1

SP1->

Stack Task 2

SP2->

Stack Task N

SPN->

Fig. 2-1 Stack pointer model, after initialization all SP are pointing to the lower address

of the task assigned memory known as “thumb bit”.

Figure 2-7, Stack pointer model. After initialization, all SP are pointing to the lower address of the

task assigned memory known as “thumb bit”.

 32

2.14. Stack distribution per Task

 The task control block of each task stores its SP address into the Stack info structure by

means of Os_Init function.

The assigned addresses are summarized in Table 2 5. A problem is detected and reflected

in column Return from ISR start, the problem can be described as a non-deterministic behavior of

the microcontroller as it is not possible to predict the return address after processing an interrupt.

In other words, the program counter PC loses the return address due the stack pointer is

automatically pointing to the expected address but somehow the microcontroller adds (+1 or +2

bytes) randomly, which makes it not possible to keep track of the address to be loaded into the PC

register to continue with the program execution.

Table 2-4, Stack distribution per TASK.

 33

To solve this issue, the author designed something called “return address compensation”

on the SW version “RecyPET_V1p6_with_CANTx_V1p20asc1p2” by applying the following

technique (Figure 2-9):

Figure 2-8.Return Address Compensation. Algorithm devised to compensate the not deterministic behavior of the microcontroller,

in this operation the microcontroller checks if it is required to synchronize the SP address, this mitigates the loss of return address.

Figure 2-8, Implements a macro to compensate the data shift when the BX LR instruction

is executed, bits 31-1 of LR register are put back into the PC and bit 0 of LR goes into the T bit.

On the ARM Cortex-M processor, the T bit should always be 1, meaning the processor is always

in the Thumb state. Normally, the proper value of bit 0 is assigned automatically.

Table 2-5 shows one of the key parts in Os_Init (), this function is called just one time

during initialization specifically after power on.

Table 2-5, Filing Task Control Block information.

Task information as declared

at:

tTaskControlBlock->tTaskInfo

 34

Table 2-6, Padding as memory guard

The padding is a memory guard, it brings flexibility to the OS during initialization, in case

more information is added in tTaskInfo. The current size of the stack is not increased by heap

allocation so that performance is not compromised. This memory guard, also promotes a more

readable stack.

2.15. Initialization

Initialization is the stage where the buffer size is defined, Os_init() is the function where

Start and End address by task are calculated by (2-4) and (2-5).

𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐼𝑛𝑓𝑜. 𝑆𝑡𝑎𝑟𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = (𝑈𝐼𝑁𝑇16 ∗)&𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐵𝑢𝑓𝑓𝑒𝑟 + 0; (2-6)

𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐼𝑛𝑓𝑜. 𝐸𝑛𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = (𝑈𝐼𝑁𝑇16 ∗)&𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐵𝑢𝑓𝑓𝑒𝑟 + 200; (2-7)

Interrupts are enabled after initialization and once the background task is started.

Initialization is actually the first part of the background process. It is important to disable interrupts

because many systems startup with interrupts enabled while time is still needed to set things up.

This setup consists of initializing the appropriate interrupt vector addresses, setting up stacks if it

is a multiple-level interrupt system, and initializing any data, counters, arrays, and so on.

Padding is a technique used to guard memory

between TaskInfo and Registers information.

In the end, Stack pointer points to the last

element of this array “thumb bit”.

 35

2.16. Context switch

Once the “SP End address” is calculated, this value is loaded into SP during

restore_context() and before running into the ISR handler [3]. Figure 2-7 shows an example of a

stack pointer in RAM.

While running a task, SP points to the lower address of the assigned task memory or “thumb

bit” as shown in Figure 2-7, this memory is assigned during initialization time. When an interrupt

is asserted, Cortex M architecture PUSHES {PSR, PC, LR, R12, R3, R2, R1, and R0}

automatically by the hardware while the entering interrupt handler PUSHES {R4-R11} and at the

same time pushes into the SP, its address is decremented automatically.

 36

As shown in Figure 2 10, during ISR handler the microcontroller pushes next registers

automatically:

PSR, PC, LR, R12, R3, R2, R1, and R0, e.g. Next registers are automatically saved during

GPIOPortF interruption [4].

Figure 2-9, RAM memory distribution after Os_Init () is finished.

 37

By using “SP End address” as initial base address and decreasing “SP address - 4” before

storing next register; finally “Return from ISR start” value is known after doing PUSH {R4-R11}.

