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Resumen

Las enfermedades crdnicas son la principal causa de muerte en el mundo. Hospitales
alrededor del mundo gastan mas de 3.3 trillones de dodlares atendiendo a pacientes con estos
padecimientos, lo que representa una gran carga para solventar estos tratamientos.
Tradicionalmente, los signos vitales son obtenidos en hospitales y los resultados son interpretados
por medicos que realizan el diagnostico correspondiente. En los ultimos afios, diferentes sistemas
inalambricos, como las redes de sensores inalambricos (WSN, por sus siglas en inglés) o las redes
de sensores del area del cuerpo (BASN, por sus siglas en inglés) son usados para escanear 10s
signos vitales de forma remota. Esto da la oportunidad a médicos de realizar diagnosticos o ajustar
tratamientos a larga distancia. Estos sistemas normalmente necesitan estar conectados y
transmitiendo constantemente, lo que demanda energia. Estos dispositivos tienden a ser pequefios,
portatiles y energizados con baterias, garantizando el bienestar del paciente. En este trabajo de
tesis se estudian algunas soluciones relacionadas con sistemas de monitoreo remoto, considerando
principalmente su eficiencia en el consumo de energia. Por ejemplo, se muestra como una sefial
de encefalografia (EEG) puede ser comprimida empleando transformadas de ondeleta o wavelet.
La sefial de EEG proporciona informacion sobre la actividad del cerebro y ayuda a entender su
funcionamiento. Ayuda, por ejemplo, a detectar enfermedades cronicas como la epilepsia. En esta
tesis se presenta el desarrollo de un detector de ataques de epilepsia basado en la caracterizacion
de la sefial EEG. Otro importante disfuncionamiento de salud es la apnea del suefio, en la cual el
paciente deja de respirar por 10 segundos 0 mas mientras duerme. Esto es un problema serio
cuando el paciente deja de respirar 300 veces por noche o por mas de 5 minutos. EI método médico
usado comunmente para detectar la apnea del suefio es el polisomndgrafo, pero éste tipicamente
se aplica en hospitales. Algunos investigadores han desarrollado el polisomnografo portétil para
ser usado en casa midiendo el ritmo cardiaco, la saturacion de oxigeno, el tono arterial periférico,
etc., pero en ambos casos, esto es invasivo y muy incomodo. En este sentido, varias técnicas no
invasivas han sido propuestas para detectar la apnea del suefio, como la tecnologia Ultra Wide-
Band (UWB). Estos sistemas permiten medir el movimiento del pecho del paciente y detectar
cuando deja de respirar. En la parte final de este trabajo, se presenta un algoritmo eficiente y

paramétricamente optimizado para la deteccion de la apnea del suefio.
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Summary

Chronic diseases are the main cause of death worldwide. They implicate an inherent annual
cost for the health care global system of around 3.3 trillion dollars in the traditional hospitals sector.
In the traditional method to detect a disease, the vital signs of the patient are locally obtained, then
the physician interprets the results and makes a diagnosis. Recently, different wireless systems
such as wireless sensor networks (WSN) and body area sensor networks (BASN) have been used
to scan the vital signs of the patient distantly connected, giving the opportunity to medical doctors
to make a diagnosis or adjust a treatment remotely. These systems normally require to be connected
and transmit continuously, demanding energy from devices that tend to be small, portable, and
energized from batteries, making sure to guaranty the well-being of the patient. In this doctoral
dissertation, some general solutions related to remote monitoring systems, considering energy
efficiency, are studied. For example, it is shown how a vital signal can be compressed by using
wavelet transforms. A very important vital signal studied in this work is the
electroencephalography (EEG) signal, which provides information about the brain activity and
helps to understand its function. It helps to detect diseases, such as epilepsy. In this dissertation, it
is also presented the development of a fast epilepsy seizure detector based on the characterization
of the EEG signal. Another important health issue is the sleep apnea, which consists of a breathing
pause of 10 seconds or more while the patient is sleeping. A health damage could be considered
when the patient stops breathing at least 300 times per night or its duration is around 5 minutes.
The polysomnography is a common medical method to diagnose sleep apnea. However, it is
typically applied only in hospitals. Some researchers have designed a portable polysomnography
to be used at home, which measures the heart rate, oxygen saturation, peripheral arterial tone, etc.
However, in both types of polysomnography (hospitals and home), the method is invasive and not
comfortable. As an alternative, non-invasive techniques have been proposed to detect sleep apneas,
such as the ultra-wide band technique (UWB). UWB signals allow to measure the movement of
the patients’ chest and then to detect when the breathing stops. In this doctoral thesis dissertation,

an efficient and parametrically optimized algorithm to detect the sleep apnea is proposed.
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Introduction

Chronic diseases represent the 60% of deaths in the world [WHO-14], which means that
patients must be frequently attending hospitals to be treated. As the number of patients in hospitals
is increased, the health care cost is affected. In US, the annual cost for the health care of patients
with chronic diseases amount to 3.3 trillion dollars [CDC-18]. Thus, the medical bills have been
unsustainable for traditional hospital infrastructures [Mamaghanin-11].

In the traditional method to detect a disease, the signs of the patient are locally obtained,
for example the electrocardiography (ECG) or the electroencephalography (EEG), then the
physician interprets the results and makes a diagnosis. Recently, different wireless systems like
wireless sensor network (WSN) and body area sensor network (BASN) have been widely studied
in order to scan the vital signs of the patient distantly connected, and they are now giving the
opportunity to medical doctors to make a diagnosis or adjust a treatment remotely.

These kind of systems normally require to be connected and transmit continuously,
demanding energy from devices that tend to be small, portable and running from batteries. This is
why it is necessary to design telemonitoring systems based on wireless sensor networks that can
work with as little energy as possible to extend battery life time, guarantying the well-being of the
patient. In this doctoral dissertation, some general solutions related to remote monitoring systems,
considering energy efficiency, are studied.

An example of a vital sign that can be remotely monitored is the EEG signal. It provides
information about the brain activity and helps to understand its function. Millions of voltage peaks
are produced in the brain, that the electroencephalograph detects and characterizes the brain
activity. This signal can be monitored by WSN and BASN based systems, sending the EEG signal
to hospitals. In the hospital, the signal is collected and interpreted in order to detect diseases, such
as epilepsy, dementia, Alzheimer, etc. [Guyton-11].

The EEG signal can detect a chronic disease as the epilepsy, which affects approximately
50 million people of all ages worldwide. The epilepsy is characterized by seizures, which are
involuntary movements of part of the body or the entire body [WHO-18]. The amplitude and
frequency of the brain waves are suddenly higher and faster, respectively, than the normal brain

activity [Guyton-11]. The first part of this dissertation presents the development of a faster epilepsy



INTRODUCTION

seizure detector based on the characterization of the EEG signal with low computational cost.

Another important health issue considered in this doctoral dissertation is the sleep apnea.
This is a syndrome which affects at least 6 % of the adult population [WHO-17]. The sleep apnea
is the breathing pause of 10 seconds or more while the patient is sleeping, that is caused by the
obstruction of the airways [Guyton-11]. A health damage could be considered when the patient
stops breathing at least 300 times per night or its duration is around 5 minutes [AASM-17],
[Guyton-11], and [Varady-03].

The polysomnography is the most common medical method to diagnose sleep apnea
[AASM-17], [Guyton-11], and [MEDLINE-17]. However, it is applied only in hospitals and it is
not comfortable. Then, non-invasive techniques have been proposed in order to detect sleep
apneas, as, for example, the ultra-wide band technique (UWB) [Fedele-15]. UWB signals allow to
measure the movement of the patients’ chest and then to detect when the breathing stops. In this
doctoral dissertation an efficient algorithm to detect the sleep apnea is proposed. This document is
organized as follows.

Chapter 1 presents an overview of some general solutions related to remote monitoring
systems. In addition, solutions of energy efficiency in remote monitoring system dedicated to
health care are shown using data compression as a method to reduce energy consumption.

Chapter 2 provides an alternative to reduce energy consumption using a technique called
wavelet transform (WT) to compress the EEG signal. In the chapter, the performance of different
wavelet functions to compress the signal are evaluated. Finally, the results are compared with an
algorithm taken from the literature (BSBL algorithm).

Chapter 3 shows the features of the EEG signal in an epileptic seizure. The alpha-stable
parameters of the EEG signal using different estimators are presented. The distribution of the
signal is calculated, and its alpha-stable parameters are captured. Finally, an algorithm which
estimates the alpha-stable parameters and detects the epileptic seizures with reduced processing
time is designed.

Chapter 4 presents the sleep apnea disorder in a patient. The acquisition of the breathing
signal using UWB technology is described. It is shown how the sleep apnea can be automatically
detected using the breathing signals and comparative methods. Several experiments are made in
order to demonstrate the performance of a simple proposed algorithm.

Chapter 5 explains a new method to detect sleep apnea based on a UWB radar targeting the
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sleeping person without previously computing the breathing signal of the patient. The method
measures the variance of the UWB received signal. Additionally, some experiments have been
made in order to obtain the best values of the detection parameters. The aim is determining the
combination of parameters that produces the lowest processing load with the highest correct
results.

In the general conclusions, the most relevant remarks about this work are presented and
summarized. The overall discussion of the results of the epilepsy seizure and sleep apnea detector
are shown. Additionally, some possible future research work based on the results of this doctoral
work is proposed.

Finally, Appendix A shows the reference list of the nine internal research reports written
during the doctoral studies, and Appendix B shows the list of conference papers published and
intellectual property generated as consequence of this work.






1. Low Energy Consumption Monitoring of Vital
Signs

Chronic diseases are the leading cause of death in elderly people, and elderly population
has increased significantly. Most of these seniors prefer to live alone in their homes, therefore, it
is vital to develop reliable and efficient remote monitoring systems to check patient’s health
continuously. This chapter presents some general solutions related to remote monitoring systems.
It also presents solutions in energy efficiency in remote monitoring systems, which are dedicated

to health care. Finally, data compression is proposed in order to reduce energy consumption.

1.1. Remote Monitoring of Vital Signs

Benjamin Franklin one day said that “In this world only two things are certain: death and
taxes”. Death is a fact that is the only true in life. However, it is worrying that the main cause of
death in the world are the chronic diseases. In 2008, 60% of deaths in the world were for diseases
like diabetes, cancer, heart strokes, etc. [WHO-14]. Mexico is not an exception, because in 2005
diabetes was the leading cause of death. Half of these deaths were for people older than 70 years
old [WHO-14]. Moreover, between 2000 and 2050 it is believed that the world population over 60
years will increase from 11% to 22%, which represents 2,000 million of people in the world. This
data indicates that the world population has become old [WHO-15]. If we focus on elderly people,
we find that most of seniors prefer to live alone in their own homes than to live with their families
or in a care center [Huo-09]. The risk is that if they live alone they can have an accident or a health
problem caused by their disease and there is no one around to help the patient. So that the time it
takes for a family member or medical assistant to know that the elderly has had an accident may
be too long and it can cause irreversible damage to patient’s health. In fact, most seniors have
many health problems, so that ensuring their health opens a new opportunity for electronic devices
dedicated to healthcare.

An actual problem around the world is that hospitals have overpopulation of affiliated
members and it is very difficult for doctors and hospitals to attend every patient. In Mexico, for
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example, where the most important medical institution is the Instituto Mexicano del Seguro Social
(IMSS) [IMSS-15], with more than 69 millions of people enrolled, physicians attend 485 thousand
of patients every day. This is a reason why it is important to design a system to help patients to
minimize their number of appointments to the hospital, and help medical doctors to monitor main
vital signs of patients from their homes. This will reduce costs and time for both hospitals and
patients.

A solution to reduce the number of patients attending hospitals every day is to design a
system to monitor vital signs and send the information to a remote database. From there doctors
can review, make a diagnosis and give or modify the treatment of a patient via internet. This would
be in fact a remote medical appointment [Huo-09].

This situation has represented in the last years a good opportunity for research work aimed
to develop solutions in this area. In this scope Wireless Sensor Networks (WSN) and Wireless
Body Area Networks (WBAN) have been considered to be applied to monitor patient vital signs
constantly (like heart rate, blood pressure, glucose, etc.), as well as the environment parameters
(like temperature, humidity, gas, etc.).

