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One of the most important bases for designing robust closed-loop controllers applied to induction mo-
tor with high performance is establishing its mathematical model and state observers, as well as the
parameter identification with high accuracy. On this paper, a step-by-step mathematical model of the
squirrel-cage induction motor is described at αβ coordinate frame where the parameters are defined
in detailed form; the rotor flux linkages and load torque are estimated via an asymptotic observer; the
induction motor parameter identification is performed via a data acquisition board, applying dynamic
and steady-state tests. Inductances of the induction motor model are calculated using the proposed
relationships between the magnetically-coupled circuit and equivalent circuit model. The mathemat-
ical model, state observers and parameter identification procedure of squirrel-cage induction motor
are validated via comparison of simulation signals with their corresponding real-time signals. This
validation is made experimentally by a steady state test, where load conditions are changed via a
dynamometer which is belt coupled with the squirrel-cage induction motor.

1 Introduction

The induction machine is one of the most common electrical motors used today. This motor has many

applications, due that, it is a rugged, highly reliable, low cost and almost maintenance-free electrome-

chanical device. Despite of being a common device, one drawback of this motor is that its mathematical

model is very complex, due to its non-linearity and time variant parameters. The procedure to develop

an induction motor model, and the procedure to identify its parameters is difficult. Several authors have

been addressed modeling and parameter identification, which are very important aspects for designing
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control algorithms, but they not present many details. A novel parameter identification process where

a single-phase ac test is applied to make the induction motor stand-still is proposed in [1], [2], and

[3], diverse ac signals are feeding in only two terminals and no electromagnetic torque is generated.

They propose a monophasic equivalent circuit at terminals a − b and apply an input-output test with

the prediction error method to obtain indirectly the parameter vector with components: Rs, Ls, σ, and

Tr. The work reported in [1] and [2] includes saturation magnetic in both total-leakage inductance and

magnetizing inductance. They discretize the standstill-test circuit impedance to apply an input-output

test and obtain the parameter vector. In [3] the input and output signals, i.e. voltage and current stator,

respectively, are analyzed by the fast Fourier transform algorithm; the analog low-pass filters are used to

cut off the harmonics around the switching frequency of these signals. The stator voltage, stator current

and their derivatives, necessary for the recursive least squares algorithm, are obtained using the vector

constructing method. [1], [2], and [3] do not present the relationships between the inductances values

obtained with the ones used in the dynamic model. The parameter identification process results a little

complex and the mechanical parameters are not obtained.

The off-line motor parameter identification method applying the no-load and rated-running tests

with measurements in the sinusoidal steady-state mode is other technique; this process applies linear re-

gression and estimates the equivalent circuit parameters, [4], [5], and [6]. In [4] a recursive simple least-

square algorithm is applied using the real and complex components of the transfer function between

voltages and currents by simulations with different noise sources. They apply DC-test for estimating

Rs; no-load test for estimating Rf and Xm, and rated-load test for estimating Xl and R. However, the

relationships between the inductances from equivalent circuit proposed and the ones of the dynamic

model are not clear which makes it difficult to interpret. Moreover, they do not report the mechanical

parameters. In [5], this paper deals with off-line parameter identification from input-output data (stator

voltages-stator currents and velocity) supplying the motor with steady-state sinusoidal voltages. The

parameter identification is made by the standard recursive least squares (RLS) algorithm for minimizing

the model prediction error, but they do not consider the rotor leakage inductance and determine only

the equivalent circuit parameters. In [6], the authors propose an off-line motor parameter identification

method applying model reference adaptive system (MRAS) scheme that uses a global optimization al-
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gorithm based on sparse grid method named the hyperbolic cross point (HCP) algorithm. The measured

and simulated stator currents are compared in a cost function to define in recursive form the following

set of parameters: Rs, R′
r, LLs, Ls, H , and LL. The authors commit a mistake defining the mutual

inductance for dynamical model because they forget the coefficient term of 3/2.

Other parameter identification process is applied from the starting-test results to refer some output

variables with respect to slip changes, [7] and [8]. In [7], based on steady-state circuit equivalent, the

parameter identification is realized using electric torque and motor current measures, which are taken at

different slip values. The parameter estimation is performed off-line using a multi-objective genetic al-

gorithm to minimize the error between the measured data and the data obtained from equivalent circuit.

The genetic algorithm represents a high computational load, which makes a complicated implementa-

tion. In addition, that research does not present the relationships between the inductances values obtained

with the ones used in the dynamic model, and the mechanical parameters are not obtained. In [8] from

starting no-load test at low voltage, the resistance and reactance curves are depicted in function of the

slip rate, then the recursive least squares (RLS) algorithm combined with a particle swarm optimization

method is applied to optimize the equivalent circuit parameters. However, the friction coefficient and

inertial moment is calculated via the equation movement from the electromagnetic torque using the rotor

resistance whose value is sensitive to temperature changes.

On-line parameter estimation consists of identifying the evolution of the machine parameters with-

out removing the machine from service, [9]-[10]. In [9] a two-step approach to identify the parameters

of an induction machine from the measures of the stator currents at starting-test is presented. This pro-

posal uses both simulation and estimation processes; in the first stage, an input-output response of the

forward induction motor model with low-quality initial guesses is used to generate a set of predictions

of the stator currents îs; then, in the second stage, the input is the mismatch between the estimated and

measured stator current vector having as output a parameter vector; this process is made in recursive

form applying the Levenberg-Marquardt algorithm until the mismatch of currents is minimized. In [10],

a multi-rate real time model-based parameter estimation algorithms for induction motor are applied. The

proposed multi-rate EFK method combines multi-rate control and EFK to estimate motor load torque,

introducing both input and output algorithms. The method is implemented in real time on a PC cluster
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node that acts as a controller to an induction motor experimental set-up. This paper only estimate the

rotor time constant and the method represents a high computational load, which makes a complicated

implementation.

