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Abstract 

México is recycling around 60 % of all PET bottles consumed in its internal market and is 

the leader in food-grade recycled PET. México leads this industry above the USA and Canada, 

and its contribution is not just economical but more so, a measure to improve our environment. 

The PET recycling industry faces the challenge of the inefficient process to recover a PET bottle 

from waste. The aim of this work is to facilitate the recovery process of a PET bottle for recycling 

by designing and implementing an affordable recycling machine. There are two key components 

devised in this work to accomplish this goal: the infrared sensor stage and the operative system; 

both components are embedded into the same low power microcontroller from the Cortex M4 

family. The sensor stage is based on infrared pairs connected to the microcontroller ADC input, a 

self-calibration sequence calculates the necessary offset to compensate for the hardware bias. This 

calibration takes place one time during initialization. Several tests were performed to tune the 

sensor output so that it could be used as a threshold level to distinguish a PET bottle. A second 

sensor used is the E3ZM-B OMRON, this device reinforces the sensor stage as the output is 

connected to the microcontroller input, which determines if a PET bottle is on the conveyor. The 

second key component of this work is the operative system, a multi task, and fully preemptive 

system is embedded into the microcontroller, it manages the machine operations by means of tasks 

processed depending on its priorities, a high priority task can interrupt a lower priority task, this 

is known as preemption which is achieved by a context switch. In this work, the context switch lead 

to a not deterministic microcontroller behavior and the PC register was loaded with the wrong 

return address needed to continue with the program execution. As a result, the periodical tasks 

were processed correctly but they should last no longer than 1ms, as it is not possible to preempt 

them. On the other hand, the sensor stage worked as expected with the sole condition of avoiding 

a beam of light. 

.  

  

https://rei.iteso.mx/bitstream/handle/11117/5550/Wiener%20filtering%20for%20myoelectric%20signal.pdf?sequence=2


 

 vii 

  



 

 viii 

Resumen 

 México recicla alrededor del 60% de todas las botellas de PET que se consumen en su 

mercado interno y es el líder en PET reciclado de grado alimenticio. México encabeza la industria 

por encima de EE. UU. Y Canadá. La contribución no solo es económica sino que también es una 

medida para mejorar nuestro medio ambiente. La industria de reciclaje de PET se enfrenta al 

desafío del ineficiente proceso para recuperar una botella de PET de los residuos. El objetivo de 

este trabajo es facilitar el proceso de recuperación de una botella de PET para su reciclaje 

mediante el diseño e implementación de una máquina de reciclaje asequible. Hay dos 

componentes clave diseñados en este trabajo para lograr este objetivo, estos son la etapa del 

sensor infrarrojo y el sistema operativo. Ambos componentes están integrados en el mismo 

microprocesador, se eligió a la familia Cortex M4 por su baja potencia de consumo. La etapa del 

sensor se basa en pares de infrarrojos conectados a la entrada ADC del microprocesador, para 

que la secuencia de auto calibración calcule el nivel de compensación necesaria para corregir la 

desviación del voltaje inherente a los defectos del hardware. Esta calibración tiene lugar solo una 

vez durante la inicialización. Se realizaron varias pruebas para ajustar la salida del sensor de 

modo que se pueda utilizar como un nivel de umbral para distinguir una botella de PET; el proceso 

de exploración lleva 32 ms por cada par de sensores infrarrojos. Un segundo sensor E3ZM-B 

OMRON es utilizado, este sensor refuerza la etapa del sensado ya que la salida está conectada a 

la entrada del micro controlador quién determina si hay una botella de PET en la banda 

transportadora. El segundo componente clave de este trabajo es el sistema operativo, un sistema 

multitarea y preventivo diseñado para este micro controlador administra las operaciones de la 

máquina mediante tareas que son procesadas según sus prioridades, una tarea de alta prioridad 

puede interrumpir una prioridad menor prioridad, esto se logra mediante un cambio de contexto. 

En este trabajo, el cambio de contexto conduce a un comportamiento no determinista del micro 

controlador, el registro PC se carga con la dirección de retorno incorrecta para continuar con la 

ejecución del programa, como resultado, sólo las tareas periódicas se procesan correctamente, 

pero no deben durar más que 1ms ya que no es posible realizar el cambio de contexto. Por otro 

lado, la etapa del sensor funciona como se espera con la única condición de evitar al máximo los 

rayos de luz externos. 
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Introduction 

Recycling PET is a measure to improve our environment. In 2014, México recycled 2 

million bottles, equivalent to 6.6 million tons and thus, less CO2 expelled into the environment 

[10]. However, this recycling rate represents just the 58% of the local consumption [13], meaning 

that Mexico is still a the early stages on this topic, the main problem in the PET recycling process 

is the inefficient means to recover a PET bottle from the waste [13]. The purpose of this work is 

to design and implement an affordable PET bottle recycling machine which could be installed in 

a collection center. In Chapter 1 is shown the prototype of the machine feeding stage. 