In most cases these systems work as follow: the sensors collect data from the body or/and
the environment. With the aid of an intermediate device (like a cellphone) data is sent to a remote
device to be review by a doctor (remote device like a computer). These computers, which receive
the information, are usually located in hospitals so medical experts can review the information,
makes a diagnosis, and determine or adjust the corresponding treatment. Finally, the patient can
view the diagnosis or new treatment via internet and he can obtain the prescription at the drug store
without a hospital visit.

The down side of these systems is that they normally require to be connected and
transmitting continuously, demanding energy from devices that tend to be small, portable and
running from batteries. In this context, it is necessary to design telemonitoring systems based on
wireless sensor networks that can work with as little energy as possible to extend battery life time,
guarantying the well-being of the patient.

We consider that it is important to find a way to get control of the patient disease and ensure
his welfare, but we need to design an effective method to reduce energy consumption and maintain
the reliability of devices in use. We are interested in studying ways to save energy in devices; in

the next section, a synthesis of some research work addressing this problem is presented.
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1.2. Synthesis of Works Related to Energy Efficiency

In this section, we review previous research of systems for elderly people monitoring.
Health telemonitoring systems are an easy way to supervise patient’s health for physicians and
family members and they offer them a faster assistance in an emergency scenario. These systems
usually show the patient vital signs and their environmental live conditions.

Remote telemonitoring systems can be an alternative to monitor patient’s vital signs,
however, if we want that customers accept these devices, it is necessary to consider three main
issues in their designs [Zhang-13c]:

a) Low Energy Consumption, which is necessary to have long life time batteries. It is
important also to consider that the devices must have small and light batteries and small
sensors, because it will be comfortable for costumers.

b) Data Compression, which is required because usually devices use large data, sensors,
and devices need to save energy sending data with minimum length possible. Finally,

c) Hardware Cost, which is important because devices are better accepted by customers
when the final cost is not so high.

If we focus on energy consumption, the sum of all energies is a way to know how much
energy is consumed by the system [Awad-13]. To reduce energy consumption, we can analyze the
energy distribution process. An example is designing an effective compression technique. If we
increase compression ratio, then the transmitted data decreases and devices can be put to sleep for
more time and save more energy. Another example is designing an effective transmission
technique. If we want to transmit information in a wireless channel, it is necessary to characterize
the channel to obtain information about the signal to noise ratio, distance between transmitter and
receiver, if the devices have a line of sight (LoS), etc. With this information, we can calculate the
total required energy to send data and its rate.

Considering the remote telemonitoring system as a way to monitor patient’s vital signs,
several papers have proposed some solutions. An example is Virtual Caregiver [Hossain-12]. In
this article, authors place sensors in the body to sense vital signs such as blood pressure, glucose,
body temperature, etc. They also place sensors around the environment to get some external
conditions such as humidity, temperature, etc. Firstly, the system determines the patient status, and

if parameters are correct, the system sends a record to a remote computer to be stored and reviewed
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by a doctor via WiFi or SMS. However, if the system detects an unusual parameter on vital signs
or on the environment conditions, it will send an alarm to a family member and the hospital to get
a fast assistance.

Another example to telemonitoring vital signs remotely is the ViCare, which is reported in
[Huo-09]. This system determines where the patient is located and senses the environment to
determinate if it is safe. For example, if the patient is sleeping in his bedroom and the television is
on, the system puts off the television after a certain time. Another example is that, if the patient
falls down, the system sends an alarm to his Human Caregiver. Depending on the situation the
ViCare decides to send an alarm to the patient’s Human Caregiver or make an action to solve the
problem.

Finally, Cognitive Agents are reported in [Nefti-10], which use sensors around the house
(like gas detector, door or window open, water detector, etc.) to determine when a risky event
could occur and the position of the patient in the house. For example, if a senior is at the kitchen
and after a certain time he decides to go to another room but forgets to put off the stove, one sensor
detects the gas and another sensor determines where the senior is, if the senior is not in the kitchen
anymore, the system alarm rings to announce the problem for the senior to react and find the cause
of the sound. But if the stove is still on after a certain time, the system determines that a risky
situation could occur and sends an emergency alarm via WiFi for a quick medical assistance.

Virtual Caregiver, ViCare and Cognitive Agents are systems which need to be running all
the time. Some authors proposed to reduce energy consumption by integrating all system
components (sensors, filters, modulators, antennas, etc.) in only one device.

An example of this system integration is presented in [Zhang-13a]. It is proposed a scalable
monitoring system to get vital signs using an ultra-low power called Advanced and Adaptive
Network Technology (ANT). Their approach is a complete system with microprocessor, filters,
and sensors. ANT technology can send information via ZigBee or Bluetooth depending on the
length of the data.

Another example of a system integration is reported in [Kannan-13]. A wearable device
(CC2540) has three different sensors (ECG, EEG, and EMG). The CC2540 sends the information
via Bluetooth to another device (OMAP3530). The OMAP3530 processes the data and sends it via
WIFI to a remote computer. The computer located at a hospital receives the signal and cancels the

noise using morphological filters. Finally, the recovered signal is shown in the doctor’s computer
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to be interpreted.

Systems like [Zhang-13a] and [Kannan-13] can be an option to reduce energy consumption
because the power used to send information between devices (like transmitter, encoder, modulator,
etc.) is minimal.

Another alternative to reduce energy consumption regardless of the location of the device
in the system, is the compression of the data.

An approach to obtain an efficient energy system with data compression is proposed in
[Liu-13], [Zhang-12], [Zhang-13b], and [Zhang-13c]. The objective is to explore the feasibility of
using a new data compression model called Block Sparse Bayesian Learning (BSBL). This BSBL
works together with an algorithm called Compressed Sensing (CS). Authors said that to obtain a
good quality in the recovered signal it is necessary to use both algorithms, which authors reported
a similarity of 95 % between recovered signal and original signal.

[Liu-13], [Zhang-12], [Zhang-13Db], and [Zhang-13c], authors tested different biomedical
signals in their papers. In [Zhang-13b] they used an EEG signal, in [Zhang-13c] they used a Fetal
ECG, in [Zhang-12] it is demonstrated that their frameworks have a better performance than other
frameworks, finally in [Liu-13] an expansion of their work uses their framework to obtain data
from multiple inputs.

A proposal to evaluate the power efficiency of the system is in [Abualsaud-13], [Awad-
13], and [Hussein-13]. The goal in these papers is to reduce the energy consumption in mobile
nodes at two levels: compression and communication, changing the parameters of the system
according to the input signal.

EEG signals are used in [Abualsaud-13], [Awad-13], and [Hussein-13]. In [Abualsaud-13],
EEG records by different subjects (healthy and epilepsy disease), are taken to detect when a person
has epilepsy. In [Awad-13], some experiments change parameters like distortion and delay
deadline to evaluate different algorithms to obtain the best performance between energy, delays
and distortion. Finally, in [Hussein-13], a system is presented, which changes its energy
consumption according to channel variations.

In short, new technologies are looking to get good performance with low cost and low
energy consumption in its devices. Algorithms, frameworks, and electronic tablets are designed to
provide the patient the guarantee that his device has a long battery life time and a good quality

signal. It is important to determine how we can obtain an efficient energy consumption in our
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devices. Among the different forms to achieve this objective, in our case we consider that data
compression is an interesting opportunity to study in our research work and apply it in a wireless

sensor area network.

1.3. Conclusions

We have identified many research works on WSN and/or WBAN for healthcare
applications. These networks are designed to work all the time and it is necessary to design an
efficient energy consumption to extend battery life time, ensuring that the received signal is equal
to the original signal.

There are many ways to save energy in a WSN. We can identify the opportunity of research
contributions by studying compression techniques to obtain this energy efficiency. It is important
to consider that if we want to send more information with less energy, we need to design an
effective model of compression techniques.

We found that signals used in health related research works in energy efficiency are EEG
and ECG, because these signals normally have multiple channels and they are measured

constantly.
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2. Compression of Electroencephalographic Signals
using Wavelets

Different seizures can be detected with long-term monitoring. Wavelet transform (WT) is
an important technique to detect seizures for non-stationary signals, such as ECG or EEG. WT
uses the wavelet function to change its bandwidth scaling for time and amplitude. Different
waveforms can be used as a wavelet function; a scaled set of these waveforms are called families.
In this chapter, we evaluate the performance of different wavelet functions to compress EEG
signals. Our results are compared to a combined algorithm (Block Sparse Bayesian Learning and

Compressed Sensing).

2.1. Electroencephalographic Signals

Electroencephalography (EEG) signals have been the interest for many contributions in the
researched field, which give us the possibility to compare our results and determine the
performance of our algorithm. EEG signals give information to understand the brain function and
detect diseases, like epilepsy, dementia, Alzheimer, etc. [Guyton-11]. The EEG signals have
different frequencies depending on the brain region and the patient status. For example, alpha
waves (a) are rhythmic and lie between 8 — 13 Hz, with a typical amplitude of 50 mV. They are
present when an adult person is awake and relaxed, and they can be mainly found in the occipital
part of the brain. Beta waves () lie between 13 and 32 Hz and they are arrhythmic. They can be
normally found in the parietal and frontal part of the brain when the patient is awake and
performing his daily activities. Theta waves lie between 4 and 7 Hz. They are present in
degenerative brain states or many brain disorders. They are located in the parietal and temporal
part of the brain in children. Delta waves lie between 0.5 and 3 Hz. They can occur when the
patient is in deep sleep. They can present the double of amplitude than the other waves. Finally,
Gamma waves lie between 32 and 80 Hz. They are located in the cortex of the brain [Guyton-11].
Finally, Gamma waves lies between 32 and 100 Hz [Marzbani-16]. The brain waves are depicted
in Fig. 2.1.

11
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Fig. 2.1 Brain waves alpha, beta, theta, and delta. Figure taken from [Guyton-11].

Then, according to the sampling theorem, it is necessary to have a sampling frequency
greater than twice the maximum frequency of the signal. Considering that the maximum
frequencies of the brain waves lie around 80 Hz, a good sampling frequency could be 200 Hz. If
the signal is quantized at 16 bits/sample in a period of 24 hours, then the collected data length is
34.5 Mbytes per day in a simple channel. However, in [Ramgopal-14] is presented a comparative
study of different EEG machines on the market and the maximum number of channels is 40.
Considering this traffic information, the amount of data represents 1.38 Ghytes of information per
day. The energy used by these devices in transmission presents a big challenge. Motivated by this
context, a comparison of different EEG signal compressors reported in the literature is discussed
in this chapter.

Different authors have proposed compressor algorithms to reduce the number of samples
from the original data and reduce the energy consumption. In [Abualsaud-13], authors design an
algorithm which changes the threshold of different blocks of the system (transmitter, modulator,
encoder, etc.). The proposed algorithm finds the best performance for every block and it reduces
the total energy consumption of the system. Also, pre-designed wavelet Transform (WT)
algorithms to compress an EEG signal are presented. In [Perez-Sevilla-97], author used WT to
compress an electrocardiography signal (ECG); however, an EEG signal is not considered. In

12
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[Gandhi-11] it is presented an evaluation of wavelet families to detect features of an EEG signal,
such as energy, entropy, and standard deviation. Their results show that Coiflets family has a better
performance than Haar, Daubechies, and Biorthogonal families, however, this work does not
compress the EEG signal. In [Zhang-13b], a combination of a compression techniques called
Compressed Sensing (CS) and Block Sparse Bayesian Learning (BSBL) algorithm is presented.
The combined compression algorithm is compared to WT using different biomedical signals, such
as EEG, ECG, and Fetal EEG. The proposed algorithm in [Zhang-13b] shows low power
consumption and a better compression rate for WT.

In summary, the literature shows that WT is a widely used technique to compress EEG
signals. WT presents different family’s options, for that reason, in this chapter Haar, Daubechies,
and Coiflets are evaluated to compress an EEG signal. Our aim in this chapter is to determine
which family has the best performance. Therefore, three different criteria are considered:
Normalized Mean Square Error (NMSE), Percent of Root-mean-square (PRD), and Compression
Ratio (CR).

2.2. Wavelet Transform for Signal Analysis

2.2.1 Wavelet Transform in Discrete Time

It is important to characterize a signal to obtain information about it and, as said before,
WT is an alternative to analyze non-stationary signals, such as EEG. The WT relies on signals
called windows, which are scaled in amplitude (a) and shifted in time (t).

For the first step, WT equation in discrete time is given by
1 v -k
WT (k@) = =E5o x(Wh(=-) (2-1)
where x (n) is the original signal, h is the wavelet function, n is the sample, a is the scale, a =
1,2,4,8,...,27, j is a real and positive number, and k is the translation parameter which is a real and

positive number.