After having reviewed some research about parametric estimation and modeling of the induction

motor, we have identified the importance of establishing, in a detailed and clear way, the procedure

for obtaining the model of the induction motor and the identification of all parameters, both electrical

and mechanical. Thus, from this base knowledge, innovative identification techniques more accurate

can be applied. Therefore, the main contributions of this research are: 1) a detailed procedure to ob-

tain the mathematical model for the squirrel-cage induction motor where the rotor inductance, stator

inductance and mutual inductance are defined formally when setting the model at αβ coordinate frame;

this methodology can be applied to obtain the mathematical model of any other type of ac machine,

such as the doubly-fed induction generator, synchronous machine, and permanent-magnet machine; 2)

the electrical parameter identification is made via a data acquisition board including the electrical vari-

ables of all phases and computing the consumed power in each one test with accuracy; in addition, the

synchronous test was made to quantify the core loss; 3) for comparison purposes, a complete equiva-

lent circuit including core-loss is proposed with goal of validate the common approaches performed in

standstill test and no-load test which define the equivalent circuit model.

This paper is organized as follows. In section 2, the induction motor mathematical model at αβ

frame, rotor flux linkages observer and load torque observer, are developed in detail. The identification

procedure for estimating the electrical and mechanical parameters of the induction motor is presented

in section 3, where each experiment is explained in detail. In order to validate the mathematical model

and its parameter identification, a comparison between simulated and real-time experimental results are

discussed in section 4. Finally, the conclusions are given in section 5.

2 The squirrel-cage induction motor model

The voltage vector equations in machine variables for the stator winding and rotor winding, respectively,

are:

vABC = RsiABC +
d

dt
λABC , (1)
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v′abc = Rri′abc +
d

dt
λ′
abc , (2)

with

Rs =

⎡
⎢⎢⎢⎢⎢⎢⎣

Rs 0 0

0 Rs 0

0 0 Rs

⎤
⎥⎥⎥⎥⎥⎥⎦
,Rr =

⎡
⎢⎢⎢⎢⎢⎢⎣

R′
r 0 0

0 R′
r 0

0 0 R′
r

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In the above equations capital letter suffixes are used to identify the stator variables and lowercase letters

to rotor variables. Rs is the stator resistance per phase, and R′
r is the rotor resistance per phase referred

to stator winding. When considering linearity in the flux linkages-current relation (λ− i), the stator and

rotor flux linkages vector equations may be expressed in abc system as:

λABC = LsiABC + Lsriabc , (3)

λ′
abc = Lriabc + L�

sriABC , (4)

with

Ls =

⎡
⎢⎢⎢⎢⎢⎢⎣

Lss Lsm Lsm

Lsm Lss Lsm

Lsm Lsm Lss

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Lsr = Lsrm

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θr cos
(
θr +

2π
3

)
cos

(
θr − 2π

3

)

cos
(
θr − 2π

3

)
cos θr cos

(
θr +

2π
3

)

cos
(
θr +

2π
3

)
cos

(
θr − 2π

3

)
cos θr

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Lr =

⎡
⎢⎢⎢⎢⎢⎢⎣

L′
rr L′

rm L′
rm

L′
rm L′

rr L′
rm

L′
rm L′

rm L′
rr

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where Lss and Lsm are the stator self-inductance per phase and stator mutual-inductance between two phases,

respectively; and Lsrm is the amplitude of the mutual inductances between stator and rotor windings; L′
rr and

L′
rm are the rotor self-inductance per phase and rotor mutual-inductance between two phases, respectively; both

are referred to the stator side. It is important to remark that the mutual-inductances between two windings vary

periodically due to the relative movement between the stator winding and rotor winding.

In order to remove the time dependency of the mutual-inductances between the stator and rotor windings, the

Clarke similitude transformation is applied to change the electrical variables from abc system to αβ0 coordinate
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frame, whose axes are fixed on the stator winding and the α-axis is aligned with the phase-a axis [11], see Fig. 1.

The Clarke transformation matrix and its inverse matrix applied to stator variables are defined as:

Ts =
2

3

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − 1
2

− 1
2

0
√
3

2
−

√
3

2

√
2
2

√
2

2

√
2

2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5)

T−1
s =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
√
2
2

− 1
2

√
3
2

√
2
2

− 1
2
−

√
3

2

√
2
2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (6)

Conducive to transform the rotor variables into new a coordinate system, the displacement angle θr must be con-

sidered, as it is depicted in Fig. 1. Then, the similitude transformation and its inverse representation applied to rotor

variables are defined as:

Tr =
2

3

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θr cos
(
θr +

2π
3

)
cos

(
θr − 2π

3

)

sin θr sin
(
θr +

2π
3

)
sin

(
θr − 2π

3

)
√
2

2

√
2

2

√
2

2

⎤
⎥⎥⎥⎥⎥⎥⎦
, (7)

T−1
r =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θr sin θr
√
2
2

cos
(
θr +

2π
3

)
sin

(
θr +

2π
3

) √
2
2

cos
(
θr − 2π

3

)
sin

(
θr − 2π

3

) √
2
2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (8)

