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Abstract— As microprocessor design scales to the 10 nm 

technology and beyond, traditional pre- and post-silicon 

validation techniques are unsuitable to get a full system functional 

coverage. Physical complexity and extreme technology process 

variations severely limits the effectiveness and reliability of pre-

silicon validation techniques. This scenario imposes the need of 

sophisticated post-silicon validation approaches to consider 

complex electromagnetic phenomena and large manufacturing 

fluctuations observed in actual physical platforms. One of the 

major challenges in electrical validation of high-speed 

input/output (HSIO) links in modern computer platforms lies in 

the physical layer (PHY) tuning process, where equalization 

techniques are used to cancel undesired effects induced by the 

channels. Current industrial practices for PHY tuning in HSIO 

links are very time consuming since they require massive lab 

measurements. An alternative is to use machine learning 

techniques to model the PHY, and then perform equalization 

using the resultant surrogate model. In this paper, a 

metamodeling approach based on neural networks is proposed to 

efficiently simulate the effects of a receiver equalizer PHY tuning 

settings. We use several design of experiments techniques to find 

a neural model capable of approximating the real system behavior 

without requiring a large amount of actual measurements. We 

evaluate the models performance by comparing with measured 

responses on a real server HSIO link. 

 
Index Terms— artificial neural network, equalization, HSIO, 

metamodels, post-silicon validation, receiver, simulation, system 

margining. 

I. INTRODUCTION 

Technology scaling and advanced silicon packaging 

techniques are allowing high density integration. However, as 

process technologies scale down, traditional IC design 

methods are challenged by the problem of increased silicon 

process variation. Design-time optimization and post-silicon 

tuning are the techniques currently used to maximize the 

parametric yield based on statistical design for high-speed 

computer systems. Accurate simulations for design-time 

optimization techniques which exhaustively explore the design 
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space are computationally very expensive given the 

complexity of the system involved [1]. 

On the other hand, adaptive tuning in analog design has 

been widely adopted to confront the silicon process variation. 

Tunable elements are proposed to adjust the analog circuit 

performance after chip fabrication [2], [3]. These tunable 

elements provide a way to reconfigure high-speed input/output 

(HSIO) links in post-silicon servers to mitigate the effects of 

system channels’ variability [4], as illustrated in Fig. 1. The 

adoption of circuit tuning, however, introduces new design 

challenges. A tunable circuit may contain a large number of 

control knobs for reconfiguration, and it is extremely 

expensive to repeatedly run a large number of highly accurate 

simulations over all process variations and environmental 

corners to validate a given design during pre-silicon validation 

[5], making necessary to perform tuning at post-silicon based 

on physical measurements. 

Post-silicon tuning requires first to measure the circuit 

performance and then determine the optimal knobs set based 

on measurement results. Current industrial practices for post-

silicon tuning in HSIO links are very time consuming since 

they are typically based on exhaustive testing requiring 

massive lab measurements [4], resulting in an extremely high 

cost. Therefore, the challenge is how to make the post-silicon 

circuit tuning inexpensive by significantly reducing the number 

of lab measurements. 

Several methodologies have been proposed to address the 

aforementioned challenge. A method to do transmitter (Tx) 

equalization based on eye diagram analysis and direct 

optimization is proposed in [1]. In contrast, the problem of 

receiver (Rx) equalization is addressed in [4] by doing 

surrogate-based optimization using Kriging modeling. An 

extension of [4] is presented in [6] by developing several 

surrogate models to choose the most accurate one at the 

expense of increasing data collection time on the real system, 

and then perform numerical optimization of the PHY tuning 

Rx equalizer settings for a SATA Gen 3 channel topology.  

In this paper, we explore the application of machine learning 

techniques to address the aforementioned challenge with 

emphasis on the modeling process. In contrast to [6], here we 

are not looking for a highly accurate surrogate model, but we 

are looking for a suitable coarse neural model by employing a 

frugal DoE method for data collection. This is done not only 

for SATA Gen3, but also for USB3 Superspeed Gen 1. The 

ultimate goal will be to use the resultant coarse neural model 

in a space mapping optimization approach [7], [8]. Also in 

contrast to [6], in this paper we provide an abbreviated review 

Post-silicon Receiver Equalization 

Metamodeling by Artificial Neural Networks 
Francisco E. Rangel-Patiño, José E. Rayas-Sánchez, Andres Viveros-Wacher, José L. Chávez-Hurtado, 

Edgar A. Vega-Ochoa, and Nagib Hakim 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2018.2834403

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Manuscript ID TCAD‐2017‐0453 (final) 2

on machine learning techniques as applied to post-silicon 

validation, as well as a detailed formulation on the ANN-based 

modeling and training technique employed, including the 

regularization scheme to control ANN generalization. More 

specifically, we propose a metamodeling approach, based on 

artificial neural networks (ANN), to efficiently simulate the 

silicon equalizer circuitry of the Rx. The model is generated 

using a frugal set of training data exploiting several design of 

experiments (DoE) approaches to reduce the number of test 

cases. We evaluate the neural model performance by 

comparing with actual measured responses on an industrial 

server validation platform. First, a hardware mechanism 

provides automated measurements over multiple test cases. We 

then arrange the data collected to develop a learning procedure 

to predict the circuit behavior by an artificial neural network. 