To recover the signal in discrete time, the inverse wavelet transform is expressed by
1 _ i -k
x(n) = A=Y o Tzt WT(k, 2/ )h(7) (2-2)

where the constant A depends on the wavelet family 4; , (n) , and N is the length of the compressed

13
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signal.

An important part of the WT is the wavelet function, because if the scale is changed on the
wavelet function, the bandwidth changes and the target signal can be more accurately analyzed.
The wavelet function equation is given by:

hai(®) = Zh(0) (2:3)

The variation on a implies changes in frequency domain, if a increases, then the bandwidth
H(w) decreases. However, if a decreases then the bandwidth H(w) increases. For our work, the
dyadic function is considered [Sahambi-97], where the scale a = 2/, and jis 1, 2, ..., m. When
the parameter j is small, then the wavelet function will be contracted in time but the amplitude will
be greater. In the other way, when a parameter j is large, then the wavelet function will be expanded
in time but the amplitude will be lower. When the wavelet function is expanded in time, high
frequencies of information can be detected. When the wavelet function is contracted in time, low
frequencies information can be detected [Perez-Sevilla-97].

The wavelet function requires two admissibility conditions. The first one is given by

J DR = ¢y < oo (2-4)

—® =]

This equation represents the total sum of all wavelet function components and must be a

constant number less than infinite. The second necessary admissibility condition is given by
IZ h(®)dt =0 (2-5)

In this case, (2-5) represents the value under the area of the waveform of the wavelet
function and must be zero.

When the equations are scaled to form a family, different components of a signal can be
obtained using WT and the target signal is analyzed. Fig. 2.2 shows a block diagram of analyzing
a signal using WT.

In Fig. 2.2 we see that x(n) is the signal to be analyzed, hj(n) is the wavelet function which
will be scaled in time and frequency to obtain different resolutions. Every scaled wavelet function
gives different time-frequency components of the original signal.

Fig. 2.3 shows how the inverse WT works with (2), the synthesis of the target signal. The
already analyzed signal can be recovered with the inverse WT. The inverse WT considers the same
wavelet function characteristics used to transform the signal. Finally, it is necessary to sum all

parts of the signal to recover the original signal.
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Fig. 2.3 Block diagram of synthesis of signal x(n).

2.2.2 Wavelet Function Families

2.2.2.1 Haar Family

A wavelet function can create different waveforms which forms a family. Every family has
different characteristics which provides different resolution to detect different frequencies in a
signal [Mallat-99]. In this section, three different families are studied.

The first family is the Haar function, which obtains a precise approximation if the original

signal has smooth variations [Mallat-99]. The Haar function is considered the base family in WT
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Fig. 2.4 a) Waveform of basic Haar function, b) Waveform of five scaled Haar functions.

and it is expressed by

1 0<n<1/2
h(n)={-1 1/2<n<1 (2-6)
0 Other

Fig. 2.4a shows the basic Haar function while Fig. 2.4b shows five Haar functions scaled.
Five different scaled functions obtained from 5 values of j which are scaled in amplitude and time.
Every scaled wavelet function gives a different bandwidth, which extracts different frequency
components of the original signal. When the wavelet function has a j = 1, the function is contracted
in time and rapid changes in time are detected. But when the wavelet function is expanded in time,

the signals with low changes in time can be detected.

2.2.2.2  First Derivate of Gaussian Family

The first derivate of the Gaussian function is the base for another wavelet family, which is
frequently studied by researchers. This family is used, for example, in computer vision to detect

multiscale edges [Sahambi-97]. The equation to represent this wavelet function is given by

— 22 -
h(t) =e ” (2-7)
The waveform of the first derivate of a Gaussian function is shown in Fig. 2.5a and the

waveform of five scaled functions are shown in Fig. 2.5b.
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Fig. 2.5 a) Waveform of the first derivate of a Gaussian function, b) Five scaled functions
of the first derivate of a Gaussian function.

Like the Haar function, when the parameter j is changed, the wavelet function is scaled in
time and frequency. By scaling the wavelet function, different windows and different resolutions
are obtained to analyze different frequency components of the original signal. The main difference
between Haar function and the first derivate of Gaussian function is that the waveform in the first
derivate of Gaussian function is centered in zero. Moreover, the waveform of the Haar function

begins at zero.

2.2.2.3 Daubechies Family

The Daubechies function is optimal in the sense that they have a minimum size support of
a given number of vanishing moments. In this function a pre-design table is used with coefficients
depending on the scale of the function, given in [Mallat-99]. When the value of j = 1, the
Daubechies function is the Haar function [Mallat-99] for that reason the value of j must be equal
or larger than 2.

In Fig. 2.6a the basic waveform of the Daubechies function is shown and in Fig. 2.6b five
scaled Daubechies functions are presented.

Fig. 2.6b shows that the principal positive curve in the waveform is practically the same
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Fig. 2.6 a) Waveform of the basic Daubechies function. b) Five scaled Daubechies
functions.

for all members of the family. The difference between members of the family is given by the last

part of the waveform, which is expanded when the value of j is larger.

2.2.2.4  Spectrum of the Wavelet Functions

In Section 11.B, three different families (Haar, First derivate of Gaussian, and Daubechies)
were described. However, it is also important to analyze the corresponding spectra. The spectrum
gives the bandwidth of every function and it gives the cover frequencies to detect a signal.

Fig. 2.7 shows the spectrum of the three different wavelet functions, which are scaled with
different values of j. It is seen from Fig. 2.7 that the Haar family covers more frequencies than the
other families. For example, when j = 1, the Haar family covers almost twice the frequencies than
the first derivate of the Gaussian family. However, the amplitude in the first derivate of the
Guassian family is larger than the Haar family when j = 2, 3, 4, and 5. Finally, Daubechies family
has a similar spectrum in the five members of the family. The amplitude and frequencies covered

by the five members of the Daubechies family are similar to each one.
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Fig. 2.7 a) Spectrum of the Haar function family, b) Spectrum of the first derivate of
Gaussian family, ¢) Spectrum of the Daubechies family.

2.3. EEG Signals Compression Using Wavelet Transform

2.3.1 Data Compression Using Wavelet Transform

The WT is a widely used technique to compress non-sparse and biomedical signals
[Gandhi-11]. WT divides a signal into dilated and translated signal representations in the
time/frequency plane. To scale and translate a signal, mother wavelet function varies the
parameters of the wavelet function to obtain different time supports [Mallat-99]. The mother

wavelet function, called Dyadic wavelet, is given by

hy(m) = = h(5r) (2-8)

where j is the scaling parameter, which is a positive number related to a member family, h is the
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waveform of a member family, and k is the translation parameter, which is a real and positive
number. When the value of j is low, the WT becomes more sensitive to high-frequency components
of the signal, and vice versa [Sahambi-97].

Different waveforms can be generated using wavelet functions, which are called wavelet

families. The WT in discrete time is given by
P 1 _ -k
W (k,2') = —=3aZs (M) (2-9)
where x(n) is the original signal and N is the length of x(n). The inverse WT is used to recover the

transformed signal.

The equation of the inverse WT is
_ ; —k
x(n) = A=Y TR WT (b 2) (o7 (2-10)

where A is a positive number related to amplitude normalization.

According to [Mallat-99], the multiresolution approximation relies on the wavelet function
and its corresponding conjugate mirror. When the wavelet function h(n) is analyzed with Fourier
Transform, the discrete approximation is a low-pass filtering of the input sampled at intervals of
2l. Then h(n) is the filter which is associated to low frequencies of the signal. On the other hand,
the conjugate mirror filter of h(n), which is given by g(n), contains the high frequencies of the
signal [Perez-Sevilla-97]. The relationship between h(n) and g(n) is given by

gn) = (—1)"hpss (2-11)

The Mallat algorithm [Perez-Sevilla-97] is an approach to multiresolution approximation
which divides the original signal into two transformed signals. The transformed signals have the
same length of the original signal [Perez-Sevilla-97]. After that, the two transformed signals are
down-sampled; as a result, outcomes present half-length samples from the input. This process can
be repeated as many times as needed. Fig. 2.8 illustrates a numerical example of the WT using the
Mallat algorithm. Fig. 2.8a shows a signal x(n) composed by 8 samples, which is divided into two
parts using WT and the process is repeated one more time. At the end, the transformed signal is
composed by four elements which have two samples each one. Finally, Fig. 2.8b shows that the

recovered signal is exactly the original signal x(n).
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Fig. 2.8 Numerical WT using Mallat algorithm: a) transformed signal, b) recovered
signal.

2.3.2 Compression Techniques

In general, the compression techniques are organized in two groups: the first one is the
lossless compression [Sayood-00], which recovers the signal without losing information. The
second one is the lossy compression [Sayood-00], which involves some loss of information. The
wavelet function could take different waveforms, each of them called family. In this section, three
different families are considered: Haar, Daubechies, and Coiflets.

WT compresses a signal using the lossy compression scheme; besides, WT is a useful
technique to compress non-sparse and biomedical signals [Gandhi-11].

In the particular case of an EEG signal, compression using the Mallat algorithm can be
achieved by eliminating the g(n) transformed signal [Mallat-99]. This is possible because the

information contained in high frequencies could be neglected. The recovered signal through
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inverse WT tends to be similar to that one captured by the sensor. Note that the compressed signal
lost a portion of the information and the system cannot recover the signal exactly as the original,
this kind of compression is called lossy.

Give that WT is a lossy compression technique, it is important to measure the similarity
between the recovered signal and the original signal. Literature presents different criteria to

measure the signals, which are described in the next section.

2.3.3 Comparison Quantitative Criteria

In the literature, two different criteria to measure the similarity between the recovered
signal and the original signal are considered: NMSE and PRD. CR is used to measure the ratio
compression of the transformed signal. In this work, NMSE, PRD, and CR criteria are used to
evaluate the performance of every wavelet family.

The first criterion is the NMSE [Zhang-13b], which measures the average of the square
difference between the recovered and original signal. According to this criterion, when the result

is closer to zero, the recovered signal is almost the exact original. The NMSE equation is given by

o2
NMSE = Il =% ll5 (2_12)

[EAE;
where X is the original signal and X is the recovered signal.
The second criterion is the PRD [Sriraam-08], which measures the difference between the
recovered and the original signal. Here, if the result is around zero, then the recovered signal is

close to the original. The PRD equation is given by

_ /M 2.13
PRD SN2 X 100 ( )

Notice that a disadvantage of this criterion is present when the original signal has an offset,
in which case the obtained values could be unreliable.
The third criterion is the CR [Zhang-13b], [Sriraam-08], which determines the compression

rate percentage of the outcome. The corresponding equation is given by

CR = (1 — Zlenathy v 10 (2-14)

Xk—length
where Xilength IS the uncompressed signal length and Xk.length is the compressed signal length.

Finally, the performance of every algorithm is evaluated using NMSE, PRD and CR criteria. In
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Fig. 2.9 EEG signal used for the experiments.

the next section, the simulations are described and results are presented.

2.4. EEG Compression Simulation and Results

The experiments are simulated in MatLab. The EEG signal data is obtained by [CODES-
16], it has 386 samples, which represents 0.76 seconds from a healthy person. Fig. 2.9 shows the
EEG signal used for the experimental part. The EEG signal is compressed using WT with three
different families: Haar, Daubechies, and Coiflets; also, it is analyzed at different scales and finally
it is recovered. Additionally, the BSBL algorithm [Gandhi-11] is used to compare our results. In
order to determine the performance of every algorithm, NMSE, PRD, and CR criteria are
considered. In order to compare algorithms in a fair manner, the experiments are conducted using
the original signal for all algorithms and the amplitude of all signals are normalized.

According to (2-1), to scale WT it is necessary to change the value of j. The values of j
used in the experiments are 2, 3, and 4.

Fig. 2.10 presents a comparison between the original EEG signal and the recovered signal
using 3 different scales of the wavelet function and 3 different families: Haar, Daubechies, and
Coiflets. It is seen that the best performance is obtained with the Haar family when j = 2.

Fig. 2.11 compares the results obtained with the Haar family with j = 2 against the BSBL
algorithm. It shows that the results are similar. Quantitative results are presented in Table 2.1.

According to NMSE and PRD criteria, the best recovered signal is obtained by the Haar
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Fig. 2.10 Comparison between original and recovered signal using different scaled
Wavelet families: a) Haar family, b) Daubechies family, c) Coiflets family.

i X

family when j = 2. The Daubechies family presents the worst performance in all cases. The highest
CR value is obtained by the Coiflets family when j = 4. Finally, the Haar family and the BSBL

algorithm are compared and the best performance is obtained by the Haar family.