Figure 1. Clarke transformation applied to stator and rotor variables.
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By applying the Clarke transformation (5)-(6) to stator voltage equation (1) gives the next result:

vαβ0s = Rsiαβ0s +
d

dt
λαβ0s, (9)

with

Rs =

⎡
⎢⎢⎢⎢⎢⎢⎣

Rs 0 0

0 Rs 0

0 0 Rs

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Meanwhile, the stator flux linkages vector in αβ0 takes the following form, when the similitude transforma-

tions (5)-(6) and (7)-(8) are applied into (3):

λαβ0s = Lsiαβ0s + Lsriαβ0r , (10)

with

Ls =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ls 0 0

0 Ls 0

0 0 Lss + 2Lsm

⎤
⎥⎥⎥⎥⎥⎥⎦
,Lsr =

⎡
⎢⎢⎢⎢⎢⎢⎣

Lm 0 0

0 Lm 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where the stator-inductance and mutual-inductance are defined, respectively, as:

Ls = Lss − Lsm , (11)

and

Lm =
3

2
Lsrm. (12)

By applying the similitude transformation (7)-(8) into (2), the rotor voltage vector in αβ0 frame becomes:

vαβ0r = Rriαβ0r +Ωrλαβ0r +
d

dt
λαβ0r, (13)

where

Rr =

⎡
⎢⎢⎢⎢⎢⎢⎣

R′
r 0 0

0 R′
r 0

0 0 R′
r

⎤
⎥⎥⎥⎥⎥⎥⎦
,Ωr =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ωr 0

−ωr 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

with ωr =
P

2
ωm as the rotor frequency, P is the number of poles and ωm is the rotor angular velocity.

Using the similitude transformations (5)-(6) and (7)-(8) into the rotor flux linkages vector (4), results:

λαβ0r = Lriαβ0r + Lsriαβ0s , (14)
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with

Lr =

⎡
⎢⎢⎢⎢⎢⎢⎣

Lr 0 0

0 Lr 0

0 0 Lrr + 2Lrm

⎤
⎥⎥⎥⎥⎥⎥⎦
,Lsr =

⎡
⎢⎢⎢⎢⎢⎢⎣

Lm 0 0

0 Lm 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where the rotor-inductance is defined as:

Lr = Lrr − Lrm . (15)

The simplest representation of the induction motor model uses the stator current vector is is and rotor flux

linkages vector λr as state variables, and its order is reduced using only components in α and β axes, since the

variables at 0 axis are not present due to the neutral connection at stator winding is not grounded. By solving for ir

into rotor flux linkages vector (14), we obtain:

ir = L−1
r (λr − Lsris) . (16)

Substituting equation (16) in the rotor voltage equation (13), defining vr = 0 due to the conducting bars are

shorted at both ends via rings in the rotor’s squirrel-cage, and solving
d

dt
λr in equation (13), we obtain the state

equation of rotor flux linkages vector in αβ frame as follows:

d

dt

⎡
⎢⎢⎣
λαr

λβr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− 1
Tr

−P
2
ωm

P
2
ωm − 1

Tr

⎤
⎥⎥⎦

⎡
⎢⎢⎣
λαr

λβr

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

Lm
Tr

0

0 Lm
Tr

⎤
⎥⎥⎦

⎡
⎢⎢⎣
iαs

iβs

⎤
⎥⎥⎦ .

(17)

Now, substituting the stator flux linkage equation (10) into the stator voltage equation (9), results in:

vs = Rsis + Ls
d

dt
is + Lsr

d

dt
ir . (18)

Substituting the differentiation of the rotor current vector (16) into equation (18), and solving for the term

d

dt
is, we obtain the state equations of stator current vector in αβ frame as follows:

d

dt

⎡
⎢⎢⎣
iαs

iβs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δ
Tr

P
2
δωm

−P
2
δωm

δ
Tr

⎤
⎥⎥⎦

⎡
⎢⎢⎣
λαr

λβr

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
−γ 0

0 −γ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
iαs

iβs

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
σLs

0

0 1
σLs

⎤
⎥⎥⎦

⎡
⎢⎢⎣
vαs

vβs

⎤
⎥⎥⎦

(19)

On the other hand, the electromagnetic torque developed by induction motor, as a torsional force, is defined by the

variation of stored magnetic field energy with respect to electric angular position as:

Te =

(
P

2

)
dWf

dθr
, (20)
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where P is the poles number of machine, and the stored field energy is defined by [11], [12]:

Wf =
1

2
(iABC)

� LssiABC + (iABC)
� Lsriabcr

+
1

2
(iabc)� Lrriabc.

(21)

Because Lss and Lrr are not functions of θr , substituting the stored field energy (21) into (20), yields the electro-

magnetic torque in abc system:

Te =

(
P

2

)
∂

∂θr

[
(iABC)

�Lsriabc
]
. (22)

Applying the similitude transformations (5)-(6) and (7)-(8) to stator current and rotor currents, respectively in (22);

and substituting the mutual-inductance Lm defined in (12), the electromagnetic torque in terms of αβ coordinate

frame takes the form:

Te =

(
3

2

)(
P

2

)
Lmi�s

⎡
⎢⎢⎣

0 1

−1 0

⎤
⎥⎥⎦ ir , (23)

Now, substituting the rotor current equation (16) into (23), the electromagnetic torque, expressed with the rotor flux

linkages and stator current vectors as state variables, is defined as:

Te =
3P

4

Lm

Lr
(iβsλαr − iαsλβr) . (24)