 

 The challenge comes with Chapter 2 and 3 the larger chapters in this work since 

intermediate and advanced programming skills ought to be applied for a scalable and real life 

solution. This machine will shred plastic by means of iron scissors spinning at a high speed and 

safety is priority.  Furthermore, the machine operations must be controlled by a preemptive and 

deterministic control, a multi-task fully preemptive system is suited to be running on a low cost/low 

power microcontroller using free KEIL compiler tools for its design [9]. 

 

Chapters 4 and 5 detail the proposed algorithm that allows the use of low cost infra-red 

sensors devised as four transmitter-receiver pairs connected to an ADC, a self-calibration sequence 

calculates the necessary offset to compensate the hardware bias, an average is calculated out of 4K 

samples per pair and used to subtract the noise to each of the four pairs. This operation takes 32ms 

per channel. A second sensor for industrial applications is used to accurately distinguish between 

glass and PET bottle. The sensor output is 5V when a PET bottle is detected or 0V for other 

different materials. It is the E3ZM-B OMRON PET Bottle sensor [11], the only requirement is to 

block the sensor stage from any beam of light.  

 

The final prototype shown in Figure 6-1, was implemented by one engineer and the goal to 

implement an affordable bottle recycle machine was tackled in this thesis.  
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1. Recycling machine description 

A recycling machine is a system build around a conveyor devised to identify if the 

introduced bottle can be recycled. A user deposits the PET bottle on this conveyor, which 

transports the bottle in front of a bar code reader or scanner. The conveyor spins the bottle until 

the barcode printed on its label is read by a scanner, then the data from the bottle label is processed 

and allocated in a database. The recycling machine performs the lookup task and takes the decision 

whether the bottle is in the database or not, this sort of test determines if the bottle is approved to 

be recycled. If the test is passed, the bottle is sent to a post-processing stage where the bottle is 

transformed in PET flakes. This work is focused on developing a prototype of the entrance stage 

of the recycling machine, this includes a PET sensor and infrared scanner controlled by a multitask 

OS.  The recycling machine prototype is depicted in Figure 1-1, and the machine elements are 

listed in Table 1-1. 

 

 

 

  

 

 

 

 

 

 

 

 

One of the requirements to build the recycling machine is to make it as inexpensive as 

possible, this is achieved by reducing the cost of the PET sensor stage by using the set of paired 

IR sensors [3] shown in Figure 1-1 and compensate the bias offset by using (1-1).                                                                                               

 

DC Motor Control 

MC33931 

2 5 

1 

TM4C123GXL 

Cortex M4 

6 
8. LCD 

4 
3 

TM4C123GXL 

Cortex M4 

Figure 1-1. Recycling machine Block Diagram and element identification. 
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On the left side of Figure 1-1, the sensor [2] completes the sensor stage. It is an industrial 

sensor devised to detect PET material. It was the only sensor considered at the beginning of the 

project but testing results showed a certain tendency to error, and the data read from IR sensors 

complement the measurements for accurate results. 

 

Element Name 

1 Black housing , the Sensor holder 

2 E3ZM-B OMRON PET Bottle sensor 

3 Tx/Rx Infra-red LED   

4 Conveyor, Measurement 6cm x45cm 

5 12V Motor 

6 TM4C123GXL Cortex M4 DevBoard 

7 NXP H-Bridge for DC motor Control 

8 Nokia 5110 Graphical display 

 

Table 1-1. The list of components from the feeding stage of the recycling machine.  

 

The system manager is embedded in a Cortex M4 development board TM4C123GXL 

element [6] shown in Figure 1-1. It coordinates the tasks for the elements operation, such as [4] 

conveyor speed, [7] conveyor direction, [8] printing messages on the LCD screen, and sensor [2, 

3] calculations. 
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1.1. Operative System Requirements 

To control the recycling machine, a preemptive kernel based on a switch and restore context 

was designed with the following requirements [5].  

Each task shall be associated with a data structure, called a Task Control Block TCB. This 

data structure contains at least a PC, register contents, an identification string or number, a task 

status, and a task priority [2]. 

 The system stores these TCBs in one or more data structures, such as a linked list shown below: 

 Task Stack shall be allocated with Memory Allocation interface [3].   

 Each task shall contain its own stack including the Background Task  

 Stack size will depend on the project memory model  

The project shall support event-driven tasks:  

 Button Task 1 -> On Board Button 1 ISR (This will be connected to the knives door lock) 

 Button Task 2 -> On Board Button 2 ISR (enabled for future capacities)  

 Background Task shall toggle onboard green led  

 Increment a counter on the event-driven task Timed Task 1  

 All tasks shall set a high and low pin level when entering or terminating a task respectively.  