2.5. Conclusions

Different wavelet families were compared in this chapter in order to compress an EEG
signal. The Coiflets family presented the best compression ratio (88% of the original signal) for

the case j = 4, while the Haar family presents an adequate performance related to the NMSE and
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Fig. 2.11 Comparison between Haar family with the value of j = 2 and BSBL algorithm.

TABLE 2.1. COMPARISON BETWEEN ALGORITHMS USING DIFFERENT CRITERIA

Algorithm j NMSE PRD CR %
Haar 2 0.0264 6.30 50
Coiflets 2 0.1088 14.06 66.66
BSBL - 0.0514 15.49 50
Haar 3 0.1813 20.98 75
Coiflets 3 0.3134 24.40 83.33
Daubechies 2 0.1636 25.47 50
Daubechies 3 0.2527 26.47 75
Haar 4 0.3136 26.96 87.7
Daubechies 4 0.3501 29.31 87.5
Coiflets 4 0.4021 30.67 88.87

PRD criteria.

The literature reports that the Coiflets family can be used to detect features of an EEG

25

signal. However, the results presented in this chapter show that the Haar family has a better
performance than the Coiflets family. Finally, for future work, predictors could be considered as

another compression technique and the energy consumption of the system would be measured.






3. Epilepsy Seizure Detection Using an EEG Signal

Epilepsy is a chronic brain disorder that affects the patients’ quality of life even when this
disease is controlled. A real-time epilepsy detection warning requires constant monitoring of the
EEG signal. Moreover, an EEG signal presents special features, such as heavy tail behavior and
the distribution parameters that capture the epilepsy seizure. In this chapter, alpha-stable
parameters are studied and a suggested alpha-stable estimator is compared to other estimators. Our
results show that the alpha-stable parameters can be used to detect epilepsy seizures in real time
with low computational complexity. Finally, the values of different parameters of the method are
explored in order to reduce the processing time of the algorithm.

3.1. EEG Signal Modelling Based on Alpha-Stable Parameters

A signal probability density function is considered heavy tail when its tail decays slower
than the exponential distribution tail. It represents a high variability signal with numerous spikes
during the process [Manolakis-05]. Signals with heavy tail distribution can be located in a different
environment, such as ocean engineering [Jian-05], meteorology science [Adler-98], or hydrology
[Anderson-98]. On the other hand, an EEG signal is generated by the sum of millions of
synchronous electrical potentials by neurons, where each electrical potential is considered
identically and independently distributed (11D). The electrical potential in neurons produces spikes,
causing the signal to have a heavy tail distribution [Bates-97]. According to the generalized central
limit theorem, the sum of 11D random variables shows a different and limited distribution. For that
reason, the signal must be a member of the stable class [McCulloch-86].

The method to determine if a signal probability density function has a heavy tail is the
Complementary Cumulative Density Function (CCDF). Fig. 3.1 shows the CCDF of an EEG
signal versus the theoretical CCDF of three different distributions (Gaussian, exponential, and
Pareto). The tail of the EEG signal shows a similar decay as the Pareto distribution, and thus

validates that the EEG signal has a heavy tail.
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Fig. 3.1 Complementary Cumulative Density Function (CCDF) of the EEG signal.

For signals with a heavy tail, such as EEG, the calculation of alpha-stable parameters is a
powerful computer technique to simulate features in a more realistic environment than the
Gaussian case [Bates-97]. The alpha-stable parameters can be expressed using their characteristic

equation given by [Samorodnitsky-94]:

{0101 =i (sign(@) anHive} e o q

Eel%% = , (3-1)
el-0l0Ia+ip sign@) mieN+iYe} e g
and
1 for6>0
sign(0) = S0  for6 =0 (3-2)
-1 for6 <O0.

The full stable class of the equation is characterized by four parameters: the stability
parameter, « € (0,2]; the symmetry parameter, § € [—1,1]; the dispersion parameter,y > 0; and
the position parameter, § € R. Different features of the distribution can be obtained when « and
S parameters change. For example: considering «, three different cases can occur: 1) when
S(x;2,B,v,8) represents the Gaussian distribution, 2) S(x;1,8,y,d) represents the Cauchy
distribution, and 3) S(x; 0.5, 8,7y, ) represents the Levy distribution. On the other hand, when S
changes, the symmetry of the distribution changes. When S(x; a,—1,y,d) the distribution is

skewed to the left, when S(x; «, 0,y, §) the distribution is symmetrical, and when S(x; @, 1,y, §)
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the distribution is skewed to the right [Bates-97]. The notation used for the class of stable laws are
given by S(x; a, B,y,8); where x is the independent signal [Samorodnitsky-94]. Nonetheless, a
signal could have different characteristics that can be modeled if the alpha-stable parameters are
changed. Given that the epileptic seizure modifies the hyperactivity of neurons affecting the alpha-
stable parameters, we present in the next section an analysis of the impulsive EEG signal.

3.2. Epilepsy Detection

Alpha-stable parameters provide information about features of the signal. This information
can be useful to detect diseases using the biomedical signal. The EEG signal has a reference since
it has been demonstrated that when a patient has the Parkinson’s syndrome, the distribution of the
EEG signal tends to be Paretian [Salas-Gonzalez-14]. On the other hand, when a patient has an
epileptic seizure the EEG signal changes and it can be compared with different distributions. For
instance, Support Vector Machines (SVM) are used in [Wang-15] to compare the distribution of
the EEG signal with a Gaussian and Cauchy distribution. Nevertheless, this process requires a high
computational cost.

In order to facilitate the calculation of the alpha-stable parameters, different estimators have
been designed [Anderson-98] and [Stevenson-07]. An estimator calculates the alpha-stable
parameters as follows. First, the estimator calculates the Probability Density Function (PDF) of
the signal. After that, every alpha-stable parameter is determined S(x; a, 8, v, 8) [McCulloch-86].
In order to analyze the behavior of every parameter corresponding to an EEG signal, we compute
the four alpha-stable parameters. In this work we use EEG signals obtained from the MIT database
[MIT-14] which are 30-minutes long. The amplitude of the signal without seizures is 50 puV. The
amplitude of the signal with seizures is 600 pV. Finally, the sampling frequency is 256 Hz. All the
experiments are conducted using MATLAB. The procedure to obtain the parameters is as follows.
Firstly, a window of the signal is obtained, and his CCDF and alpha-stable parameters are
calculated using a window length of 0.36 seconds. After that, a consecutive window of the signal
without overlap and the same length is taken, its parameters are calculated, and the process is

repeated until the whole signal is analyzed. The outcome of the experiment is shown in Fig. 3.2.
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Fig. 3.2 Alpha-stable parameters: a) EEG signal, b) Alpha parameter, c) Beta parameter,
d) Gamma parameter, ) Delta parameter.

The EEG signal with two epileptic seizures, in seconds 250 and 1450, is presented in Fig.
3.2a. The alpha-stable parameters alpha (Fig. 3.2b), beta (Fig. 3.2c), gamma (Fig. 3.2d), and delta
(Fig. 3.2e) are shown. We can observe that beta and delta parameters are not sensitive to changes
in the EEG signal. Alpha parameter, on the other hand, is greater than the value of 1.5, which
shows that the EEG signal has a finite average. However, the alpha parameter does not provide
relevant information to detect an epileptic seizure. Finally, the amplitude of the gamma parameter
increases four or five times when an epileptic seizure occurs. Therefore, the gamma parameter can
provide information to accurately detect an epileptic seizure.

Three of the most used algorithms to estimate alpha-stable parameters are McCulloch,
Stablekull, and Nolan [Anderson-98], [MATLAB-16a], [MATLAB-16b] and [Stevenson-07].
Authors in [Bates-97] found that the McCulloch has the best performance when the value of the
alpha parameter is larger than 1. However, it is important to evaluate the three algorithms to

determine the best performance when the gamma parameter is analyzed.
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Fig. 3.3 Comparison of estimators, which calculate the gamma parameter: a) EEG signal
with two seizures, b) Nolan algorithm, ¢) McCulloch algorithm, d) Stablekull
algorithm.

TABLE 3.1. COMPARISON TIME BETWEEN ESTIMATORS

Estimator Processing time (sec)
Nolan 684

McCulloch 953

Stablekull 1350

A comparison between the estimator algorithms to calculate the gamma parameter is shown
in Fig. 3.3: the EEG signal with two epileptic seizures (Fig. 3.3a), Nolan estimator algorithm (Fig.
3.3b), McCulloch estimator algorithm (Fig. 3.3c), and Stablekull estimator algorithm (Fig. 3.3d).
In the three cases, the accuracy of the estimators is similar. Then, the processing time is evaluated
and the result is shown in Table 3.1, where it is seen that the Nolan estimator, and not McCulloch’s,
is the fastest algorithm. Then, in order to evaluate the EEG signal, the Nolan estimator will be

considered in future experiments.
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Fig. 3.4 Block diagram of the proposed algorithm to detect epileptic seizures.

3.3. Methodology

The algorithm described in this work is divided into three blocks: the gamma estimator
block, the smoother system block, and the detector block. The block diagram of the complete
system is presented in Fig. 3.4.

First, the system calculates the gamma parameter using the empiric CDF of the signal, for
this the Nolan’s estimator is used. Then, the gamma parameter is smoothed to reduce the influence
of the noise. Finally, in order to detect epileptic attacks, the signal is analyzed using the detector
block. A general description of each block is presented below.

3.3.1 Gamma Estimator Block

We choose the Nolan estimator to compute the gamma parameter. At the beginning of the
process, the first w seconds of the EEG signal, a window of length w, are taken to perform the
gamma calculation. A second length-w window is taken after n seconds from the first one and the
gamma parameter is calculated. The process is repeated, shifting the window by n, until the whole
EEG signal has been analyzed. In order to determine the best performance of the estimator, the
length of the window is changed in subsequent iterations and the shifting of the window is the

same as the length of the window.

3.3.2 Smoother System Block

In order to obtain a cleaner signal, the gamma parameter must be smoothed. Here, a
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window of the gamma values signal is obtained. Then, the window is smoothed using an averaging

filter. In the next step, the window is shifted m seconds, where m # n, and the process is repeated.

3.3.3 Detector Block

The last block of the algorithm is the detector, which considers two thresholds to avoid the
false positive and true negative detections. The first threshold is the relation of the gamma samples
values. The detector obtains two consecutive samples of the smoothed gamma. After that, both
samples are compared. If the ratio between samples is larger than 5, then an epileptic seizure is
detected. After that, the system waits for the amplitude of the gamma parameter to return to normal
levels. If the amplitude of the gamma sample value does not return to the normal amplitude, then
the system cannot detect more seizures. This part is considered as a second threshold.

3.4. Results

In this section, outcomes of every block of the system are presented. As stated before, the
window length of the estimator and the smoother are changed in order to determine the best
performance and reduce the processing time without losing accuracy. Finally, the complete system
performance is discussed in the last part of the section. Through all the experiments, EEG signals
from the MIT database [MIT-14] are used.

3.4.1 Gamma Estimator Block Results

Three different window lengths are considered to analyze the EEG signal: 0.03, 0.39, and
1.95 seconds. The shift time n used between windows is 0.03 seconds for all three cases. The
outcomes of gamma estimation are shown in Fig. 3.5.

Fig. 3.5a shows the original EEG signal. Fig. 3.5b and Fig. 3.5c¢ display the amplitude of
the gamma parameter with an epileptic seizure, which is 7 times greater than the gamma parameter
without an epileptic seizure. On the other hand, Fig. 3.5d shows that the amplitude of the gamma
parameter is 5 times greater than the gamma parameter without an epileptic seizure. As a result,

the window length estimate of the gamma parameter is not important because in all three cases,
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Fig. 3.5 Comparison of the gamma parameter estimation for different window-lengths: a)
EEG signal, b) window length of 0.03 sec, ¢) window length of 0.39 sec, d)

window length of 1.95 sec.

TABLE 3.2. COMPARISON OF THE PROCESSING TIME OF THE GAMMA ESTIMATOR
BLOCK WITH DIFFERENT MOVING WINDOW LENGTH

Window length (Seconds) Processing time (seconds)
0.03 2.8
0.39 0.31
1.95 0.16

the epileptic seizure is detected.

In order to obtain the performance of each window-length, the processing time is presented
in Table 3.2. These results confirm that when the window is wider, the processing time is shorter.