In this way, the RAM area between “Return from ISR start” and “SP End address” enclosed

all information needed to return from interrupt and perform “ISR_User” callout. This means that

before executing BX LR we shall set SP in ”Return from ISR start” where all the information to

execute “ISR_User” shall be complete and organized, and some overhead is added in each

ISR_Handler to make it possible.

A) LR. PC and PSR values are updated within ISR, these values are copied from TASKINFO-

> Sch_Callback structure, originally defined within Os_Init().

R0
R1

R2

R3

R12
B)

LR

PC
PSR

Figure 2-10, Attending GPIO PortF Interruption.

 38

2.17. SysTick

SysTick is a simple counter that we can use to create time delays and generate periodic

interrupts. It exists on all Cortex-M microcontrollers, so using SysTick means the system will be

easy to port to other microcontrollers. Table 2-7 shows the register definitions [3].

Table 2-7, Systick Registers address.

The PLL can take advantage of the external oscillator to speed up or slow down the clock,

speeding up is going to make the clock faster, doing more work but consuming energy faster. If

we require longer battery life we may need to reduce the CPU speed slowing down the clock.

Write XTAL= 10101 or 0x15 in RCC register to configure 16Mz crystal frequency.

Write ´n´ number in SYSDIV2 bit into the register RCC2 to get the n+1 divisor

Figure 2-11, SYSDIV2 of RCC2.

Finally, we will obtain the PLL nominal frequency (400MHz) divided by n+1.

 39

2.18. PLL Initialization steps

This initialization is done at the very beginning during the main function [3], in this project,

it was initially coded incorrectly into Mcu function, but it was corrected later to PLL function Table

2-8.

Table 2-8, RCC2 (PLL registers) in TM4C microcontroller.

Steps to configure the PLL to operate at 16MHz Xtal Oscillator at 80MHz [6].

0) Use RCC2 register for this configuration.

1) To set BYPASS2, after this step the PLL is avoided.

2) To set the crystal frequency in the four (10:6) bits in Table 2-8 using XTAL table for the desired

configuration. To clear OSCSRC2 bits, this action selects the main oscillator as the clock source.

3) To clear PWRDN2, this activates the PLL.

 40

4) To configure and enable the clock divider. To get the desired 80 MHz from the 400 MHz PLL,

we need to divide by 5. So, we place n = 4 into the SYSDIV2 field because this value divides the

clock by n+1.

5) To wait for SYS_R to become high, this is controlled by the processor and indicates the PLL is

stabilized.

 6) To perform step 1) by re-connecting the PLL clearing the BYPASS2 bit.

 41

3. Serial driver configuration

SSI (Nokia Display) driver is developed according to the following requirements:

 The driver shall take a unique configuration and configure all channels as per their

corresponding static configuration.

 Require, upon initialization, dynamically allocated RAM for their TX and RX buffers.

 Require, upon initialization, dynamically allocated RAM for their internal status structures.

3.1. Serial ports configuration file

This application, configures all channels on a single file Protocol_cnf.c, number of

channels and configuration per channel.

Serial configuration is based on the pointer to their registers, this allows to remove switch-

case sentences on the serial initialization

 42

4. Photoelectric Sensors

4.1. Infrared pairs

Designing a low cost solution is crucial to produce an affordable machine, the solution is

to implement infra-red sensors stage devised as four transmitter-receiver paired elements

connected to an ADC as shown in Fig. 4-1 where the ADC module is configured to work [3]. It is

attended by SysTick_Handler interruption every 25ms [3]. Only once, after energizing the

prototype, an offset calculation takes place for calibration purposes; ADC_ReadSensorOffset

(return p_medicion.u16Offset_Buffer) is called to calculate the implied error in ADC lecture as

Infra-Red led is analogous and prone to noise, an array of size MEAN_BUFFER_SIZE (16

elements) containing consecutive measures per channel, calculates the amount of noise in Volts

along 4 channels sweep.

Figure 4-1, ADC0_OffsetCalc, is called once during initialization, the ADC0_Reading bottle is called inside the

periodical 32ms task, only when an object is detected on the conveyor.