 SaveContext and RestoreContext interfaces shall be provided to support Context Switch 

mechanism.  
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2. Operative System Elements 

2.1. Task ID  

It is the given name to a target service or function. The task is going to be identified with 

this name along the OS system. In other words, there is no other task with the same name.   

2.2. Triggered Tasks, (Task activation) 

Triggered tasks, also called the ActivateTask() function, however, these are asynchronous, 

they do not need a scheduler to be serviced. The READY to RUNNING state change receives the 

same treatment than in periodic tasks 

2.1. Background Task  

The background task is the process with the lowest priority. Nonetheless, it is the first 

process to run in the OS as a non-interrupt-driven task [12]. The background processing should 

include anything that is not time critical and is proceeded by the following steps: 

1. Disable interrupts. 

2. Set up interrupt vectors and stacks. 

3. Perform system initialization. 

 

 

 

 



 

 21 

2.2. Activate Task (TaskType taskID)  

This API receives as input the taskID parameter and switches its state from SUSPENDED 

to READY if no error occurred, it pushes this task into the priority buffer according to its task 

priority. There are two types of tasks, periodic task and triggered task, Figure 2-1 shows how the 

first type takes one additional step in order to be activated (turned to READY state), it calls to 

Task_sch_activate(), whereas, the second type just calls ActivateTask(TaskType taskID).  

 

 

Figure 2-1, Static analysis shows which functions call Activate Task process. 
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2.3. Dispatcher  

The dispatcher searches on the priority buffer FIFO and picks up the next task to be 

executed. It finds the highest priority and oldest task in a READY state to switch its status to 

RUNNING and returns the pointer to the next task to be executed but it does not execute it, that is 

the function of restore_context() explained later in this document, Figure 2-2 shows the dispatcher 

being called from each OS task (event driven, periodical and interrupt task) before they terminate 

themselves as detailed in chapter 2.12. 

 

 

Figure 2-2.All OS tasks shall call the Disptacher function before terminating themselves. 
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Dispatching a task implies its previous activation. As shown in Figure 2-1, 

ActivateTask(TASKID) is cyclically running inside SchM_OsTick and later it calls the 

Dispatcher, meaning it shall be possible to interrupt the current task (Task1) to allocate the next 

entry in the execution buffer, Figure 2-3 shows the flow diagram devised to carry out the operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Y 

Dispatcher 

Status(R)=ready 

Pull(R) 

Push(R)    

Put task on a tail 
 

End 

Determine higher priority task 

 

Task2 Priority  

> Task1 Priority 

Figure 2-3, Dispatcher flow diagram, it determines the task to be executed 

but it does not execute it.  If Task2 is triggered and it has a higher priority 

than the currently running Task 1, Task1 is placed on tail according to its 

priority and the context change is performed. 



 

 24 

2.4. Scheduler Mechanism 

In an embedded software the processing power is commonly limited, so managing the 

access to CPU resources is crucial [1]. The need of a mechanism based on a counter tick that 

launches the right task at the right moment in a controlled way is crucial.  

 

In this work, each task control was encoded in a structure called tSchM_Task_Descriptor 

that contains each mask and offset information used in a cyclic Binary Progression Scheduler 

technique to activate the next task as shown in Table 2-1.  The Binary Progression column indicates 

the 7 bit counter that is incremented by each clock tick 

 

Table 2-1. Binary progression. ´A´ denotes activation of 32ms and 8ms Task. 

  

When the binary counter and the mask matches, the task is executed, the rate is 

calculated by 𝑡𝑎𝑠𝑘 𝑟𝑎𝑡𝑒 = 𝑂𝑆 𝑡𝑖𝑐𝑘 ∗ (𝑚𝑎𝑠𝑘 + 1) (2-1) 

 

𝑡𝑎𝑠𝑘 𝑟𝑎𝑡𝑒 = 𝑂𝑆 𝑡𝑖𝑐𝑘 ∗ (𝑚𝑎𝑠𝑘 + 1)   (2-1) 

      

The ActivateTask() function is called changing to READY the state of the corresponding 

task, the Scheduler sweeps through the priority buffers and picks up the next task to be launched 

as shown in Figure 2-4. If a task is started, the operating system informs the task of its activation 

time, which is synchronized within the cluster. 

This schedule considers the required precedence and mutual relationships among the tasks, 

such that an explicit coordination of the tasks by the operating system at runtime is not necessary. 
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The tSchM_Task_Descriptor structure must be allocated in the flash memory with the command 

const as declared in file Os_task_cfg.c. 

2.5. Priority buffer  

This buffer arrange contains as many FIFO queues as the number of tasks priorities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
.  

 

 

ActivateTask(TaskType taskID) changes the identified task state to READY and pushes it 

into the corresponding priority buffer.  Figure 2-4 shows all tasks in the priority buffer are in 

READY state and are waiting for the Dispatcher, which selects the next task to update its status 

to RUNNING. Then, the dispatcher updates the function pointer with the address of the next 

function to execute but it does not executes it. 