The best performance is obtained by the wider window with a length of 1.95 seconds.
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Fig. 3.6 Comparison of the smoother block outputs for different window-lengths: a)
gamma parameter, b) window length of 0.03 sec, ¢) window length of 0.19 sec,

d) window length of 0.39 sec.

3.4.2 Smoother System Block Results

After the gamma parameter is estimated, a smoothing filter is applied to reduce the
influence of the noise. Here, again, a window of the gamma signal is defined. The length of it is
changed in order to reduce the processing time of the block. Three different window lengths are
considered (0.03, 0.19, and 0.39 seconds). The outcomes of the signal after the smoother block are
presented in Fig. 3.6.

Fig. 3.6 shows that, if the window is wider, then the offset of the signal is larger. In all
three cases, the epileptic seizure is detected. The processing time for each window-length is
obtained using the “tic-toc” command of MATLAB and it is shown in Table 3.3; this is greater

when the window length is longer. The best performance is obtained with the window length of

0.03 seconds.
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TABLE 3.3. COMPARISON OF THE PROCESSING TIME OF THE SMOOTHER SYSTEM BLOCK
WITH DIFFERENT MOVING WINDOW LENGTH

Window length (Seconds) Processing time (seconds)
0.03 0.0089
0.19 0.0091
0.39 0.0096

3.4.3 Detector Block Results

The number of epileptic seizures are detected in this block. The outcomes of the
experiments show that the system is accurate to detect epileptic seizures. On the other hand, the
processing time to scan the smoothed gamma signal of 30 minutes is 0.0041 seconds. Finally, the

overall processing time of the complete system is 0.1725 seconds.

3.5. Conclusions

A method to analyze an EEG signal and detect epileptic seizure using alpha-stable
parameters was presented in this chapter. It was demonstrated that the EEG signal has a heavy tail
distribution, and its tail tends to decay similarly to a Pareto distribution. When an epileptic seizure
is present, the gamma parameter shows significant changes that can help to detect the disorder.
The McCulloch, Stablekull, and Nolan estimators were evaluated for the computation of the alpha-
stable parameters, resulting that Nolan is the one with the best performance.

An accurate algorithm to detect epileptic seizures is proposed. It can be shown that it is
more sensitive than others reported in the literature and the processing time of the algorithm is
shorter (the corresponding comparison is omitted for the sake of brevity). Variations in algorithm
parameters showed that the best performance is obtained with a window-length of 1.95 seconds.
Regarding the window-length in the smoother block, the best performance is obtained when the
length is 0.03 seconds. Finally, the overall processing time required to analyze the complete EEG

signal is 0.1725 seconds for a 30 minutes long EEG signal.
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4. Breathing Signal and Sleep Apnea Detection Using
UWB Technology

Sleep apnea is a syndrome that consists of a breathing pause of more than 10 seconds while
a patient is sleeping. Diseases such as strokes, coronary heart attacks, or diabetes could be
associated with an untreated sleep apnea. New methods to detect sleep apnea are based on the
ultra-wide band UWB technology. UWB is a noninvasive, low power, and low radiation technique.
In this chapter, the breathing signal of the patient is automatically detected from the variance of
UWB signals reflected in a human body. This signal is analyzed and two sleep apnea detection
methods are presented: the derivative and the cross-correlation of the breathing signal. It is
demonstrated that our proposed algorithm detects accurately the breathing signal and sleep apnea
in different patients.

4.1. Sleep Apnea

Sleep apnea is a syndrome which affects at least 6% of the adult population [WHO-17].
The sleep apnea is a breathing pause of 10 seconds or more while a person is sleeping.
Occasionally, a normal person has apneas, however, a health damage is considered when the
patient has at least 300 sleep apneas per night or its duration is around 5 minutes [AASM-17],
[Guyton-11], and [Varady-03]. The sleep apnea is caused by the obstruction of the airways
[Guyton-11] and it is divided into two types: central sleep apnea (CSA) and obstructive sleep apnea
(OSA). In the CSA, the nervous central system does not send the impulse information to the airway
muscles and they block the air conduct in the pharynx. On the other hand, the OSA is caused by
soft tissues which block the airway conduct [Guyton-11] and [Varady-03]. In both cases, it could
be accompanied by loud snoring [WHO-17]. After that, the snore is interrupted by a long silence.
Finally, the brain sends an impulse to the patient to open the airway or move the body to continue
breathing [Guyton-11]. A patient with sleep apnea could present different symptoms, such as
feeling sleepy, sleeping during the day, being forgetful, having strong headaches, falling asleep
while the patient is watching TV, working, driving, or reading, or waking up tired in the morning
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[MEDLINE-17]. Other diseases associated with non-treated sleep apnea are: strokes, coronary
heart disease, hypertension, or diabetes [NHLBI-17] and [Varady-03].

Currently, the most common medical method to diagnose sleep apnea is performed by the
polysomnography [AASM-17] and [MEDLINE-17]. In this technique, an oxygen mask is placed
on the nose and mouth of the patient while sleeping. Then, the device records the patient’s
breathing and it detects when the sleep apnea occurs, as well as its duration. There are others
complementary tests that confirm sleep apnea, such as electrocardiography (ECG),
echocardiography, thyroid test, or arterial blood test [MEDLINE-17]. Also, a non-invasive
technique to detect sleep apnea is measured from the patient chest movements. For example,
pressure transducers are placed on the patients’ bed. When the patient inhales or exhales, the
pressure exerted on the bed changes. When a sleep apnea occurs, the pressure of the body on the
bed is steady for more than 10 seconds [Waters-09]. However, the patient must be in a specific
position for the breathing frequency detection. Another technique is the Doppler radar, which
measures the distance between the radar and the chest of the patient. If distances do not change for
more than 10 seconds, then the sleep apnea alert is activated. Unfortunately, this technique in some
cases tends to be inaccurate [Yue-11].

Recent experiments show that sleep apnea could be detected using the ultra-wide band
(UWB) technology [Yue-11]. The approach in [Fedele-15] and [Yue-11] uses the UWB to measure
the distance between the target and the device. On the other hand, in [Abib-14] they compare the
distance measured using an UWB device versus the real distance. As a result, the chest
displacement is estimated [Muller-15]. Nevertheless, the conclusion of this paper is that the
maximum error range between the measured distance by the UWB device and the real distance is
3cm in 25 cm. Therefore, that system shows some imprecisions. In [Karli-16] it is shown that the
UWSB signal changes with the human tissue.

According to the literature, UWB technology for detecting apnea has two principal
advantages when measuring target’s density instead of measuring distance. The first advantage is
the accuracy of the device to detect the breathing signal of a patient, in contrast to measuring the
distance, where chorea diseases such as Parkinson or Huntington could deteriorate the
measurement accuracy [Fedele-15] and [Yue-11]. The second advantage is that even if the patient
is under a thick blanket, density changes could be detected, unlike the measurement of distances,

which may not detect the movement of the patient chest.
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Fig. 4.1 Waveform of the Gaussian doublet pulse. Figure taken from [Pardifias-Mir-09].

4.2. Ultra Wideband Technology

The Federal Communications Commission (FCC) of the United States of America (USA)
defines the UWB technology as that one employing devices which transmit very short duration
pulses that result in very large or wideband transmission bandwidths [Pardinas-Mir-09] and
[Waters-09]. Typically, the largest pulse length considered as a UWB pulse is on the order of
nanoseconds. The received energy signal is spread from close to DC to a few GHz [Pardinas-Mir-
09].

The most common pulse used in the UWB technology is the Gaussian doublet, whose
frequency spectrum nominal central frequency depends on the pulse width, as well as its spectrum
bandwidth [Pardinas-Mir-12]. The Gaussian doublet pulse is shown in Fig. 4.1 and is given by:

9(0) = A1~ 4n oy (4-1)
where A is the maximum amplitude of the Gaussian doublet pulse, T,, is the pulse width, and t is
time.

An advantage of this technology is that it has a low power spectral density, but with a very
wide frequency spectrum. Thus, the UWB technology is robust in terms of security, because it is
not easy to be detected or interfered by other technologies [Pardinas-Mir-09] and [Taylor-00].

Another advantage of this technology is that the multipath effects can be diminished, and it can

penetrate through materials such as walls, doors, and windows [Pardinas-Mir-12].
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Fig. 4.3 The waveform of an UWB pulse produced by the transmitter.

UWSB signals have been proposed for monitoring vital signs [Yue-11]. In this work, we use
a UWB radar to acquire the breathing signal to which an algorithm to detect apnea is applied.

Fig. 4.2 shows the UWB radar device that was used in the experiments reported in this
document. It is a monostatic radar module (MRM) model 410 from PulsOn that works in a
frequency band between 3.1 and 4.8 GHz, transposing the UWB pulse to a center frequency of 4.3
GHz. This device has two antennas (Tx and Rx) in the same package. The UWB transmitter sends
a pulse signal of 5.6 nano-seconds every 0.125 seconds to the target, which is shown in Fig. 4.3.

Its bandwidth is presented in Fig. 4.4.
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Fig. 4.5 Waveform of a realization collected from a range of 15.6 meters using the UWB
device.

The transmitted signal is reflected on the target and arrives back to the receiver. The UWB
receiver collects the reflected signal, samples it and stores it in an array of N received signals. Each
sampled received signal is called realization. The work range of the device is around 15.6 meters.
Depending of the configuration parameters, a typical realization (see Fig. 4.5) corresponds to 864
samples of 52 nanoseconds long received signal. The system can be configured for acquiring
consecutive realizations for a given time period, for example, the time corresponding to several

breathing cycles of a person.
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The UWB device has the option of saving the collected realizations in cvs files, for
subsequent processing by the user. The system also provides a MATLAB based software tool that
can produce, from the collection of realizations, a signal representing the breathing of a person
when the device is attempted to detect the chest movement of a person. In this case, the reflections
of the rest of scenarios will produce scattering. The detection method proposed in this chapter

takes as input the respiratory signal provided by the software.

4.3. Building the Breathing Signal

In [Servin-Aguilar-17], an overview of Ultra-Wide Band (UWB) signals and its use for
obtaining a breathing signal is presented. In this section, we describe an aspect of UWB signals
behavior in order to illustrate the way a breathing signal can be obtained from it when a UWB

transceiver is targeted to a human body.

4.3.1 Behavior of UWB Signals

When a signal is transmitted in an ideal environment from point A to point B and is
reflected back to point A in a direct path, without additional reflections, it is called the direct path.
The total traveling time is known as time of flight TR. In a real environment, the signal that arrives

to point B is composed of the direct path plus additional signals that are reflected in different
objects (see Fig. 4.6), traveling longer paths and lasting for more than TR/Z seconds. Fig. 4.6

shows the way that the received signal, d,+(t), is constructed from different reflected signals or
paths d, (t), d,»(t), d,3(t), etc. In the case of a transceiver acting as a radar, the signals at point
B are reflected and redirected to point A, where they are collected. This kind of UWB radar can
be used to obtain a breathing signal of a person. The transceiver targets the person and sends one
pulse, recording the received signal for T;, seconds, called a realization, ensuring that all paths have
arrived. Doing this very fast and as many times, a signal representing the breathing can be
obtained.
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Fig. 4.6 Received signal constructed from reflections of the original signal on scatterers.

The time T, is dependent on the longest distance to the object on which the signal is
reflected. Hence, T, corresponds to the time of flight of the longest signal path, so the maximal

distance d,,,, that the transceiver can detect is half of that time:

Ty

Amax =5 W (4-2)
where V;, is the velocity of propagation. For example, a typical value of T, for the transceiver used
during the experiments presented in this document is 54 ns, then the maximum distance at which
a target can be from the transmitter for being recorded is around 8 meters.

As stated before, in order to detect the cycle of the breathing signal of a person, it is
necessary to analyze the signals corresponding to several cycles of breathing, which means a set
of many realizations. The aim is to identify, in those signals, the information associated with the x
axis value to the time position that indicates where is the target positioned. In order to standardize
the identification concept, this method will be called the target position. The analysis of the target
position is made through all realizations. The normal breathing frequency of a patient is
approximately 12 times per minute, that means that the patient inhales and exhales every 5 seconds.
However, the breathing frequency could change according to the patient and his status, where the
minimum breathing frequency to live for a short time is 2 times per minute and the maximum is
40 times per minute [Guyton-11]. According to the sampling theorem, the minimum sampling

frequency must be at least more than twice the frequency of the signal. In this case, the breathing
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Fig. 4.7 Three realizations from a set of signals from the UWB system.

frequency is 0.2 Hz and the sampling frequency is normally set to 8 Hz, which is the transmission
frequency of the set of pulses produced by the UWB system. One set usually consists of 20
realizations in order to detect one respiratory cycle of around 5 seconds. Fig. 4.7 illustrates three

realizations from a set, where the time between them is 0.125 s.