The function ADC_ReadSensorOffset reads the instant value and calculated in (4-1)

𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙 = (𝐴𝐷𝐶0_𝑆𝑆𝐹𝐼𝐹𝑂3_𝑅&0𝑥𝐹𝐹𝐹);

𝑖𝑓 (𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙 <
 𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑂𝑓𝑓𝑠𝑒𝑡_𝐵𝑢𝑓𝑓𝑒𝑟[𝑐ℎ_𝑐𝑜𝑢𝑛𝑡]) 𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑂𝑓𝑓𝑠𝑒𝑡_𝐵𝑢𝑓𝑓𝑒𝑟[𝑐ℎ_𝑐𝑜𝑢𝑛𝑡] =
 𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙; (4-2)

In the end, the noise amount converted in Volts is subtracted from the mean voltage

calculated later in ADC0_ReadingBottle, where another structure pmedicion.u16Mean calculates

the Mean voltage after scanning the bottle cylindrical part in (4-3)

𝑝𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑀𝑒𝑎𝑛 = (𝑤𝑜𝑟𝑑)((𝑓𝑙𝑜𝑎𝑡)𝑢16𝑠𝑢𝑚𝑎/𝑀𝐸𝐴𝑁_𝐵𝑈𝐹𝐹𝐸𝑅_𝑆𝐼𝑍𝐸 + 0.5); (4-4)

 43

The usage of Offset calculation comes later in (4-5):

𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑀𝑒𝑎𝑛_𝑤𝑂𝑓𝑓𝑠𝑒𝑡[𝐴𝐷𝐶_𝐶𝐻] = 𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑀𝑒𝑎𝑛 −
𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑂𝑓𝑓𝑠𝑒𝑡_𝐵𝑢𝑓𝑓𝑒𝑟[𝐴𝐷𝐶_𝐶𝐻]; (4-5)

It takes 23 ms to be fully executed, this time involves waiting till ADC Hardware triggers

its end of conversion flag as in (4-6).

𝑤ℎ𝑖𝑙𝑒((𝐴𝐷𝐶0_𝑅𝐼𝑆_𝑅&0𝑥08) == 0){}; (4-7)

The challenge is to integrate this change into the operative system, where Systick_Handler

was replaced by a TimerA0 interrupt [3] and the IR mean voltage calculation was enabled, once a

bottle was over the feeding band.

The ADC Resolution depends on the amount of bits the microcontroller utilizes for voltage

conversion from analog to digital, TMC123 uses 12 bits or 2k (4095 samples) it uses a 3.3 V source

ADC Resolution

Digital Value

Voltage to convert

ADC Reference

Voltage

Table 4-1, Real Voltage (VoltPD3) vs. Converted Voltage (Volt).

 44

power as reference voltage and calculates the equivalent voltage as digital value as shown in Table

4-1.

Even though the mentioned technique accurately identifies when a PET bottle is processed,

the following problem was found during development. The system crashes if the interrupt service

routine does not either acknowledge or disarm the device released after completeness, for example

in the sensor stage; After finishing the analog to digital conversion, the control register raises a

status bit indicating the conversion is finished, the software shall poll this flag and deactivate it to

continue with the software execution or the microcontroller will call a reset indicating its

malfunction.

4.2. OMRON sensor

The sensor is allocated at the end of the conveyor as shown in Figure 4-2, the sensor part

number is E3ZM-B PET Bottle Detection.

As shown in Figure 4-2, the E3ZM-B sensor requires a reflective surface mounted on the

frontal surface, this surface is a polarization filter that is tuned only with the PET bottle refraction

reducing loss. The sensor output is 5V, when a PET bottle is detected, or 0V for other different

materials [11].

E3ZM

B

Reflector

Receptor

Figure 4-2, Omron sensor-reflector polarizes with PET bottle.

 45

5. Measurements

The conveyor is the first contact to feed the machine, a DC motor shall push the bottle

inside the sensor box (element 1 in Figure 1-1). The first two columns in the truth table shown in

Appendix A, control EN and /D2 enabling OUT1/2 states to be defined by controlling IN1 and

IN2 states [6].

Figure 5-1. The H Bridge Schematic, the DC motor is connected between J1 and J2.

 46

Figure 5-1 shows the schematic H Bridge, where IN1 is directly connected to GND. In

order to enable breaking it is necessary to lift pin 43, attach a wire to it and control it properly [6].

Below the board connection for MC33931 is shown:

Once a power source is connected to J4 pin 1 (+ 9V), and pin 2 to (GND), the current consumption

is equal to 360mA.

Figure 5-2. H Bridge controls the DC motor that feeds the machine.

+M

-M

 47

5.1. Feeding machine, bottle to Inside

Terminal ENDL (JP2 pin1) +5V connected,

T = 1ms

Duty cycle = 100us

Figure 5-3, Signal used to Feed the machine, measured between PWML (JP2 pin 15) and GND.

5.2. Returning Bottle to outside

Terminal ENDL (JP2 pin1) GND connected,

T = 1ms

Dutycycle = 900us

Figure 5-4, Signal used to Return the Bottle, measured between PWML (JP2 pin 15) and GND.