Once defined the electromagnetic torque, the angular movement equation of the induction motor is defined by:

Jm
d

dt
ωm =

3P

4

Lm

Lr
(iβsλαr − iαsλβr)−Bmωm − TL , (25)

where the term of the left side is defined as the acceleration torque, the second term of the right side is the frictional

torque and the last term is the torque established for the mechanical load driven by the motor. After the whole

process, the induction motor model is defined combining the state equations of the rotor flux linkages vector (17),

stator current vector (19), and rotor angular velocity (25). Then, the mathematical model of squirrel-cage induction
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motor on the αβ coordinated frame is:

d

dt
ωm = KT (iβsλαr − iαsλβr)− Bm

Jm
ωm − 1

Jm
TL

d

dt

⎡
⎢⎢⎣
λαr

λβr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− 1
Tr

−P
2
ωm

P
2
ωm − 1

Tr

⎤
⎥⎥⎦

⎡
⎢⎢⎣
λαr

λβr

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

Lm
Tr

0

0 Lm
Tr

⎤
⎥⎥⎦

⎡
⎢⎢⎣
iαs

iβs

⎤
⎥⎥⎦

d

dt

⎡
⎢⎢⎣
iαs

iβs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δ
Tr

P
2
δωm

−P
2
δωm

δ
Tr

⎤
⎥⎥⎦

⎡
⎢⎢⎣
λαr

λβr

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
−γ 0

0 −γ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
iαs

iβs

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
σLs

0

0 1
σLs

⎤
⎥⎥⎦

⎡
⎢⎢⎣
vαs

vβs

⎤
⎥⎥⎦

(26)

with the following parameter constants defined as: KT =
3P

4

Lm

JmLr
, Tr =

Lr

Rr
, δ =

1− σ

σLm
, γ =

1

σTs
+

1− σ

σTr
,

σ = 1− L2
m

LsLr
and Ts =

Ls

Rs
. The machine parameters are defined as: Rs is the stator resistance per phase, R′

r is

the rotor resistance per phase referred to stator winding, Ls is the stator inductance, which is defined in (11), Lm is

the mutual-inductance defined in (12), and Lr is the rotor inductance defined in (15). P is the number of poles, Bm

is the friction coefficient of the shaft, and Jm is the inertial moment. TL is the load torque as mechanical input, vαs

and vβs are the input voltages that feed the stator winding.

It is important to mention that the procedure to obtain the mathematical model of the induction motor is

not new, but the proposed methodology for establishing the mathematical model of the squirrel-cage induction

motor is highly detailed, where the rotor inductance, stator inductance and mutual inductance are defined formally

when setting the model at αβ coordinate frame. The proposed methodology can be easy applied for obtaining the

mathematical model of any other type of ac machine, such as the doubly-fed induction generator, synchronous

machine, and permanent-magnet machine.
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2.1 Rotor flux linkages observer

From induction motor model (26) and considering the angular velocity ωm as a known input, electrical model

becomes linear and it is represented by:

d

dt

⎡
⎢⎢⎣
λr

is

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A11 A12

A21 A22

⎤
⎥⎥⎦

⎡
⎢⎢⎣
λr

is

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0

B

⎤
⎥⎥⎦ vs

y =

[
0 1

]
⎡
⎢⎢⎣
λr

is

⎤
⎥⎥⎦ .

(27)

where the output variable is defined by the stator current vector is, which is the measurement variable. The system

(27) can be transformed to new system of reducer order as:

d

dt
λr = A11λr + A12is

d

dt
is − A22is − Bvs = A21λr

, (28)

where the known inputs define the system output. The reduced-order observer model for rotor flux linkages, from

model defined in (28), is:

˙̂
λr = A11λ̂r + A12is + L

(
d

dt
is − A22is − Bvs − A21λ̂r

)
, (29)

where the last term in (29) is a mismatch between the known and observed outputs, and it corrects the system

continuously with this error signal.

If the rotor flux observation error variable is defined as:

ε̃λ = λr − λ̂r, (30)

then the observation error dynamics is given by subtracting (29) from (28) to obtain:

˙̃ελ = (A11 + LA21) ε̃, (31)

where its characteristic equation is defined by:

det [sI − (A11 + LA21)] = 0, (32)

the matrix L defines the reasonably fast eigenvalues of (31) so that observation error variable decays asymptotically

to zero in finite time. These eigenvalues must be at least four or five times faster than the natural eigenvalues of

system (28) [13].

By ordering terms in (29), the observer model of the rotor linkages flux takes the form:

˙̂
λr = (A11 − LA21) λ̂r + (A12 − LA22) is − LBvs + L d

dt
is. (33)
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If we define

λ̂∗
r = λ̂r − Lis , (34)

then the rotor flux linkage observer is defined by:

˙̂
λ∗

r = (A11 − LA21) λ̂r + (A12 − LA22) is − LBvs, (35)

and
d

dt
is no longer appears directly. A block diagram of the reduced-order rotor flux observer is pictured in Fig. 2.

Figure 2. Scheme of the rotor flux linkages observer.