Task Control Block 

TaskId; 

priority;     

ptrTask;     

READY;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

READY;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

READY;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

READY;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

READY;  

StackInfo;    

deadline;    

 

Priority buffers 

    

Low priority High priority 

Scheduler performs a sweep on the priority buffer 

0 1 N 

Figure 2-4, Graphical representation of how the scheduler works on the priority buffers. 
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2.6. Task Control Block 

A Task Control Block TCB, is a data structure that contains all the information related to 

the operative system tasks. As shown in Table 2-2, it contains the task ID or number, a task status, 

and a task priority. This structure is a sort of template utilized by all tasks at the time it is created. 

The context level variable on the Task control block informs the level of the interrupt context [5].  

 

 

 

 

 

 

 

 

The advantage of having a TCB is the flexibility and order it brings to the OS, the TCB 

serves as the information template during the declaration of  new tasks.  

typedef struct 

{ 

     enum tSchedulerTasks_ID     TaskId; 

     UINT8                                    priority; 

     UINT8                                    ContextLevel; 

     tPtr_to_function                     ptrTask; 

     enum tTaskStates                  enTaskState; 

     tStackInformation                 StackInfo; 

     tDeadline                              deadline;   

     UINT8                                  StackBuffer[100]; 

}tTaskControlBlock; 
 

 
Table 2-2, Task Control Block Elements. 
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2.7. Priority Buffers and Task Control Block 

The priority buffer only saves the TaskID of the tasks in a READY state. The priority buffer 

operates as FIFO, such as the first task entering the buffer, is the first to be executed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5, shows the structure of the buffers interrupt and the Task Control Block 

structure, which are located in RAM. 

2.8. Task private variables (memory allocation) 

The operative system uses memory allocation functions to make Task variables private to 

other modules, memory allocation allocates the amount of memory for internal status and control 

structures, the amount of memory is calculated by ( 2-2). Function Os_Init () reserve memory for 

ISR and status. 

𝑝𝑡𝑟_𝑡𝑎𝑠𝑘_𝑐𝑡𝑟𝑙_𝑏𝑙𝑜𝑐𝑘 =   (𝑡𝑇𝑎𝑠𝑘𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵𝑙𝑜𝑐𝑘 ∗) 𝐻𝑒𝑎𝑝_𝑀𝑎𝑙𝑙𝑜𝑐( 𝑠𝑖𝑧𝑒𝑇𝐶𝐵_𝑇𝑠𝑘𝑁𝑢𝑚);        ( 2-3) 

  

Task Control Block, Tasks Set to SUSPENDED after initialization 

TaskId; 

priority;     

ptrTask;     

SUSPENDED;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

SUSPENDED;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

SUSPENDED;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

SUSPENDED;  

StackInfo;    

deadline;    

 

TaskId; 

priority;     

ptrTask;     

SUSPENDED;  

StackInfo;    

deadline;    

 

  

Low priority High priority 

  

0 1 

After Activation, each Task is set to READY and queued in a priority buffer 

N Priority buffers 

Figure 2-5, Task Control Block representation during task management. 
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2.9. Restore Context 

As described in chapter 2.3, the dispatcher selects which is the following task by loading 

the static pointer with the address of the next function to be executed and updates its status to 

RUNNING, restore_context() function shifts the stack for the recently updated RUNNING task 

and POPS data to run it [5]. 

 

The relationship between periodically activated tasks and restore_context function is 

depicted in Figure 2-6. 

 

 

Figure 2-6, Arrows indicate periodic tasks and OsTick are calling [LMBB1]restore_context 
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The code shown in Table 2-3, loads the pointed task addressed by the dispatcher and 

updates the register values that correspond to it. There is where the context switch occurs. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

2.10. Task state  

A task typically can be in any one of the four following states [2]:  

1. Running  

2. Ready  

3. Suspended (or blocked)  

 

In a single-processing system, there can be only one task running. A task can enter the 

running state when it is created (if no other tasks are ready), or from the ready state (if it is eligible 

to run based on its priority or its position in the scheduler list). When a task is completed, it returns 

to the suspended state. Tasks in the ready state are those that are ready to run but are not running. 

A running task enters the ready state if it was executing and its time slice runs out, or it was 

preempted. If it was in the suspended state, then it can enter the ready state if an event that initiates 

it, occurs.  

Asm_restore_context 

 CPSID   I  

 LDR  R2,=newSP 

 LDR     sp, [R2]    ; new thread SP = newSP 

 POP     {R4-R11}          ; restore regs r4-11 

     POP     {R0-R3}            ; restore regs r0-3 

 LDR  R2,=EndSP 

 LDR     sp, [R2]     ; new thread SP = newSP 

     POP     {R12} 

 POP     {LR}                  ; discard LR from initial stack 

 CPSIE   I                        ; Enable interrupts at processor level 

 BX      LR      

 

Table 2-3. Code segment to restore context. 