4.3.2 Manual Distance Calculation and the Breathing Signal

One way to identify the time position of the target through a realization, is knowing in
advance the distance at which the object is from the UWB transceiver. Then, the time position is

easily calculated using:

—d
t="%y (4-3)
where V;, is the propagation velocity (3x108™/y), d is double the distance between the target and

the UWB device, and t is the propagation wave time (round trip).

For example, if the patient is at 70 cm from the UWB device, then the arriving time is 4.6
ns. Note that it is important to consider that the distance must be considered as twice the distance
between the UWB device and the patient, since the signal travels that distance twice. After the
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Fig. 4.8 Identifying the time position in the envelope through realizations using the
velocity equation method.

position of the patient is located through the realization, the absolute amplitude value at the same
point in all of the realizations set is analyzed, forming a signal. This signal corresponds to the
amplitude variations of reflected signals at the target located at the corresponding distance.
Knowing that the target is in fact a breathing human, then the amplitude of signals reflected at his
chest will change according to the chest movement and the density change of the inner body at this
point. In order to obtain the true amplitude value, the amplitude of the envelope signal is analyzed.
Fig. 4.8 shows the amplitude envelope of three consecutive realizations, where the time point of
the body position is located.

The amplitude values at these points are samples of the breathing signal that are built from
analyzing all the realizations of the set, which is illustrated in Fig. 4.9. For instance, if the
realizations are produced each 0.125 s, then this is the time separation between samples in the

breathing signal.
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Fig. 4.9 Breathing signal of the patient from the manual calculation of its time position in
a realization.

4.3.3 Automatically Obtaining the Breathing Signal

In order to calculate automatically the time position into a realization, and from this
position to obtain the breathing signal, a method based on the signal variance is applied. In this
method, the variance of the amplitude values at the same time position through all realizations is
calculated by using:

VAR{x} = 7 (x — E{x})*frin ()dx (4-4)
where x is the random variable (r.v.) of the process X (t) for the realization &,,, E{x} is the expected
value of mean of the r.v., and £, (x) is the probability density function (PDF) of X (t).

The variance provides a measure of the amplitude dispersion with respect to the mean
amplitude of the signal at time t. Then, the higher values correspond to the positions where the
object made the signal amplitude change, as is the case with a static person breathing. An example
of the variance of realizations is presented in Fig. 4.10, where two objects that vary the amplitude
of the signal are clearly recognized. The maximum amplitude of the variance is obtained at 4.3 ns.
In other words, the arriving time of the signal, which is reflected on the patient, is equal to 4.3 ns.
A second object could produce the second peak or it could be the reflection of the first recognized
signal. Once the time position is known, at 4.3 ns, the amplitude envelopes of all realizations are

analyzed at this time position as in the manual calculation case, in order to obtain the breathing
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Fig. 4.11 Identifying the time position in the envelope through realizations using the

variance method.

signal.

Fig. 4.11 shows the amplitude envelopes of three consecutive realizations, showing the

time position where the target was found. The whole breathing signal obtained by the automatic

calculation of time position is shown in Fig. 4.12.
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Fig. 4.12 Breathing signal of the patient using the variance.
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Fig. 4.13 Comparison of the breathing signal acquisition of a patient using velocity and

variance methods.

Fig. 4.13 shows simultaneously the breathing signal obtained by the two methods: manual

and automatic. We can see that both methods produce a similar signal. In the next section, we

show the results of a series of experiments conducted to validate the automatic recognition of the
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Fig. 4.14 Breathing signal with two sleep apneas starting at seconds 33 and 80.

target.

4.4. Proposed Algorithm to Detect Sleep Apnea

Once the breathing signal is acquired, the next step is to detect the sleep apnea. Fig. 4.14
shows a breathing signal with a sleep apnea, which is noisy. Here, we can identify two sleep apneas
starting at seconds 33 and 80. If the signal is too noisy, the apnea could not be detected by the
system.

In this section, two methods are considered for a reliable detection of the apnea: the
derivate of the breathing signal and the use of correlation.

The first method detects apnea through the derivate of the breathing signal, which tends to
detect abrupt changes in the signal. In this case, when the patient stops breathing, the changes
produced by the chest cease, so the calculation of the derivative results in values close to zero. The
criterion to decide if the patient is into an apnea state is for the derivative resting close to a value
of zero for more than 10 seconds. The derivative equation is given by:

d
y(t) =22 (4-5)
The second method is the correlation. In this method, a portion of the signal equivalent to

a respiratory cycle (inhale and exhale once) is considered. This signal piece, called a breathing
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Fig. 4.15 Breathing signal, derivative, and correlation: a) breathing signal of a patient with
two apneas at 24 and 55 seconds, b) derivative of the breathing signal, ¢)
correlation coefficients calculated by the proposed algorithm.

frame, is correlated with the complete breathing signal.
When sleep apnea occurs 7., (t) is approximated to zero for more than 10 seconds. The

mathematical expression is given by:
rey (@ = [, x(@y(t - Dt (4-6)

where x(t) is the complete breathing signal and y(t — 7) is the breathing frame.

Fig. 4.15 shows 3 signals, in order to clarify the sleep apnea in a patient using the derivative
and the correlation method in his breathing signal. Fig. 4.15a shows the breathing signal of the
patient. Fig. 4.15b presents the derivative method. Fig. 4.15c¢ depicts the correlation method.
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4.5. Basic Sleep Apnea Detection Method Experimental
Evaluation

The automatic method to obtain the breathing signal is validated trough some experiments

carried out at two different environments: an electronics laboratory and a dormitory.

4.5.1 Experiments Description

The first series of experiments is performed in a laboratory. The UWB transceiver is
targeted to the chest of the patient and the data are logged. In a first experiment, the patient is
placed in front of the UWB device, which is moved from 20 cm to 100 cm. The objective of this
experiment is to determine the maximum distance that the UWB could detect the movement of the
patient’s chest. In a second experiment, different patients are placed in front of the UWB at 60 cm.
The aim of this experiment is to obtain the breathing signal of different people.

The second series of experiments are conducted in a dormitory, with the aim of obtaining
data in more realistic conditions. The UWB device is placed at 60 cm of the bed and targeted to
the chest of the patient. In a first experiment, the patient is lying on his side. First, the patient uses
only a shirt, and after that, a blanket is placed over the patient. This experiment is conducted in
order to determine if the breathing signal can be obtained in a real environment in different
circumstances. In a second experiment, data of two different patients under the same conditions

are obtained.

4.5.2 Experiments Results

In the first series of experiments, the maximum distances between the target and the UWB
device to detect the breathing signal are obtained. The UWB device is aimed to the patient chest

and it is located at 20 cm, 60 cm, 80 cm and 100 cm from the patient.
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Fig. 4.16 Breathing signal of the patient at different distances: a) 20 cm, b) 60 cm, c) 80
cm, and d) 100 cm.

TABLE 4.1. PROCESSING TIME TO OBTAIN THE BREATHING SIGNAL RELATED TO THE

DISTANCE
Distance (cm) Manual method (sec) Variance method (sec)
20 0.052 0.064
60 0.914 0.983
80 0.035 0.047
100 0.032 0.043

Some results are shown in Fig. 4.16, including the manual method of finding the target
time position and the automatic one through the variance. The distances considered are: 20 cm
(Fig. 4.16a), 60 cm (Fig. 4.16b), 80 cm (Fig. 4.16c), and 100 cm (Fig. 4.16d). In all of these cases,
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Fig. 4.17 Breathing signal of four different patients: a) Male I, b) Female I, ¢) Male I, and
d) Female II.

the amplitude of the signal using the variance method is larger than that one using the manual
computation of time position; additionally, for distances larger than 60 cm the amplitude of the
latter is completely reduced. This indicates that the automatic method founds a better time position
than the velocity equation computation. In order to evaluate the performance of both methods in
terms of computing time,

Table 4.1 presents the processing time for each method. The reference is the manual
computation of target’s time position, in the 2nd column, while the 3rd column shows the
processing time of the variance method. As mentioned before, the latter achieves the maximum
distance between the UWB device and the patient, guarantying a good breathing signal at 100 cm.

In the next test, four people are considered to obtain their breathing signal. In all cases, the
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TABLE 4.2. PROCESSING TIME TO OBTAIN THE BREATHING SIGNAL RELATED TO
DIFFERENT PATIENTS (DIFFERENT BREATHING FREQUENCY)

Patient Manual method (sec) Variance method (sec)
Female | 0.049 0.064
Female Il 0.047 0.076

Male | 0.914 0.983

Male Il 0.056 0.067

distance between the UWB device and the target is 60 cm. Fig. 4.17 shows the breathing signal of
these 4 different patients: two males and two females, with ages between 28 and 50 years.

Each patient has a different breathing frequency and yields a different received signal
power. For example, in the breathing signal of male | and female 11, the amplitude of the signal is
larger using the variance method. On another hand, in the breathing signal of male Il and female
I, the amplitude of the signal is higher using the velocity equation method. However, in the case
of male Il and female II, the breathing signal is not clearly detected using the velocity equation
method. In order to complete the experiment, the processing time is calculated and shown in Table
4.2. The difference in processing time is very small between both methods.

The second series of experiments, performed in the dormitory, are conducted under two
different scenarios. In the first scenario, the patient is wearing a shirt. In the second scenario, a
blanket is placed over the patient. The objective of this experiment is to determine if the UWB
device can detect the breathing signal in more realistic environments. Results are shown in Fig.
4.18.

The breathing signal of the patient when he is wearing a shirt is shown in Fig. 4.18a, while
that one when he has a blanket over him is presented in Fig. 4.18b. It is seen that the amplitude of
the breathing signal is lower when the patient has a blanket over him, as expected. It is also seen
that both methods detect the breathing signal in both scenarios. The corresponding processing time
for both methods is presented in Table 4.4, where it is confirmed again a very small difference.

In the last experiment of the second series, two patients are considered: a 2-year old female
and a 32-year old male. The male in this experiment is the same as male Il in the laboratory
environment series of experiments. The results are presented in Fig. 4.19: the breathing signal of
the female 111 is in Fig. 4.19a, while that for male Il is in Fig. 4.19b. It is seen a good performance

of the variance method to obtain the breathing signal. The corresponding processing times are
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TABLE 4.3. PROCESSING TIME USED FOR METHODS TO OBTAIN THE BREATHING SIGNAL
CONSIDERING TWO DIFFERENT PATIENTS

Patient Velocity equation method (sec) Variance method (sec)
Female 11 0.289 0.32
Male 11 0.232 0.243

given in Table 4.3.

4.6. Conclusions

An automatic method to detect the breathing signal based on its variance was designed and
proved to be effective considering different patients and environments. The proposed variance
method showed a good performance in terms of distance and processing time. It was found that
the proposed system presented the following restriction: beyond 100 cm, the breathing signal was
not measured with sufficient accuracy. However, within a 100-cm range, both the sleep apnea and

the breathing frequency were detected efficiently.
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Fig. 4.19 Breathing signal of different patients on a bed: a) female 111, b) male 1I.

TABLE 4.4. PROCESSING TIME TO OBTAIN THE BREATHING SIGNAL CONSIDERING TWO
DIFFERENT SCENARIOS

Scenario Manual method (sec) Variance method (sec)
Wearing a shirt 0.232 0.243
Blanket_over the 0.219 0.232

patient
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5. A New Method to Detect Sleep Apnea Using UWB
Technology

UWB technology can be applied to obtain a breathing signal of a person and detect the
sleep apnea disorder. This chapter presents a sleep apnea detection method based on a UWB radar
targeting the sleeping person. The method is based on measuring the variance of the breathing
signal continuously, identifying the changes that occur when the person has pauses in their
breathing. Additionally, many experiments have been made in order to obtain the best values of
three parameters that define the method based on variance. The criteria applied was the lowest

processing load with the highest correct results.