2.2 Load torque observer

Based to induction motor model (26) and by taking the stator current and rotor flux as known inputs, the mechanical

model results in:

ω̇m = KTλ
�
r Mis − Bm

Jm
ωm − 1

Jm
TL

ṪL = 0

(36)

A load torque observer can be set as:

˙̂ωm = KTλ
�
r Mis − Bm

Jm
ω̂m − 1

Jm
T̂L + l1 (ωm − ω̂m)

˙̂
TL = l2 (ωm − ω̂m)

(37)

If we define the observation error variable to be:

ε̃ =

⎡
⎢⎢⎣
ωm − ω̂m

TL − T̂L

⎤
⎥⎥⎦ . (38)
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Then the dynamic of this observation error variable is given by subtracting (37) from (36) to get:⎡
⎢⎢⎣

˙̃εω

˙̃εT

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−
(

Bm
Jm

+ l1
)
− 1

Jm

−l2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ε̃ω

ε̃T

⎤
⎥⎥⎦ . (39)

where the values of l1 and l2 define the reasonably fast eigenvalues of (39), so that the observation error variable is

asymptotically steered toward to zero in finite time. These eigenvalues must be at least four or five times faster than

the natural eigenvalues of system (36) [13].

3 Induction motor parameter identification

For the purposes of this research, parameter identification of the squirrel-cage induction motor model is made

with off-line dynamics and steady-state tests via an acquisition board to determine both electrical and mechanical

parameters. The measurement of the dc resistance of the stator winding, no-load test, and blocked-rotor test are

applied to induction motor to identify the equivalent circuit model. In addition, we have made the synchronous

velocity test to obtain a good approximation of the core loss and calculate the friction loss from the rotational

loss. In each one of the tests mentioned, voltage and current measurements of all phases are taken for including

any electric unbalance in the stator winding; while, the average power is calculated with very good accuracy by

filtering the instantaneous three-phase power. A dynamic test is made when the motor is turned-off and a vector of

the velocity fall is captured to obtain an approximate value of the inertial moment Jm using the friction coefficient

Bm which is obtained from the consumed power before de-energizing the motor.

3.1 Stator resistance

In this test, ordered pairs consisting of voltage-current measurements are obtained by tuning a DC-voltage source

from small to rated current values [12]. The stator winding resistance is calculated applying Ohm’s law and as-

suming star connection of the winding, i.e. we must calculate the resistance as two windings connected in series at

a − b terminals, later divide this value by two. The average resistance is obtained from the next set of replications

between terminals: b− c and c− a, being the result Rs = 12 Ω.

3.2 No-load test

The no-load test gives information about the magnetizing branch impedance and rotational loss: friction, windage,

and core losses, as it is explained in [12]. This test is performed by applying balanced three-phase nominal voltage

to the stator winding at the rated frequency. The rotor is kept uncoupled from any shaft of driven equipment.
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The equivalent circuit model of the no-load test is depicted in Fig. 3 a), where the branch of the rotor circuit is

not considered due to the rotor current is significantly smaller than magnetizing current, due to that in no-load

condition the slip is very small and the rotor resistance value is high. The non-load test was carried out at angular

velocity of 1798 r.p.m. with a consumed power of 29.04 W . This value was obtained computing and filtering the

instant three-phase power to define the average power with very good accuracy. Voltage and current measurements

are made in each of the phases to involve any electric imbalance of the stator winding. These measurements are

reported in Table 1.

The rotational losses Prot are calculated from the no-load power Pnl as follows [12]:

Prot = Pnl −Rs

(
I2a + I2b + I2c

)
. (40)

By substituting the no-load test measurements in (40), the rotational losses are Prot = 13.5 W .

Base to no-load test, it can be calculated an equivalent reactance composed by the leakage reactance Xls, and

magnetizing reactance Xmag , see Figure 3 a). For both no-load and blocked rotor tests, the following relationships

(41)-(43) are used:

|Ztest| = 1

3

(
Va

Ia
+

Vb

Ib
+

Vc

Ic

)
, (41)

Rtest =
Ptest

(I2a + I2b + I2c )
, (42)

Xtest =
√

|Z2
test| −R2

test . (43)

By substituting the measurements of no-load test in (41)-(43), results Znl = 182.6 Ω, Rnl = 22.4 Ω, and

Xnl = 181.2 Ω.

3.3 Blocked-rotor test

The blocked-rotor test gives information about the leakage impedances and rotor resistance referred to stator side,

as it is explained in [12]. In this test the rotor is blocked by a wooden bar so that the motor cannot rotate, and a

low voltage is adjusted with a variable supply voltage via a three-phase autotransformer, so that the rated-current

flows in stator winding. The power consumption during the test was calculated as 132.4 W . The voltage and current

measurements in all phases of this test are reported in Table 2.

As this test is made at low voltage and the slip s = 1 due to the rotor is standstill then the rotor resistance is

small and the current that flows by the magnetizing branch can be neglected. From the equivalent circuit of this test,

see Fig. 3 b), the stator leakage reactance Xls and rotor leakage reactance X ′
lr are estimated. Additionally, a first

approximation of the rotor resistance R∗
r referred to stator side is obtained.
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Table 1. Measurements of no-load test.

Stator
phase

Voltage
(V)

Current
(A)

A 119.8 0.67

B 119.8 0.65

C 119.8 0.65

Table 2. Measurements of block-rotor test.

Stator
phase

Voltage
(V)

Current
(A)

a 43.6 1.5

b 43.8 1.5

c 44.7 1.55

Figure 3. Equivalent circuit of standard tests: a) No-load, b) blocked rotor, and c) Synchronous velocity.

