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Abstract

Neural network applications in microwave engineering have been reported since the 1990s. Description of artificial neural
networks and their key issues, namely architectures, paradigms, training methods, data sets formation, learning and
generalization errors, leammg speed, etc., in the context of microwave CAD, has been extensively reponed It is clear that
neural networks have been widely used for modeling microwave devices and circuits, in many innovative ways.

In contrast, the use of neural networks for microwave design by optimization is at a less developed stage. This presentation
aims at reviewing the most relevant work in electromagnetics-based design and optimization of microwave circuits exploiting
artificial neural networks (ANNs). Measurement-based design of microwave circuits using ANNSs is also considered.

The conventional and most popular microwave neural optimization approach is reviewed. Advantages and drawbacks of
this strategy are emphasized. Improvements of this “black-box™ approach such as segmentation, decomposition, hierarchy,
design of experiments (DoE) and clusterization are mentioned.

The main limitations of the conventional neural optimization approach can be alleviated by incorporating available
knowledge into the neural network training scheme. Several innovative strategies are reviewed, including the Difference
Method (also called Hybrid EM-ANN), the Prior Knowledge Input (PKI) Method, the Knowledge-Based ANN approach
(KBNN), the Neural Space Mapping (NSM) optimization method, the Extended Neural Space Mapping approach, and the
Neural Inverse Space Mapping (NISM) optimization algorithm. Practical examples using these techniques are illustrated,
including EM-based statistical design of relevant microwave problems.

Another strategy for ANN-based design of microwave circuits consists of using synthesis neural networks, also called
“inverse neural models”. A synthesis neural network is trained to learn the mapping from the responses to the design
parameters of the microwave circuit. Difficulties in developing synthesis neural networks are indicated.

Finally, the key issues on transient EM-based design using neural networks are described. Suitable paradigms for
approximating nonlinear dynamic behaviors are mentioned, such us Recurrent Neural Networks (RNN) and their
corresponding training techniques.
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Outline

= Conventional ANN optimization

= Neural EM-design exploiting knowledge

= Example of NISM optimization

= ANN-based statistical design

= Synthesis neural networks

= Transient EM-design using neural networks

= Future directions and conclusions
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Conventional Neural Optimization — Step 1
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Conventional Neural Optimization — Step 2
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Decomposed Conventional Neural Optimization
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Clustered Self Organizing Feature Maps (SOM)
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Clustered SOMs (continue)
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The Difference Method for Neural Optimization
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The Difference Method — Step 1
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The PKI Method for Neural Optimization
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Knowledge-Based Neural Networks (KBNN)
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Neural Space Mapping (NSM) Optimization

Step 1 Step 2
xf fine Rf xf/' ) xc N ~R *
l// model e > ANN l// coarse | 5 f
W —>____)—<»| model
f
X, R W
ANN 7] coarse | ~ f
‘ Y. »| model —
t
-
(Bandler et al., 2000) s
NSM Optimization — Step 1
w' =arg m“i)nH[elT ef]TH

ek(w) = Rf(xfi: Wj) - Rc(N(xfi’l//jﬁ w))

X
A fine Rf
4 model
xc R
» coarse | ¥ '
ANN l//c »| model >
o
w
e

(Bandler et al., 2000)

EM-Based Optimization of Microwave Circuits using Artificial Neural Networks
José.E. Rayas-Sanchez



WORKSHOP ON MICROWAVE COMPONENT DESIGN USING OPTIMIZATION TECHNIQUES -WFA
2003 IEEE MTT-S International Microwave Symposium, Philadelphia, PA, June 13, 2003

NSM Optimization — Step 2
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Extended NSM Modeling Approach
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Neural Inverse Space Mapping (NISM)
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NISM Optimization Algorithm
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Ly,=50mil, =20 mil,
W="Tmil, g =23.425,
loss tangent = 3x10~>;
lossless metalization
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NISM Optimization of the HTS Microstrip Filter

Specifications

1S,,| > 0.95 for 4.008 GHz < f< 4.058 GHz
1S,,| < 0.05 for £< 3.967 GHz and f > 4.099 GHz
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NISM Optimization of the HTS Microstrip Filter

Fine model

Sonnet’s em™
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NISM Optimization of the HTS Microstrip Filter

Coarse model
OSA90/hope™ built-in models of open circuits, microstrip

lines and coupled microstrip lines
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NISM Optimization of the HTS Microstrip Filter
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NISM Optimization of the HTS Filter (cont)
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Yield Optimization with SM-based Neuromodels
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model parameters
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SM-based Neuromodel of the HTS Filter
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Yield Analysis of the HTS Filter (cont)

At the nominal SM-solution: yield = 18.4%
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frequency (GHz)
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Yield Analysis of the HTS Filter (cont)

At the nominal SM-solution: yield = 18.4%
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Yield Optimization of the HTS Filter

At the optimal yield SM-solution: yield = 66%
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Yield Optimization of the HTS Filter (cont)

At the optimal yield SM-solution: yield = 66%
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Yield Optimization of the HTS Filter (cont)

em™ (o) response and SM-based neuromodel (-)
response at the optimal yield SM-solution
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Synthesis ANNs for Microwave Design

Step 1 Step 2
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(Gupta et al., 1999, Selleri et al., 2002)
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Neuromodels for Transient Domain
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Some Future Directions

= More algorithmic on-line approaches to neural EM-based
design

= An integrated transient and frequency domain ANN-based
design approach

= More ANN EM-based design methods exploiting circuital
models

37

Conclusions

= Relevant work in EM-based design and optimization of
microwave circuits exploiting ANNs is reviewed

= The conventional ANN optimization approach is described

= Strategies for ANN EM-based design that exploit
knowledge are reviewed

= ANN-based design using synthesis neural networks is
mentioned

= Key issues on transient EM-based design using ANNSs are
described

= An attempt to predict some future directions of ANN
techniques for microwave design is realized
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