5.1. Methodology

The method presented in this chapter is based on a UWB transceiver acquiring the reflected
signals from a human body, as explained in the previous chapter. Instead of trying to identify the
breathing cycle, the received signals (realizations) are processed to detect signal variations
corresponding to a change of breathing. This is made by computing its variance and comparing
the values from one realization to the next one, no matter at what point in the signal this variation
occurs. While a person is breathing, the variance of realizations does not change suddenly, but
when the person stops breathing the variance has a big change, signaling that apnea has occurred
if it lasts for more than 10 seconds. Note that the breathing frequency of a patient is around 0.2 Hz
or a breathing period of 5 seconds. The flowchart of this method is shown in Fig. 5.1.

The variance of a signal, as used in this work, provides a measure of the amplitude
dispersion of the signal with respect to its average in a determinate time [Leon-Garcia-08], and it
is given by:

VARIX(D)] = [ (x = me(5) fuqy ()dx (5-1)
where m,(t) is the mean function of the random process X (t) and fi)(x) is the probability

density function (PDF) of X (t).

For the signal processing, a set Y1(n) consisting of a certain number of realizations, WL, is
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Fig. 5.1 Flowchart of the sleep apnea detection using the variance of realizations.

grouped into a “window” and its variance V1 is calculated. A new window Y2(n) is analyzed by
grouping other WL realizations located WS realizations apart from the start of the previous
window: Y, (n) = Y;(n + WS). Its variance is V2. WS corresponds to the number of realizations or
window step where the new window is defined. The construction of the grouping of realizations
and window step is illustrated in Fig. 5.2.

This procedure, computing the variance of shifted windows, is executed continuously. The
result is a signal containing the amplitude of variances, as it is shown in Fig. 5.3. In this figure, it
is included a time interval when breathing ceased, and the amplitudes of the variances decreased
abruptly. A comparison between consecutive variance amplitudes is also continuously computed,

searching for this abrupt change by calculating:

r=—= (5-2)
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Fig. 5.2 Construction of realizations windows and definition of window step.

When the relation r between them is greater than a threshold value ThV, this point of time
is considered as a potential start of apnea. Then, if the relation between subsequent variance
amplitudes and the one at the start point is kept greater than the threshold value for more than 10
[Guyton-11], [Servin-Aguilar-18], apnea is declared. The computation of relation factor r for a
signal lasting 60 seconds and an apnea at second 25 is shown in Fig. 5.4. Finally, when the relation
r is lower than the threshold, then the patient is breathing again. This process is repeated until the

complete signal is analyzed.

5.2. Results

In order to evaluate the performance of the algorithm, the same signals corresponding to
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the experiments presented in the previous chapter are used. They were taken into two

environments: a laboratory and a dormitory. In this part of the work, we use a UWB transceiver

60



5. ANEw METHOD 1O DETECT SLEEP APNEA USING UWB TECHNOLOGY

12 T T T T 30

Q0

10 oY

o]
T
N
o
)]
9J
9

©
)

Relation of variance
[}
)
1
Relation of variance
N
[9)]
59)
A
3]
o
s)

=09
E )]

50
Time (s)

7 . 4 T
Q
351
6 o Q
0]
[o]iio} a 0) 3
5 (o ©
] 2
% 3 25
.§ al §
- S 2r qQ i
o Q ,) c
Sl £ > ¢
= © L & ralffih
© o o 18 N i
& Q b o ql r ‘D‘,.ﬁ (@)
QY ) oY e
2k @ (0)“ @ Fep (é‘ 1 "m..“‘, iro e !@i !H,.Jm.
) Q
fo [y "& «’-f" 0‘:, o (g
1 Mt o I 0.5
0
0 0 10 20 30 40 50 60 70 80 9C
0 10 20 30 Time (s)
Time (s)
c) d)

Fig. 5.5 Relation of variance amplitude for signals at different distances between the
UWAB device and the patient: a) 20 cm, b) 60 cm, ¢) 80 cm, and d) 100 cm.

acquiring signal realizations reflected from the human body at a frequency of 8 Hz.

In a first experiment, a signal acquired in a laboratory targeting directly to the chest of a
patient is processed. The distance between the patient and the UWB transceiver is changed
between 20 cm to 100 cm. Results are presented in Fig. 5.5 for values of comparison factor r.

In order to analyze the signal, a threshold ThV of 5 is chosen at four different distances and
the sleep apnea is detected: 20 cm with an apnea at second 49 (Fig. 5.5a), 60 cm and an apnea at
second 23 (Fig. 5.5b), 80 cm with an apnea at second 32 (Fig. 5.5c), and 100 cm with an apnea at
second 50 (Fig. 5.5d). At distances greater than 100 cm, the signal is not suitable for processing.
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Fig. 5.6 Relation of variance amplitudes for signals in two scenarios: a) the patient is
wearing a shirt, b) the patient is wearing a jacket.

When the threshold value ThV is changed to 2, then a sleep apnea is wrongly detected at second
50. If the distance between the UWB device and the patient is larger, then the threshold ThV must
be lower to detect sleep apneas, because the amplitude of variances is smaller.

In a second experiment, the signal processed corresponds to a distance between the patient
and the UWB transceiver of 60 cm and the patient wears two different clothes: a shirt and a jacket.
The aim of this experiment is to evaluate the performance of the algorithm to detect sleep apneas
when the patient is wearing different clothes. Results for the comparison factor r are shown in Fig.
5.6. When the patient wears a shirt, a sleep apnea occurring at second 23 is correctly detected using
a ThV of 10, as shown in Fig. 5.6a. When the patient wears a jacket, a sleep apnea at second 42 is
correctly detected with a threshold ThV of 3 (see Fig. 5.6b). It is seen that, while the clothes that
the patient is wearing are irrelevant to detect the sleep apnea, the amplitude of the variance relation
should be changed according to the patient clothes.

In a third experiment, the signal to process is acquired in a dormitory, where the patient is
laying down on his side in a bed. The UWB device is addressed to the chest of the patient. Two
scenarios are considered: the patient wearing a shirt and the patient covered with a thick blanket.
Results of the comparison factor r are shown in Fig. 5.7. An apnea is present at second 45 for the
patient wearing a shirt and the apnea is correctly detected (see Fig. 5.7a). When the patient is

covered with a thick blanket (see Fig. 5.7b), a clear apnea is present at second 47 and is correctly
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detected, however, the results also indicate a second apnea at second 75, which does not exist.
Then, it is important to improve and optimize the parameters that the algorithm uses to detect the

sleep apnea more accurately.

5.3. Optimization Methodology

In order to find the conditions with the best performance of the proposed apnea detection
method, the main parameters involved in the computation are changed in a series of executions of
the algorithm. The targeted parameters are the window length, WL, the shift or step between
consecutive windows, WS, and the threshold value, ThV.

The experiments, carried out over a UWB signal corresponding to the chest movement of
the patient, have two main objectives. First, to evaluate the parameters that produce the best
accuracy of the apnea detection method. Second, to identify the parameters with shortest
processing time.

The proposed optimization methodology essentially consists of a parametric
multidimensional search based on actual physical measurements. Each execution of the searching
process begins with the values of two parameters fixed, WL and WS, being the threshold value

varied. Once the whole process of detection over the signal is carried out, a new execution is run
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TABLE 5.1. NUMBER OF COMBINATIONS OF PARAMETERS THAT PRODUCED CORRECT

DETECTIONS
Signal Characteristics Number of
Number of Distance between the UWB Corrgct
Apneas Transceiver and the Patient (cm) Detections
0 60 17,731
1 20 1,291
1 30 2,383
2 30 1,564
1 80 866

by fixing WL and WS to new values and then varying ThV. The executions are repeated by
modifying the parameters until their ranges of variation are covered. For each execution, the values

of the parameters, the number of detected apneas, and the processing time are saved.

5.4. Optimization Results

The set of experiments are performed over five signals presenting different characteristics.
Each signal corresponds to a series of around 750 realizations, lasting 94 seconds in total. As a
reference for the experiments, the average breathing frequency of a patient is considered to be 0.2
Hz or 5 seconds. The parameter ranges considered are: for the window length WL, from 4
realizations, which represents 0.5 seconds, to 128 realizations, corresponding to 16 seconds; for
the window step WS, from 1 realization to the maximum length of the window; and for the
threshold value ThV, from 1 to 10. This makes a total of 18,544 combinations of parameters tested
for each signal.

The difference between the signals used in the experiments are the number of apneas and
the distance between the UWB transceiver and the patient. Table 5.1 shows the characteristics of
the signals and the number of combinations of parameters that presented a correct detection out of
the 18,544 possible combinations. Table 5.2 - Table 5.6 show, for each signal, a subset of the
values of the parameters with correct detections. They are a subset of combinations chosen in a
way that allows to identify the ranges of common values between the 5 signals.

The first signal used has a length of 85.63 seconds with zero apneas and a distance between
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TABLE 5.2. DETECTION RESULTS FOR SEVERAL PARAMETERS USING A SIGNAL
WITHOUT APNEAS, ACQUISITION DISTANCE =60 CM, LENGTH = 85.63 SECONDS

PARAMETERS
WL WS ThV Range
16 10 25-10
16 11 25-10
16 12 25-10
16 13 25-10
16 14 25-10
24 12 2-10
24 13 2-10
24 14 2-10
24 15 2-10
24 16 2-10
32 14 1.5-10
32 16 1.5-10
32 18 2-10
32 25 2-10
32 27 1.5-10
40 12 1.5-10
40 13 1.5-10
40 14 1.5-10
40 15 1.5-10
40 16 1.5-10

the UWB device and the patient of 60 cm. A total of 17,731 combinations correctly detected the
absence of apneas (see Table 5.1). The detection results for this first signal are in Table 5.2,
showing a subset of these combinations, where WL has a range from 16 to 40 realizations, WS
varies from 10 to 27, and ThV presents a maximum range from 1.5 to 10.

The second signal used has a length of 81.3 seconds with one apnea and a distance of 20
cm. The number of combinations that detected correctly the apnea is 1,291 (see Table 5.1). From
the subset shown in Table 5.3, it is seen that the range for the WL parameter is from 8 to 40
realizations, the WS range is from 8 to 19, and the value of ThV varies from 1 to 10.
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TABLE 5.3. DETECTION RESULTS FOR SEVERAL PARAMETERS USING A SIGNAL WITH
ONE APNEA, ACQUISITION DISTANCE =20 CM, LENGTH = 81.3 SECONDS

PARAMETERS

WL WS ThV Range
8 8 2.5-10
16 8 6-10
16 9 3.5-45
16 10 1-9
16 11 1-45
24 12 1-4.5
24 13 1-6.5
24 14 1-6
24 15 1-5
24 16 1-5.5
32 13 1-5
32 14 1-5
32 15 1-4.5
32 16 1-4.5
32 17 1-2.5
40 15 1-4.5
40 16 1-4
40 17 1-3.5
40 18 1-4.5
40 19 1-4

The third signal has a length of 113.4 seconds. It has one sleep apnea and an acquisition
distance of 30 cm. The number of correct detections is 2,383 combinations (see Table 5.1). It is
shown in Table 5.4 that WL has a range from 16 to 40, the WS range is from 11 to 15, and the ThV
maximum range is from 1 to 10.

The fourth analyzed signal has a length of 89.5 seconds, with two apneas, and an
acquisition distance of 30 cm. The total number of combinations producing correct detections is
1,564 (see Table 5.1). In this experiment, the subset of combinations of parameters shown in Table

5.5 corresponds to WL with a range from 16 to 40 realizations, WS from 9 to 17, and ThV with a
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TABLE 5.4. DETECTION RESULTS FOR SEVERAL PARAMETERS USING A SIGNAL WITH
ONE APNEA, ACQUISITION DISTANCE =30 CM, LENGTH = 113.4 SECONDS

PARAMETERS

WL WS ThV Range
16 11 1-10
16 12 1-7.5
16 13 2-10
16 14 2-17
16 19 1-10
24 11 2-95
24 12 2-17
24 13 2-9
24 14 2-17
24 15 2-95
32 11 2-8
32 12 2-6.5
32 13 2-8
32 14 2-6.5
32 15 2-175
40 11 2-17
40 12 2-55
40 13 1-7
40 14 2-55
40 15 1-7

variation from 1.5 to 8.

Finally, the fifth experiment has a length of 118.3 seconds, with one apnea, and an
acquisition distance of 80 cm. In this experiment, the total number of correct detections is obtained
from 866 combinations (see Table 5.1). The range of WL is from 48 to 72 realizations, WS varies
from 8 to 40 realizations, and ThV range is from 1.5 to 6, as seen in Table 5.6. In this case, it is
found that the ranges of parameters values stepped away from the group of values obtained in the
previous results.