By substituting the blocked-rotor measurements in (41)-(43) we obtain Zbl = 29.0 Ω, Rbl = 19.2 Ω, Xbl =

21.7 Ω. If one applies the following common approximation to define the stator and rotor leakage reactances, then

Xls = X ′
lr = Xbl

2
= 10.8 Ω, where X ′

lr is referred to stator side by assuming he turns ratio is a = 1. Once we

know the stator leakage reactance, the magnetizing reactance is calculated from no-load test as Xmag = 170.4 Ω.

From Fig. 3 b), a first approximated value of the rotor resistance referred to stator side can be calculated by:

R∗′
r = Rbl −Rs = 19.2− 12 = 7.2 Ω .

The rotor resistance value is very important in the induction motor performance because it models largely

the power converted from electrical to mechanical energy. Therefore, this value is now improved involving the
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magnetizing branch in the equivalent circuit [12]. The new value for rotor resistance is calculated considering the

real part of the Thevenin impedance that is pointed by the arrows in Fig. 4 a), which is:

R∗′
r =

X2
mag

R′2
r + (X ′

2 +Xmag)2
R′

r . (44)

Figure 4. a) Equivalent circuit model and b) Complete equivalent circuit model.

Because (X ′
lr +Xmag)

2 � R
′2
r in (44), the enhanced value of the rotor resistance is:

R′
r =

(
X ′

lr +Xmag

Xmag

)2

R∗′
r , (45)

and substituting the values of rotor and magnetizing reactance in (45) yields R′
r = 8.1 Ω.

3.4 Synchronous velocity test

The synchronous velocity test gives information about the core loss and magnetizing branch impedance with better

accuracy than the no-load test. In this test, a DC-motor drives the induction machine at synchronous velocity and

then the induction machine is feeding at rate voltage. The DC-motor feeds the friction and windage loss for both

machines; while, the power supply feeds the Joule loss and core loss in the induction machine because there are no
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induced currents in rotor winding. The equivalent circuit model of the synchronous velocity test is depicted in Fig.

3 c). The consumed power in this test was calculated as 18.1 W . The voltage and current measurements in each of

the phases are reported in Table 3.

The core loss Pc is calculated by similar form as rotational loss Prot (40) in no-load test, by:

Pc = 18.1− 12
(
0.672 + 0.652 + 0.662

)
= 2.4 W.

3.5 Mechanical parameters

The inertial moment Jm and frictional coefficient Bm are the mechanical parameters which model the shaft masses

and friction in the support points, respectively; these parameters are involved in the movement equation (25). Due

to the squirrel-cage induction motor is mechanically coupled with a dynamometer with which it is possible to vary

the load conditions then, the masses and support points of both machines should be considered in the definition of

the mechanical parameters. In order to determine the frictional coefficient Bm, the squirrel-cage induction motor is

fed at rated voltage without applying load torque. In this test the consumed power was 87.3 W at 1778 r.p.m. The

voltage and rotor measurements in all phases of this test are reported in Table 4.

Table 3. Measurements of synchronous test.

Stator
phase

Voltage
(V)

Current
(A)

A 119.9 0.67

B 120.0 0.65

C 120.6 0.66

Table 4. Measurements of coupling no-load test.

Stator
phase

Voltage
(V)

Current
(A)

a 119.8 0.70

b 119.9 0.69

c 120.6 0.72

The rotational loss in both machines applying equation (40), is Prot = 69.5 W , while the friction loss is

the rotational loss (69.5 W ) minus core loss (2.4 W ), calculated in the synchronous test; then, the friction loss is
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Pfric = 67.1 W . Consequently, from the mechanical power consumed in this test, the friction coefficient Bm can

be approximated as:

Bm ≈ Pfric

ω2
m

=
67.1

186.22
= 0.00194 N m s. (46)

From this same test, the inertial moment Jm can be obtained when the induction motor is turned off and a

falling velocity vector (see Fig. 5) is captured with an acquisition board. Once the motor is de-energized and it does

not drive any mechanical load, the movement equation (25) takes the following form:

Jm
d

dt
ωm = −Bmωm. (47)

Based on Fig. 5, can be seen the non-filtered and filtered signals of the angular velocity fall when the motor is

turned off and the motor shaft stops in 5 seconds, approximately. In this figure, note that two points (2.78 s, 110.7

rad/s) and (3.12 s, 90.33 rad/s) can be used for linearizing the motor’s deceleration around the base velocity

ωm0 = 100 rad/s; by approximating the derivative at this point, and solving for Jm into (47), the inertial moment

can be approximated by:

Jm ≈ Δt

Δωm
Bmωm0 ≈ (3.12− 2.78)

(110.7− 90.33)
(0.00194)(100)

= 0.00324 N m s2.

(48)
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Figure 5. Supply disconnection of the induction motor.

It is important to remark, that the electrical and mechanical parameter identification is made via a data acqui-

sition board, and the voltages and currents are measured in all phases, in contrast to the traditional method where

the voltage and current measurements are made in only one phase. Moreover, the consumed power in each one

test is computed with accuracy by filtering the instantaneous power, in contrast with traditional method where is



A Sample File for EMP’s LATEX 2ε Macro Package 19

used a wattmeter to measure the consumed power in only one phase. In addition, the synchronous test was made to

quantify the core loss which is subtracted from the rotational loss, obtained in no-load test, for estimating the fric-

tion coefficient with acceptable accuracy. From the no-load test, the motor is turn-off and a falling velocity vector

is captured with an acquisition board for approximating the velocity derivative for estimating the inertial moment

value. The proposed procedure to obtain the mechanical parameters contrasts with the work reported in [8], where

the two parameters are calculated via the equation movement from the electromagnetic torque which is estimated

through rotor resistance whose value is sensitive to temperature changes.