 

 30 

 

There are two types of tasks, periodic task and triggered task, the task type is defined in a 

variable within the task descriptor structure explained below. The main difference between them 

is that the first type takes one additional step to be activated (turned to READY state), it calls to 

Task_sch_activate(), whereas the second type just calls ActivateTask(TaskType taskID).  

 

In the case of periodic tasks, the SUSPENDED to READY state switch is managed by the 

Binary Progression Scheduler within Task_sch_activate(). A mechanism based on a counter tick, 

a task mask and offset to manage the access to the CPU resources by launching the right task at 

the right moment in a controlled manner. 

2.11. Tasks Calls  

In OSEK, each task shall terminate itself at the end of its code. Then, three functions must 

be called at the end of overall tasks, these functions are described below.  

1. statusOS = TerminateTask() ;  

2. Dispatcher();  

3. restore_context();  

2.12. Task Termination  

Both types of tasks terminate themselves by calling TerminateTask(). This function 

terminates the task transferring it from RUNNING to a SUSPENDED state and the operating 

system makes the results of the task available to other tasks and informs whether the function 

terminated normally “E_OK” or wrongly mean “E_OS_LIMIT. Both results will be saved in the 

result variable statusOS (statusOS = TerminateTask()).  
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2.13. Task stack 

The execution of the main program is called the foreground thread, and the executions of 

the various interrupt service routines are called background threads [2]. Any time an interrupt is 

asserted, we need to perform a context switch to store all information running during foreground, 

complete background, and save its results and return to foreground thread recovering the 

information previously stored. 

Managing the stack during context switch could result in a complex task, especially when 

the microcontroller automatically saves eight registers. The integrator should design a strategy to 

keep safe each piece of task information while the microcontroller handles the registers in the 

designated stack. 

Each task has its own stack area on memory, such as it is shown in Figure 2-7.  

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stack Task 1 

SP1-> 

 

Stack Task 2 

SP2-> 

 

Stack Task N 

SPN-> 

Fig. 2-1 Stack pointer model, after initialization all SP are pointing to the lower address 

of the task assigned memory known as “thumb bit”. 

 

Figure 2-7, Stack pointer model. After initialization, all SP are pointing to the lower address of the 

task assigned memory known as “thumb bit”. 
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2.14. Stack distribution per Task 

  The task control block of each task stores its SP address into the Stack info structure by 

means of Os_Init function. 

 

The assigned addresses are summarized in Table 2 5. A problem is detected and reflected 

in column Return from ISR start, the problem can be described as a non-deterministic behavior of 

the microcontroller as it is not possible to predict the return address after processing an interrupt. 

In other words, the program counter PC loses the return address due the stack pointer is 

automatically pointing to the expected address but somehow the microcontroller adds (+1 or +2 

bytes) randomly, which makes it not possible to keep track of the address to be loaded into the PC 

register to continue with the program execution.  

 

 
 

Table 2-4, Stack distribution per TASK. 
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To solve this issue, the author designed something called “return address compensation” 

on the SW version “RecyPET_V1p6_with_CANTx_V1p20asc1p2” by applying the following 

technique (Figure 2-9): 

 

 

Figure 2-8.Return Address Compensation. Algorithm devised to compensate the not deterministic behavior of the microcontroller, 

in this operation the microcontroller checks if it is required to synchronize the SP address, this mitigates the loss of return address. 

 

Figure 2-8, Implements a macro to compensate the data shift when the BX LR instruction 

is executed, bits 31-1 of LR register are put back into the PC and bit 0 of LR goes into the T bit. 

On the ARM Cortex-M processor, the T bit should always be 1, meaning the processor is always 

in the Thumb state. Normally, the proper value of bit 0 is assigned automatically. 

 

Table 2-5 shows one of the key parts in Os_Init (), this function is called just one time 

during initialization specifically after power on. 

 

 
Table 2-5, Filing Task Control Block information. 

Task information as declared 

at: 

tTaskControlBlock->tTaskInfo 
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Table 2-6, Padding as memory guard 

 
The padding is a memory guard, it brings flexibility to the OS during initialization, in case 

more information is added in tTaskInfo. The current size of the stack is not increased by heap 

allocation so that performance is not compromised. This memory guard, also promotes a more 

readable stack.  

2.15. Initialization 

Initialization is the stage where the buffer size is defined, Os_init() is the function where 

Start and End address by task are calculated by (2-4) and (2-5). 