The few coincident results of the fifth signal, in comparison with the first four signals, show
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TABLE 5.5. DETECTION RESULTS FOR SEVERAL PARAMETERS USING A SIGNAL WITH
TWO APNEAS, ACQUISITION DISTANCE = 30 CM, LENGTH = 89.5 SECONDS

PARAMETERS

WL WS ThV Range
16 9 25-4
16 10 1.5-3
16 11 1.5-3
16 12 1.5-8
16 13 1.5-45
24 12 1.5-7
24 13 1.5-5
24 14 1.5-8
24 15 1.5-7
24 16 1.5-55
32 12 1.5-6
32 13 1.5-5
32 14 1.5-6.5
32 15 1.5-6.5
32 16 1.5-6.5
40 13 1.5-4.5
40 14 1.5-55
40 15 1.5-55
40 16 1.5-55
40 17 1.5-5

that the distance has an important effect in the detection algorithm. In addition, it is also observed
that the number of correct detections decreased by half. In this case, we cannot define a range of
parameters values good enough for all tested signals. We conclude that the signal tested at a
distance of 80 cm is not suitable for the proposed algorithm, since it makes the algorithm
unreliable.

Taking into account the results obtained for the first four signals, we can determine an
appropriate set of reliable values, valid for all four signals. This set comprises a WL equal to 24, a

WS ranging from 12 to 15 realizations and a ThV range from 2 to 4.5. This means that these selected

68



5. ANEw METHOD TO DETECT SLEEP APNEA USING UWB TECHNOLOGY

TABLE 5.6. DETECTION RESULTS FOR SEVERAL PARAMETERS USING A SIGNAL WITH
ONE APNEA, ACQUISITION DISTANCE =80 CM, LENGTH = 118.3 SECONDS

PARAMETERS

WL WS ThV Range
16 9 25-4
16 10 1.5-3
16 11 1.5-3
16 12 1.5-8
16 13 1.5-45
24 12 1.5-7
24 13 1.5-5
24 14 1.5-8
24 15 1.5-7
24 16 1.5-5.5
32 12 1.5-6
32 13 1.5-5
32 14 1.5-6.5
32 15 1.5-6.5
32 16 1.5-6.5
40 13 1.5-4.5
40 14 1.5-55
40 15 1.5-55
40 16 1.5-55
40 17 1.5-5

values can be used for the detection of apneas within the first four signals. On the other hand, it
can easily be found that, for a fixed value of parameter WL, the minimum number of operations to
be computed is obtained when the value of WS is the largest. We can then define that the WS value
to be used for all tested signals is 15. In summary, we conclude that a set of values that allows the
detection algorithm to have a good performance with the least number of calculations, is a WL of
24, a WS of 15 and a range ThV from 2 to 4.5.
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5.5. Conclusions

An algorithm to detect sleep apnea using the relation of the variance of signals obtained
from a UWB transceiver was presented in this chapter. It was demonstrated that the algorithm
detects the sleep apnea with a maximum distance of 100 cm between the UWB device and the
patient. The experiments also showed that the algorithm is able to detect sleep apnea considering
different scenarios, with some limitations. Since the performance of the algorithm depends on
some parameters, additional studies are necessary to find their optimal values for a more effective
performance.

An optimization methodology to improve a sleep apnea detection system that computes the
variance of the signal reflected from the patient’s chest was also presented in this chapter. The
experimental evaluation allowed to identify the combinations of parameters that produce the best
results and the smallest number of operations. The parametric optimization of the algorithm
showed that the best detection results were achieved by using a WL of 24 realizations, WS of 15
realizations, and a ThV between 2 and 4.5. It was also found that the detector was not accurate at

a distance of 80 cm between the UWB device and the patient.
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General Conclusions

This doctoral dissertation has shown how the processing of vital signs can help detecting
diseases, in the context of remote monitoring of patients. This means that the processing must
consider few resources at the remote site: low power consumption and low computing power.

In Chapter 1, an overview of different biomedical signals, such as ECG or EEG signals,
was presented. In addition, different techniques to reduce the energy consumption in devices that
work in WSN and/or WBAN for healthcare applications were studied. We identified the
opportunity to contribute studying the processing of vital signals with an energy efficiency point
of view.

In Chapter 2, the compression technique was considered as a method to reduce the energy
consumption when a signal is transmitted. The selected method to test was the wavelet transform,
which divides the signal in different band frequencies isolating the desired frequency. In this
chapter, the EEG signal was compressed using different wavelet families. Here, the performance
of every selected family was compared using two different criteria (NMSE and PRD). The Coiflets
family presented the best compression ratio (88% of the original signal) for the case j = 4, while
the Haar family presented an adequate performance related to the NMSE and PRD criteria. The
literature reported that the Coiflets family could be used to detect features of an EEG signal.
However, the results presented in this chapter showed that the Haar family had a better
performance than the Coiflets family.

In Chapter 3, an accurate epileptic seizure detector using the EEG signal was presented,
characterizing the EEG signal as a heavy-tail distribution. The EEG tail tends to decay similarly
to a Pareto distribution, so a detector that uses alpha-stable parameters was designed. It is shown
that when an epileptic seizure occurs, the gamma parameter presents significant changes that can
help to detect the disorder. In addition, three estimators to calculate the gamma parameter are
evaluated (McCulloch, Stablekull, and Nolan estimators), resulting that Nolan was the one with
the best performance. It can be shown that the proposed algorithm is more sensitive than others
reported in the literature and the processing time of the algorithm is shorter. Results show that the
best performance is obtained with a window-length of 1.95 seconds. Regarding the window-length

in the smoother block, the best performance is obtained when the length is 0.03 seconds. Finally,
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the overall processing time required to analyze the complete EEG signal is 0.1725 seconds for a
30 minutes long EEG signal.

In Chapter 4, an automatic technique to detect the breathing signal based on the variance
of a UWB signal reflecting on a person was presented. This let to define a sleep apnea detector
that was tested in different patients and environments effectively. Two methods were considered
to analyze the signal and detect the sleep apnea: the correlation and the derivative of the signal.
The proposed algorithm showed a good performance in general; within a 100-cm range, both the
sleep apnea and the breathing frequency were detected efficiently.

Finally, in Chapter 5, a method to detect sleep apnea using the relation of the variance of
signals with an UWB transceiver is presented. This method does not require the previous
calculation of the breathing signal. Results showed that the algorithm is able to detect sleep apnea
considering different scenarios, with some limitations. After testing the algorithm, an optimization
is performed in order to reduce the number of calculations. The optimization results allowed to
identify the combination of parameters that produce the best results and the smaller number of
operations. We detected that the best detection was obtained when we used a WL of 24 realizations,
WS of 15 realizations and ThV between 2 and 4.5. It was also found that the detector was not
accurate at a distance of 80 cm or more between the UWB device and the patient, making the
proposed unreliable under those circumstances.

For future work regarding epilepsy detection, more experiments with different noise
distribution will be considered in order to detect the epileptic seizures trying to simulate a more
realistic noise behavior. A new non-invasive method to detect the EEG signal of a patient without
placing electrodes in his scalp face will be considered.

Concerning the sleep apnea section, new experiments considering two UWB devices will
be performed. They will be located in different points of the room in order to guarantee the
accuracy of the sleep apnea detection in a patient when he is asleep. A filter structure to
characterize the signal spectrum and every parameter associated to the physical signal will be
designed.

More tests will be performed considering more patients in a real environment.
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Conclusiones Generales

Esta tesis presenta como el procesamiento de los signos vitales de un paciente puede ayudar
a detectar enfermedades, en el contexto del monitoreo remoto de sus condiciones de salud. Esto
implica que el procesamiento debe tomar en cuenta caracteristicas como un bajo consumo de
energia y un poder de computo disminuido.

En el Capitulo 1, se realiz6 un estudio general de diferentes sefiales biomedicas, como las
sefiales de ECG y EEG. Adicionalmente, se estudiaron diferentes técnicas para reducir el consumo
de energia en dispositivos que trabajan en redes WSN y WBAN para aplicaciones de la salud. Se
identifico como una oportunidad de contribucion el analisis de las sefiales vitales de un paciente
desde un punto de vista de reducir el consumo energetico.

En el Capitulo 2, se considero la compresion de sefial como un método para reducir el
consumo de energia cuando se transmite una sefial. En este trabajo, se uso la transformada wavelet,
que divide la sefial en sus diferentes bandas de frecuencia y aisla la frecuencia deseada para ser
transmitida. En este capitulo, una sefial de EEG fue comprimida usando diferentes familias
wavelet, comparandolas bajo dos diferentes criterios (NMSE y PRD). Los resultados mostraron
que la familia Coiflets mostré la mejor taza de compresion (88% de la sefial original) cuando se
tiene una j = 4, mientras que la familia Haar presenté un desempefio adecuado en relacion a los
criterios NMSE y PRD. En la literatura se reporta que la familia Coiflets es usada para caracterizar
una sefial de EEG. Sin embargo, los resultados presentados en este capitulo muestran que la familia
Haar tiene mejor desempefio que la familia Coiflets.

En el Capitulo 3, se muestra el desarrollo de un detector de ataques epilépticos usando
sefiales de EEG, basandose en la caracterizacion de la sefial EEG como una sefial con distribucion
de cola pesada. Esta tiende a decaer de forma similar a la distribucion de Pareto, por lo que se
disefid un detector usando parametros alfa-estables. Se muestra que cuando ocurre un ataque
epiléptico, el parametro gama muestra un cambio significativo que ayuda a detectar la enfermedad.
Adicionalmente, tres estimadores son evaluados (los estimadores de McCulloch, Stablekull y
Nolan), resultando que el estimador de Nolan tuvo el mejor desempefio, mostrando que el
algoritmo propuesto tiene una mejor sensibilidad que otros reportados en la literatura y el tiempo

de procesamiento del algoritmo es més corto. Los resultados muestran que el mejor desemperio se
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obtuvo cuando la ventana de andlisis de la sefial de EEG tiene una longitud de 1.95 segundos.
Ahora, el mejor desemperio en el bloque suavizador se obtuvo cuando la longitud del deslizamiento
de la ventana es de 0.03 segundos. Finalmente, el tiempo total de procesamiento que requiere el
algoritmo para analizar una sefial de EEG de 30 minutos es de 0.1725 segundos.

En el Capitulo 4 se presenta una técnica automatica para detectar la sefial de la respiracion
de un paciente a traves de la varianza y la deteccion de la apnea del suefio. El algoritmo fue probado
en diferentes pacientes y ambientes de forma efectiva. El algoritmo propuesto muestra un buen
desempefio en términos de distancia y tiempo de procesamiento, dentro de un rango de 100 metros,
la apnea del suefio y la frecuencia de respiracion fueron detectadas correctamente. Aqui, dos
métodos fueron considerados para detectar la apnea del suefio (la correlacion y la derivada de la
sefial). En ambos casos la apnea del suefio fue detectada correctamente.

Finalmente, en el Capitulo 5, se muestra un método para detectar la apnea del suefio usando
la relacion de la varianza de la sefial con un transductor UWB. Los resultados mostraron que el
algoritmo detecto la apnea del suefio en diferentes escenarios, con algunas limitaciones. Después
de probar el algoritmo, se optimizé con el objetivo de reducir el nimero de operaciones requeridas.
La optimizacion permitié encontrar los mejores valores de los parametros del algoritmo que
produjeran la menor cantidad de operaciones posible. Se detecté que el mejor rendimiento fue
obtenido cuando WL es de 24 realizaciones, WS de 15 realizaciones y el umbral ThV esta entre 2
y 4.5.

El trabajo a futuro considera, en relacién a la deteccion de epilepsia, la realizacion de méas
experimentos, tomando en cuenta diferentes tipos de ruidos, de manera tal que se puedan detectar
ataques epilépticos simulando un comportamiento del ruido mas similar al real. Por otra parte, se
considerara el estudio de un nuevo método no invasivo para detectar sefiales de EEG en el paciente,
sin poner electrodos en el cuero cabelludo.

En lo que se refiere a la apnea del suefio, se realizaran experimentos empleando dos
dispositivos UWB. Estos seran colocados en diferentes puntos de un cuarto, con el fin de garantizar
una deteccion mas precisa de la apnea del suefio cuando el paciente esta dormido. El disefio de un
filtrado estructurado para caracterizar el espectro de cada uno de los pardmetros asociados a las
sefiales fisicas seré considerado.

Mas pruebas se realizaran considerando pacientes en entornos reales.
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