3.6 Relationships between magnetically-coupled circuit and equivalent circuit

It is important to note that the inductance parameters used in the induction motor model (26) correspond to the

magnetically-coupled circuit model with the stator-inductance Ls, mutual-inductance Lm, and rotor-inductance Lr

which are defined in (11), (12), and (15), respectively; while the inductance parameters obtained from the standard

tests which define the equivalent circuit model are the stator leakage inductance Xls, magnetizing inductance Xmag ,

and rotor leakage inductance X ′
lr . Therefore it is necessary to define the equivalence relationships between the

magnetically-coupled circuit and equivalent circuit. At the first step, the voltage equations for two magnetically-

coupled circuits are defined as:

v1 = L11
d

dt
i1 + L12

d

dt
i2

v2 = L12
d

dt
i1 + L22

d

dt
i2

, (49)

where L11 and L22 are the self-inductances of the primary and secondary windings, respectively; and L12 is the

mutual-inductance between primary and secondary windings. Thereafter, including the turns ratio a = N1/N2 in

diverse terms of system (49), keeping the original system, yields:

v1 = L11
d

dt
i1 + aL12

d

dt

i2
a

av2 = aL12
d

dt
is + a2L22

d

dt

i2
a

(50)

Later, adding and subtracting a different term in each equation of (50) yields:

v1 = L11
d

dt
i1 + aL12

d

dt

i2
a

+

(
aL12

d

dt
i1 − aL12

d

dt
i1

)

av2 = aL12
d

dt
is + a2L22

d

dt

i2
a

+

(
aL12

d

dt

i2
a

− aL12
d

dt

i2
a

) . (51)

Finally, rearranging terms in (51), we obtain a model that correspond to the equivalent circuit model, which is

shown in Figure 6, and this model takes the form:

v1 = (L11 − aL12)
d

dt
i1 + aL12

(
d

dt
i1 +

d

dt

i2
a

)

av2 = aL12

(
d

dt
i1 +

d

dt

i2
a

)
+

(
a2L22 − aL12

) d

dt

i2
a

. (52)
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Figure 6. Equivalence between magnetically-coupled and equivalent circuits.

Now, comparing Figures 4 a) and 6, without considering the resistances, we can set the relationships that define

the inductance equivalence between the magnetically-coupled circuit and the equivalent circuit of the following

form:

Lls = L11 − aL12, (53)

Lmag = aL12, (54)

L′
lr = a2L22 − aL12 . (55)

It is common practice to consider the ratio turns a = 1 for the squirrel-cage induction motor. From (12) and

(54), the relationship between the mutual-inductance Lm, which is used in the induction motor model (26), and

magnetizing inductance Lmag results in:

Lm =
3

2
Lmag . (56)

From (53) and (11), and considering that the mutual-inductance between two stator phases is Lsm = −1

2
Lmag

[11], we obtain the stator inductance which is used in the model (26) as:

Ls = Lls +
3

2
Lmag . (57)

With a same procedure, the rotor inductance used in model (26) is defined as:

Lr = L′
lr +

3

2
Lmag . (58)

By applying (56), (57), and (58) the equivalence between magnetically-coupled model and equivalent circuit

model is defined. In Table 5, values obtained from parameter identification process for induction motor model (26)

have been sumarized. In Table 6, squirrel-cage induction motor nameplate data (rated values) are reported.
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Table 5. Induction motor model parameters.

Parameter Value
Rs 12 Ω

Rr 8.1 Ω

Ls 0.7066 H

Lr 0.7066 H

Lm 0.678 H

Bm 0.00194 N m s

Jm 0.00324 N m s2

Table 6. Induction motor nameplate data.

Unit Value
Volts 127/220

Amperes 1.5

r.p.m. 1750

Hz 60

HP 0.25

So far we have obtained the electric parameters of the equivalent circuit (Fig. 4 a). Now, we propose a complete

equivalent circuit just in order to obtain a comparative analysis between both models. The complete equivalent

circuit involves the core loss represented with a resistor Rc (Fig. 4 b) and the values of the magnetizing reactance

Xmag , rotor leakage reactance X ′
lr , and rotor resistance R′

r are more accurate due to the fact that now the analysis

is made from synchronous velocity test and blocked-rotor tests. This is achieved by considering the Thevenin

impedance pointed in Fig. 4 b). By applying equations (41), (42) and (43) to data obtained from synchronous test

in Table 3, results Rsyn = 13.85 Ω and Xsyn = 181.57 Ω, and solving the following non-linear system set from

Fig. 3 c):

Rsyn = Rs +
RcX

2
mag

R2
c +X2

mag

Xsyn = Xls +
RcX

2
mag

R2
c +X2

mag

, (59)

where Rs = 12 Ω, Xls = 10.8 Ω and the parameters Rc and Xmag are unknown. The results obtained from (59)

are: the core loss Rc = 15, 765 Ω, and magnetizing reactance Xmag = 170.8 Ω. In a similar form, by considering

the results from blocked-rotor test Rbl = 19.2 Ω and Xbl = 21.7 Ω, defining K1 =
RcXmag

R2
c +X2

mag

, and solving the
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following non-linear system from Fig. 4 b) for unknown parameters R′
r and X ′

lr:

Rbl = Rs +K1
AB + CD

E

Xbl = Xls +K1
CB −AD

E

(60)

where A = R′
rXmag − RcX

′
lr , B = K1Xmag + R′

r , C = RcR
′
r + X ′

lrXmag , D = K1Rc + X ′
lr , and

E = (K1Xmag +R′
r)

2
+ (K1Rc +X ′

lr)
2
.