 48

6. Prototype

The prototype was assembled in parallel the SW development. Using Figure 1-1 as

reference, we can identify on the upper left the sensor box, it is made out of acrylic and painted

with aerosol to block all beam of light, the infrared sensors are attached in the middle the circuit

to amplify the infrared beam of light is installed on the top of the box. At the bottom, the Nokia

graphical display shows the ITESO logo during initialization.

Figure 6-1, Recycling machine, feeding stage prototype.

 49

 The red boards are the CortexM devices known as development board (Texas instruments

Tiva TMC123), there is where the operative system reside.

The blue board is used to control the motor spin direction and speed, (Motor H bridge board

MC33931 from NXP).

The prototype is functional but there is a reset after performing context switch. The shared

system “RecyPET_V1p8_with_CANTx_V1p26asc1p6 “can handle the periodical tasks but cannot

be preempted by a higher priority interrupt, in other words a task cannot be interrupted by a second

task with higher priority, there is no preemptive functionality, meaning the project is not fulfilling

the requirement during the context switch where the SP is loaded with a wrong address, this

address is pushed into the PC register, as a consequence, the program execution is lost.

 50

7. Conclusion

The goal of this work is to produce the feeding stage of a PET bottle recycling machine at

the lower cost possible, as well, all the development tools were selected due to their low cost. For

example, the Tiva TMC123 was selected as the main development board due its flexibility, its low

power consumption, and its low price, the design environment, such as the compiler and debugger

can be downloaded for free for academic purposes. One of the findings was that this toolset works

well for small projects, however, a multi task, fully preemptive operative system demands more

stability; For example, during debugging the tool loses synchronization with the development

board. A suggestion for future research would be to invest more in a proper toolset.

The toolset limitations made it very difficult to find the reason why the operative system

crashes when an OS Task executes the context switch. After several tests, it was found that the SP

is loaded to the expected address but the microprocessor automatically increments (+1 or +2)

randomly to this address. Later, the command BX LR is executed to return from context switch,

which loads the PC register with the dereferenced value from SP, as a consequence, the program

execution is lost as it is not possible to load the PC register with the expected address,

 51

Appendix

 52

A. CONVEYOR, H BRIDGE CONTROL

The tri-state conditions and the status flag are reset using D1 or EN/! D2 .

The EN/!D2 pin performs the same function as the D1 pin when it goes to a logic LOW the outputs

are immediately tri-stated [11].

 53

8. References

[1] Phillip A. Laplante, Real Time Systems Design and Analysis, IEEE Press pp. 73-93, Sept. 2003.

[2] Hermann Kopetz, Real Time Systems Design Principles for Distributed Embedded Applications”, Springers pp.
183-186, January 2011

[3] J.W. Valvano, Embedded Systems: Introduction to ARM Cortex M Microcontrollers, 5th Ed. Vol1, pp.258-260,
pp.280-282, pp. 326-329, Nov. 2003.

[4] J.W. Valvano, Embedded Systems: Real-Time Interfacing to ARM Cortex M Microcontrollers, 2nd

Ed. Vol3, pp.119-126, Jan. 2014.

[5] ARM Technical Staff, ARM Compiler Toolchain Assembler Reference, Ver. 5.0

[6] NXP Technical Staff, MOTOR_DRIVE_REVA. Aug.2011. [Online]. Available:

https://community.freescale.com/docs/DOC-1019.

[7] Texas Instrument Technical Staff, TM4C123GH6PM Microcontroller. July 2013. [Online]. Available:

http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf

[9] Cortex M3 application with CAN driver”, Notes for UT.6.10x Embedded Systems , University of Texas at Austin,

Jun. 2017.

[10] El Financiero “México, líder en reciclaje de PET”, Rogelio Varela. Sept. 2014. [Online]. Available:

http://www.elfinanciero.com.mx/opinion/rogelio-varela/mexico-lider-en-reciclaje-de-pet

[11] OMRON Technical Staff, Retro-reflective with M.S.R. function, Aug.2013. [Online]. Available:

https://www.ia.omron.com/product/item/606/

[12] "Operative Systems in Embedded microprocessors", class notes for Embedded Systems Specialty, summer

2013.

 [13] El Pais “México, a la cabeza del reciclaje de plástico en América”, ROCÍO AGUILERA VÁZQUEZ. May. 2018.

[Online]. Available: https://elpais.com/internacional/2018/05/16/actualidad/1526429688_205528.html

http://users.ece.utexas.edu/~valvano/arm/outline1.htm
http://users.ece.utexas.edu/~valvano/arm/outline.htm
https://community.freescale.com/docs/DOC-1019