 

𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐼𝑛𝑓𝑜. 𝑆𝑡𝑎𝑟𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 =  (𝑈𝐼𝑁𝑇16 ∗)&𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐵𝑢𝑓𝑓𝑒𝑟 + 0;  (2-6) 

 

𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐼𝑛𝑓𝑜. 𝐸𝑛𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠 =  (𝑈𝐼𝑁𝑇16 ∗)&𝑝𝑡𝑟_𝑡𝑎𝑠𝑘−> 𝑆𝑡𝑎𝑐𝑘𝐵𝑢𝑓𝑓𝑒𝑟 + 200;   (2-7) 

 

Interrupts are enabled after initialization and once the background task is started. 

Initialization is actually the first part of the background process. It is important to disable interrupts 

because many systems startup with interrupts enabled while time is still needed to set things up. 

This setup consists of initializing the appropriate interrupt vector addresses, setting up stacks if it 

is a multiple-level interrupt system, and initializing any data, counters, arrays, and so on. 

Padding is a technique used to guard memory 

between TaskInfo and Registers information. 

In the end, Stack pointer points to the last 

element of this array “thumb bit”. 
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2.16. Context switch  

Once the “SP End address” is calculated, this value is loaded into SP during 

restore_context() and before running into the ISR handler [3]. Figure 2-7 shows an example of a 

stack pointer in RAM.  

While running a task, SP points to the lower address of the assigned task memory or “thumb 

bit” as shown in Figure 2-7, this memory is assigned during initialization time. When an interrupt 

is asserted, Cortex M architecture PUSHES {PSR, PC, LR, R12, R3, R2, R1, and R0} 

automatically by the hardware while the entering interrupt handler PUSHES {R4-R11} and at the 

same time pushes into the SP, its address is decremented automatically. 
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As shown in Figure 2 10, during ISR handler the microcontroller pushes next registers 

automatically: 

PSR, PC, LR, R12, R3, R2, R1, and R0, e.g.  Next registers are automatically saved during 

GPIOPortF interruption [4]. 

 

 

Figure 2-9, RAM memory distribution after Os_Init () is finished. 
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By using “SP End address” as initial base address and decreasing “SP address - 4” before 

storing next register; finally “Return from ISR start” value is known after doing PUSH {R4-R11}.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

In this way, the RAM area between “Return from ISR start” and “SP End address” enclosed 

all information needed to return from interrupt and perform “ISR_User” callout. This means that 

before executing BX LR we shall set SP in ”Return from ISR start” where all the information to 

execute “ISR_User” shall be complete and organized, and some overhead is added in each 

ISR_Handler to make it possible.  

 

A)  LR. PC and PSR values are updated within ISR, these values are copied from TASKINFO-

> Sch_Callback structure, originally defined within Os_Init(). 

 

 

 

 

 

 

 

 

R0 
R1 

R2 

R3 

R12 
B) 

LR 

PC 
PSR 

Figure 2-10, Attending GPIO PortF Interruption. 
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2.17. SysTick 

SysTick is a simple counter that we can use to create time delays and generate periodic 

interrupts. It exists on all Cortex-M microcontrollers, so using SysTick means the system will be 

easy to port to other microcontrollers. Table 2-7 shows the register definitions [3]. 

 
Table 2-7, Systick Registers address. 

 

The PLL can take advantage of the external oscillator to speed up or slow down the clock, 

speeding up is going to make the clock faster, doing more work but consuming energy faster. If 

we require longer battery life we may need to reduce the CPU speed slowing down the clock. 

Write XTAL= 10101 or 0x15 in RCC register to configure 16Mz crystal frequency. 

 

 

Write ´n´ number in SYSDIV2 bit into the register RCC2 to get the n+1 divisor 

 

Figure 2-11, SYSDIV2 of RCC2. 

Finally, we will obtain the PLL nominal frequency (400MHz) divided by n+1. 
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2.18. PLL Initialization steps  

This initialization is done at the very beginning during the main function [3], in this project, 

it was initially coded incorrectly into Mcu function, but it was corrected later to PLL function Table 

2-8. 

 

 

 
 

Table 2-8, RCC2 (PLL registers) in TM4C microcontroller. 

 

Steps to configure the PLL to operate at 16MHz Xtal Oscillator at 80MHz [6]. 

0) Use RCC2 register for this configuration. 

1) To set BYPASS2, after this step the PLL is avoided.  

2) To set the crystal frequency in the four (10:6) bits in Table 2-8 using XTAL table for the desired 

configuration. To clear OSCSRC2 bits, this action selects the main oscillator as the clock source.  

3) To clear PWRDN2, this activates the PLL.  
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4) To configure and enable the clock divider. To get the desired 80 MHz from the 400 MHz PLL, 

we need to divide by 5. So, we place n = 4 into the SYSDIV2 field because this value divides the 

clock by n+1.  

5) To wait for SYS_R to become high, this is controlled by the processor and indicates the PLL is 

stabilized. 

 6) To perform step 1) by re-connecting the PLL clearing the BYPASS2 bit. 
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3. Serial driver configuration 

SSI (Nokia Display) driver is developed according to the following requirements: 

 

 The driver shall take a unique configuration and configure all channels as per their 

corresponding static configuration. 