The results obtained from (60) are: rotor resistance R′
r = 8.2 Ω and rotor leakage reactance X ′

lr = 11.3 Ω.

It is important to remark that the electric parameters of the complete equivalent circuit model are very close to

parameters obtained from the no-load and blocked-rotor tests; consequently, the approximations made in these tests

are justified. In Table 7 can be seen the minimum differences between the parameter values of the magnetizing and

rotor branches

Table 7. Magnetizing and rotor branches parameters.

Parameter
Equivalent circuit

(Ω)
Complete equivalent

circuit (Ω)
Rc ∞ 15,765

Xmag 170.4 170.8

R′
r 8.1 8.2

X ′
lr 10.8 11.3

4 Induction motor model, observers and parameter identification validation

Experimental validation was made using the following devices:

• A squirrel-cage induction motor (Lab-Volt 8221-02) coupled via belt with a dynamometer (Lab-Volt 8960-

12) with velocity sensor, see Fig. 7.

• dSPACE DS1103 data acquisition board with real-time interface (RTI) to display signals.

• A measurement interface for currents in each phase and two line-to-line voltages in stator terminals.

In order to validate the mathematical model (26), rotor flux linkages observer (35), load torque observer (37),

and the parameter identification, the squirrel-cage induction motor is operated under variable load conditions, where

the load torque is applied by a dynamometer. An array with 10 s length and 100 μs sampling time was captured

for electrical and mechanical signals. Then, the similitude transformation was applied in real time to stator voltages

vab, vcb and stator currents ia, ib, and ic to refer them at α − β coordinated frame. The angular velocity ωm and
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Figure 7. Induction motor-dynamometer group.

stator currents iαs (phase-a) are compared graphically between their measured values and corresponding results

obtained via simulation. It is important to remark that the mathematical model (26) and rotor flux linkages observer

(35) are validated by means of the comparison between the measured load torque with the observed load torque

(37). With this, the mechanical oscillation equation (25) is fulfilled where stands out the electromagnetic torque

(24), as nonlinear term, which involves a sum of two electrical state space variables products of system (26).

The induction motor as electromechanical device has two inputs: the stator voltages and the load torque. In the

first test, the motor is subjected to step response by applying the nominal voltage at stator winding and the motor

is turned-on. In the second test, the load torque is changed from no-load condition to nominal operation condition

in five successive steps establishing different points of operation of the motor. In Fig. 8 the induction motor starts

on under no-load condition is shown, the rotor velocity simulated and measured are very close when the velocity

arise, without the use of a filter to avoid a delay in velocity measurement. By turning a potentiometer in DC-machine

module, five load torque levels were set up, from no-load to rated condition, where the rated torque is TL = 1N m.

In Fig. 9 a), rotor angular velocity ωm measured by encoder and rotor velocity obtained via simulation of proposed

model (26) are displayed. Note that in this figure, there are two indicated values at 5.0 s time, which are 1746

and 1740 r.p.m., measured and simulated velocities, respectively; and the difference between both velocities is

minimal of 6 r.p.m. with a relative error of 0.3 %. In Fig. 9 b), the variations of load torque measured and load

torque estimated via an asymptotic observer are depicted, where there is not difference. In Fig. 10 a), the stator

current at α-axis, which corresponds with the phase-a of three-phase system is shown. When the load torque is

changed, then the stator currents change, too. The stator current iαs does not present good approximation between

the measured (1.25 A rms) and simulated signal (0.95 A rms), as shown in Fig. 10 b). The difference between
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the stator current simulated and measured is notorious due to core loss are not involved in parameter identification

process.

It is important remark that all state variables are involved into movement equation; therefore, as the observed

load torque is very close to the measured load torque then the mathematical model and its parameter identification

is validated.
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Figure 8. Starting of induction motor.
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Figure 9. Mechanical variables a) Rotor angular velocity, and b) Load torque.
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Figure 10. a) Stator current iαs (phase-a), b) detail of stator current at α-axis.

5 Conclusions

On this paper, a step-by-step procedure is presented to obtain the mathematical model of the squirrel-cage induction

motor at αβ coordinate frame. In order to carry out the electric parameter identification procedure, no-load test

and blocked-rotor test were applied in steady state to obtain the equivalent circuit model of the induction motor.

In addition, the synchronous velocity test was made to approximate the core loss which is included in the results

obtained at no-load test where the induction motor is coupled to a dynamometer via a belt. From this test, the friction

coefficient Bm is approximated from the mechanical power developed at the shaft which is calculated separating

the core loss from rotational loss; later, the inertial moment Jm is estimated from movement equation when the

motor is de-energized by capturing velocity as it falls and approximating its derivative. In addition, we propose the

equivalence relationships for changing the inductance parameters from equivalent circuit model to magnetically-

coupled circuit model. The equivalent circuit model is used to predict the steady state performance of the induction

motor, meanwhile the mathematical model in αβ frame has parameters of the magnetically-coupled circuit model.

Finally, in order to validate the mathematical model and its parameter identification was made a steady state test

where the load conditions are varied by a dynamometer. We can clearly see on the obtained signal plots, a very

close similarity between simulation and measured signals of the induction motor. It is important to remark that the

mathematical model of the induction motor, the state observer models and the parameter identification constitutes

an important aspect in the designing of robust closed-loop controllers with high performance.
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