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Abstract
Neural network applications in microwave engineering have been reported since the 1990s.  Description of artificial neural 

networks and their key issues, namely architectures, paradigms, training methods, data sets formation, learning and 
generalization errors, learning speed, etc., in the context of microwave CAD, has been extensively reported.  It is clear that 
neural networks have been widely used for modeling microwave devices and circuits, in many innovative ways.

In contrast, the use of neural networks for microwave design by optimization is at a less developed stage.  This presentation 
aims at reviewing the most relevant work in electromagnetics-based design and optimization of microwave circuits exploiting 
artificial neural networks (ANNs).  Measurement-based design of microwave circuits using ANNs is also considered.

The conventional and most popular microwave neural optimization approach is reviewed.  Advantages and drawbacks of 
this strategy are emphasized.  Improvements of this “black-box” approach such as segmentation, decomposition, hierarchy, 
design of experiments (DoE) and clusterization are mentioned.

The main limitations of the conventional neural optimization approach can be alleviated by incorporating available 
knowledge into the neural network training scheme.  Several innovative strategies are reviewed, including the Difference 
Method (also called Hybrid EM-ANN), the Prior Knowledge Input (PKI) Method, the Knowledge-Based ANN approach 
(KBNN), the Neural Space Mapping (NSM) optimization method, the Extended Neural Space Mapping approach, and the 
Neural Inverse Space Mapping (NISM) optimization algorithm.  Practical examples using these techniques are illustrated, 
including EM-based statistical design of relevant microwave problems.

Another strategy for ANN-based design of microwave circuits consists of using synthesis neural networks, also called 
“inverse neural models”.  A synthesis neural network is trained to learn the mapping from the responses to the design 
parameters of the microwave circuit.  Difficulties in developing synthesis neural networks are indicated.

Finally, the key issues on transient EM-based design using neural networks are described.  Suitable paradigms for 
approximating nonlinear dynamic behaviors are mentioned, such us Recurrent Neural Networks (RNN) and their 
corresponding training techniques.
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Conventional ANN-Based Optimization
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Conventional Neural Optimization – Step 1
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Conventional Neural Optimization – Step 2
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Decomposed Conventional Neural Optimization

Step 1

ANN

w1
*

≈ Rf1
*

ψ

wM
*

≈ RfM
*

ANN

xf }≈ Rf
*

Step 2

ANN

fine
model

Rf

≈ Rf1

xf

ψ

≈ RfMANN

w1

wM

(Teyssier et al., 1999)

8

Clustered Self Organizing Feature Maps (SOM)
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Clustered SOMs (continue)
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The Difference Method for Neural Optimization
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The Difference Method – Step 1
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The Difference Method – Step 2
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The PKI Method for Neural Optimization

Step 1

coarse
model

ANN

fine
model

xf

Rc

≈ Rf

Rf

w

ψ

Step 2

(Gupta et al., 1998, 1999)

coarse
model

ANNRc

xf

ψ

w*

≈ Rf
*

14

Knowledge-Based Neural Networks (KBNN)
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Neural Space Mapping (NSM) Optimization
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NSM Optimization – Step 1
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NSM Optimization – Step 2

(Bandler et al., 2000)
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NSM Algorithm
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Extended NSM Modeling Approach
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Neural Inverse Space Mapping (NISM)
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NISM Optimization Algorithm
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HTS Filter (Westinghouse, 1993)
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NISM Optimization of the HTS Microstrip Filter

Specifications

|S21| ≥ 0.95 for 4.008 GHz ≤ f ≤ 4.058 GHz

|S21| ≤ 0.05 for f ≤ 3.967 GHz and f ≥ 4.099 GHz 
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NISM Optimization of the HTS Microstrip Filter
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NISM Optimization of the HTS Microstrip Filter

Coarse model

OSA90/hope built-in models of open circuits, microstrip
lines and coupled microstrip lines
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NISM Optimization of the HTS Microstrip Filter
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NISM Optimization of the HTS Filter (cont)

Responses using OSA90/hope (−) at xc
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Yield Optimization with SM-based Neuromodels

Jf ∈ ℜr×n Jacobian of the fine model responses w.r.t. the 
fine model parameters

Jc ∈ ℜr×(n+1) Jacobian of the coarse model responses w.r.t. the 
coarse model parameters and mapped frequency

JP ∈ ℜ(n+1)×n Jacobian of the mapping function w.r.t. the fine 
model parameters
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SM-based Neuromodel of the HTS Filter
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Yield Analysis of the HTS Filter (cont)

At the nominal SM-solution: yield = 18.4%
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Yield Analysis of the HTS Filter (cont)

At the nominal SM-solution: yield = 18.4%
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Yield Optimization of the HTS Filter

At the optimal yield SM-solution: yield = 66%
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Yield Optimization of the HTS Filter (cont)

At the optimal yield SM-solution: yield = 66%
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Yield Optimization of the HTS Filter (cont)

em (•) response and SM-based neuromodel (−)
response at the optimal yield SM-solution
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Synthesis ANNs for Microwave Design

ANN

fine
model

Rf
xf

ψ

w

≈ xf

Step 1 Step 2

ANN

w*

xf
*Rf

*

(Gupta et al., 1999 , Selleri et al., 2002)

The mapping usually
is multi-valued
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Neuromodels for Transient Domain
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Some Future Directions

More algorithmic on-line approaches to neural EM-based 
design

An integrated transient and frequency domain ANN-based 
design approach

More ANN EM-based design methods exploiting circuital 
models
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Conclusions

Relevant work in EM-based design and optimization of 
microwave circuits exploiting ANNs is reviewed

The conventional ANN optimization approach is described

Strategies for ANN EM-based design that exploit 
knowledge are reviewed

ANN-based design using synthesis neural networks is 
mentioned

Key issues on transient EM-based design using ANNs are 
described

An attempt to predict some future directions of ANN 
techniques for microwave design is realized
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