 Require, upon initialization, dynamically allocated RAM for their TX and RX buffers. 

 Require, upon initialization, dynamically allocated RAM for their internal status structures. 

3.1. Serial ports configuration file  

This application, configures all channels on a single file Protocol_cnf.c, number of 

channels and configuration per channel. 

 

Serial configuration is based on the pointer to their registers, this allows to remove switch-

case sentences on the serial initialization 
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4. Photoelectric Sensors 

4.1. Infrared pairs 

Designing a low cost solution is crucial to produce an affordable machine, the solution is 

to implement infra-red sensors stage devised as four transmitter-receiver paired elements 

connected to an ADC as shown in Fig. 4-1 where the ADC module is configured to work [3]. It is 

attended by SysTick_Handler interruption every 25ms [3]. Only once, after energizing the 

prototype, an offset calculation takes place for calibration purposes; ADC_ReadSensorOffset 

(return p_medicion.u16Offset_Buffer) is called to calculate the implied error in ADC lecture as 

Infra-Red led is analogous and prone to noise, an array of size MEAN_BUFFER_SIZE (16 

elements) containing consecutive measures per channel, calculates the amount of noise in Volts 

along 4 channels sweep. 

 

 

 

 

 
Figure 4-1, ADC0_OffsetCalc, is called once during initialization, the ADC0_Reading bottle is called inside the 

periodical 32ms task, only when an object is detected on the conveyor. 

The function ADC_ReadSensorOffset reads the instant value and calculated in (4-1)                                                                                               

𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙 = (𝐴𝐷𝐶0_𝑆𝑆𝐹𝐼𝐹𝑂3_𝑅&0𝑥𝐹𝐹𝐹); 

𝑖𝑓 (𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙 <
 𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑂𝑓𝑓𝑠𝑒𝑡_𝐵𝑢𝑓𝑓𝑒𝑟[𝑐ℎ_𝑐𝑜𝑢𝑛𝑡])  𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑂𝑓𝑓𝑠𝑒𝑡_𝐵𝑢𝑓𝑓𝑒𝑟[𝑐ℎ_𝑐𝑜𝑢𝑛𝑡]  =
 𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙;                                                                                                       (4-2)  

 

In the end, the noise amount converted in Volts is subtracted from the mean voltage 

calculated later in ADC0_ReadingBottle, where another structure pmedicion.u16Mean calculates 

the Mean voltage after scanning the bottle cylindrical part in (4-3)                                                                                               

𝑝𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑀𝑒𝑎𝑛 =  (𝑤𝑜𝑟𝑑)((𝑓𝑙𝑜𝑎𝑡)𝑢16𝑠𝑢𝑚𝑎/𝑀𝐸𝐴𝑁_𝐵𝑈𝐹𝐹𝐸𝑅_𝑆𝐼𝑍𝐸 +  0.5);  (4-4)                                                                                              
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The usage of Offset calculation comes later in (4-5): 

𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑀𝑒𝑎𝑛_𝑤𝑂𝑓𝑓𝑠𝑒𝑡[𝐴𝐷𝐶_𝐶𝐻] = 𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑀𝑒𝑎𝑛 −
𝑝_𝑚𝑒𝑑𝑖𝑐𝑖𝑜𝑛. 𝑢16𝑂𝑓𝑓𝑠𝑒𝑡_𝐵𝑢𝑓𝑓𝑒𝑟[𝐴𝐷𝐶_𝐶𝐻];       (4-5)     

 

It takes 23 ms to be fully executed, this time involves waiting till ADC Hardware triggers 

its end of conversion flag as in (4-6). 

𝑤ℎ𝑖𝑙𝑒((𝐴𝐷𝐶0_𝑅𝐼𝑆_𝑅&0𝑥08) == 0){};          (4-7) 

 

The challenge is to integrate this change into the operative system, where Systick_Handler 

was replaced by a TimerA0 interrupt [3] and the IR mean voltage calculation was enabled, once a 

bottle was over the feeding band. 

  

 
 

 

 

 

 

 

 

The ADC Resolution depends on the amount of bits the microcontroller utilizes for voltage 

conversion from analog to digital, TMC123 uses 12 bits or 2k (4095 samples) it uses a 3.3 V source 

ADC Resolution 

Digital Value 

Voltage to convert 

ADC Reference 

Voltage 

Table 4-1, Real Voltage (VoltPD3) vs. Converted Voltage (Volt). 
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power as reference voltage and calculates the equivalent voltage as digital value as shown in Table 

4-1.   

 

Even though the mentioned technique accurately identifies when a PET bottle is processed, 

the following problem was found during development. The system crashes if the interrupt service 

routine does not either acknowledge or disarm the device released after completeness, for example 

in the sensor stage; After finishing the analog to digital conversion, the control register raises a 

status bit indicating the conversion is finished, the software shall poll this flag and deactivate it to 

continue with the software execution or the microcontroller will call a reset indicating its 

malfunction. 

 

4.2. OMRON sensor  

The sensor is allocated at the end of the conveyor as shown in Figure 4-2, the sensor part 

number is E3ZM-B PET Bottle Detection. 

 

 

 

 

 

 

 

 

 

As shown in Figure 4-2, the E3ZM-B sensor requires a reflective surface mounted on the 

frontal surface, this surface is a polarization filter that is tuned only with the PET bottle refraction 

reducing loss. The sensor output is 5V, when a PET bottle is detected, or 0V for other different 

materials [11].  

 

 

 

 

 

 

E3ZM 

B 

Reflector 

Receptor 

Figure 4-2, Omron sensor-reflector polarizes with PET bottle. 
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5. Measurements 

The conveyor is the first contact to feed the machine, a DC motor shall push the bottle 

inside the sensor box (element 1 in Figure 1-1). The first two columns in the truth table shown in 

Appendix A, control EN and /D2 enabling OUT1/2 states to be defined by controlling IN1 and 

IN2 states [6].  

 

Figure 5-1. The H Bridge Schematic, the DC motor is connected between J1 and J2.  
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Figure 5-1 shows the schematic H Bridge, where IN1 is directly connected to GND. In 

order to enable breaking it is necessary to lift pin 43, attach a wire to it and control it properly [6]. 

Below the board connection for MC33931 is shown: 

 

Once a power source is connected to J4 pin 1 (+ 9V), and pin 2 to (GND), the current consumption 

is equal to 360mA. 

 

 

Figure 5-2. H Bridge controls the DC motor that feeds the machine. 

 

 

 

 

 

 

 

 

+M 

-M 
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5.1.  Feeding machine, bottle to Inside  

Terminal ENDL (JP2 pin1) +5V connected, 

  

T = 1ms 

Duty cycle = 100us  

 

 

Figure 5-3, Signal used to Feed the machine, measured between PWML (JP2 pin 15) and GND. 

 

5.2. Returning Bottle to outside 

Terminal ENDL (JP2 pin1) GND connected, 

  

T = 1ms 

Dutycycle = 900us  

 

 

Figure 5-4, Signal used to Return the Bottle, measured between PWML (JP2 pin 15) and GND. 
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6. Prototype 

The prototype was assembled in parallel the SW development. Using Figure 1-1 as 

reference, we can identify on the upper left the sensor box, it is made out of acrylic and painted 

with aerosol to block all beam of light, the infrared sensors are attached in the middle the circuit 

to amplify the infrared beam of light is installed on the top of the box.  At the bottom, the Nokia 

graphical display shows the ITESO logo during initialization.  

 

Figure 6-1, Recycling machine, feeding stage prototype. 
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 The red boards are the CortexM devices known as development board (Texas instruments 

Tiva TMC123), there is where the operative system reside. 

 

The blue board is used to control the motor spin direction and speed, (Motor H bridge board 

MC33931 from NXP).  

 

The prototype is functional but there is a reset after performing context switch. The shared 

system “RecyPET_V1p8_with_CANTx_V1p26asc1p6 “can handle the periodical tasks but cannot 

be preempted by a higher priority interrupt, in other words a task cannot be interrupted by a second 

task with higher priority, there is no preemptive functionality, meaning the project is not fulfilling 

the requirement during the context switch where the SP is loaded with a wrong address, this 

address is pushed into the PC register, as a consequence, the program execution is lost. 
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7. Conclusion 

The goal of this work is to produce the feeding stage of a PET bottle recycling machine at 

the lower cost possible, as well, all the development tools were selected due to their low cost. For 

example, the Tiva TMC123 was selected as the main development board due its flexibility, its low 

power consumption, and its low price, the design environment, such as the compiler and debugger 

can be downloaded for free for academic purposes. One of the findings was that this toolset works 

well for small projects, however, a multi task, fully preemptive operative system demands more 

stability; For example, during debugging the tool loses synchronization with the development 

board. A suggestion for future research would be to invest more in a proper toolset. 

 

The toolset limitations made it very difficult to find the reason why the operative system 

crashes when an OS Task executes the context switch. After several tests, it was found that the SP 

is loaded to the expected address but the microprocessor automatically increments (+1 or +2) 

randomly to this address. Later, the command BX LR is executed to return from context switch, 

which loads the PC register with the dereferenced value from SP, as a consequence, the program 

execution is lost as it is not possible to load the PC register with the expected address,  
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Appendix 
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A. CONVEYOR, H BRIDGE CONTROL 

The tri-state conditions and the status flag are reset using D1 or EN/! D2 . 

 
 

The EN/!D2 pin performs the same function as the D1 pin when it goes to a logic LOW the outputs 

are immediately tri-stated [11]. 
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