This neural model can be later used for efficient circuit tuning 

at post-silicon validation. The proposed methodology is 

illustrated by the neural modeling of a silicon equalizer Rx 

circuitry of two current industrial HSIO channel topologies: 

USB3 Super-speed Gen 1 and SATA Gen 3. 

The rest of this paper is organized as follows. In Section II, 

we provide a brief review on machine learning as applied to 

post-silicon validation. The ANN-based receiver modeling 

technique is presented in Section III. The system for 

experimental evaluation is described in Section IV. Results 

from the proposed modeling approach are compared to actual 

measured responses in Section V. The last section presents our 

conclusions. 

II. MACHINE LEARNING IN POST-SILICON VALIDATION 

Machine learning algorithms, a branch of artificial 

intelligence, build statistical models from examples, which are 

then used to make predictions when faced with cases not seen 

before. On the other hand, the goal of HSIO post-silicon 

validation is to understand and validate from physical 

examples the correct operation of the design, identify bugs, 

and determine the best settings to avoid any failure. Machine 

learning aims at a similar goal: learning from examples and 

identifying the structure in a system [9]. In addition, the large 

volume of data generated from typical post-silicon testing 

suggests the application of machine learning techniques to 

predict post-silicon behavior. 

There has been recent research on machine learning 

applications to some areas of post-silicon validation. In [10], 

authors propose a trace signal simulation-based selection 

technique that exploits machine learning to efficiently identify 

a small set of key traceable signals, reducing the simulation 

cost. An algorithm that applies anomaly detection techniques 

is proposed in [9] for post-silicon bug diagnosis. Machine 

learning is applied in [11] to bug finding in post-silicon server 

power management. In [12], several neural models are 

developed to learn post-silicon unknown module-level 

behavior and diagnose localized design bugs. 

It is seen that all the previously cited machine learning 

approaches to post-silicon validation have been focused on 

developing efficient and reliable techniques for diagnosis, 

failure detection, or bug identification. An assessment of 

several surrogate modeling and DoE techniques to identify the 

best approach for a HSIO link model and simulation is realized 

in [6]. From that assessment, polynomial-based surrogate 

modeling (PSM) combined with Sobol DoE with 150 samples 

was identified as the most accurate surrogate model [6]. While 

an accurate model is desirable for direct optimization, it can be 

still expensive since it requires a significant amount of lab 

measurements to develop. Additionally, the required time to 

evaluate and even to train any metamodel becomes, for 

practical purposes, insignificant as compared to the time 

required to collect the measurement data. On the other hand, it 

has been demonstrated [13], [14] that both ANN and 

polynomial functional surrogates perform better than SVM and 

Kriging surrogates in cases with a very limited amount of 

training data, while polynomial surrogates exhibit better 

performance than ANN only in cases with low-dimensionality 

and small regions of interest, Then, we propose a neural 

modeling approach to efficiently approximate the effects of a 

HSIO post-silicon receiver equalizer with a very reduced set of 

testing and training data, and possibly a large number of 

knobs. The resultant metamodel, obtained from the proposed 

inexpensive method, could later be used as a fast coarse model 

in a space mapping approach [7], [8] to find the optimal 

equalizer settings that maximize the actual HSIO performance. 

Several other innovative approaches have been proposed to 

find out the optimal performance of the system in post-silicon 

validation. In [15], [16], and [5] a statistical framework, 

referred to as Bayesian model fusion (BMF), is proposed for 

post-silicon tuning. That methodology is based on the 

assumption that an early-stage (e.g. pre-silicon) model or data 

is already available. Then, a relatively small number of post-

silicon measurements may be required by applying Bayesian 
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Fig. 1. HSIO link reconfiguration in post-silicon server validation to cancel out the effects of system channels’ variability. 
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inference, allowing the post-silicon cost of tuning to be 

substantially reduced. However, that BMF approach is not 

feasible in a post-silicon environment if not enough pre-silicon 

model information is available, as in our case. Similarly, in 

[17], a methodology for programming a reconfigurable RF 

receiver is proposed, showing a maximum efficiency of 27.5× 

speed-up as compared with the exhaustive search. In [18], a 

post-silicon tuning methodology is proposed based on a 

dynamic programming algorithm [19] combined with a fast 

Monte Carlo simulation flow for statistical analysis and 

discrete optimization. That method achieves 20× speed-up as 

compared with the exhaustive search. These methodologies 

allow very significant acceleration of the tuning time in post-

silicon validation. However, it is unclear if they could be easily 

applied when dealing with a large number of circuit knobs, 

which is our case. 

III. ANN-BASED RECEIVER METAMODELING 

Metamodels are scalable parameterized mathematical 

models that emulate the component behavior over a user-

defined design space. These techniques allow developing an 

approximation of a system response within a design region of 

interest, following a “black-box” approach. The problem of 

modeling in post-silicon validation can be mapped to a 

mathematical problem of function estimation in presence of 

noisy data points. The most popular estimators are neural 

networks and Kernel estimation. In [20], authors demonstrate 

the functional estimation capability of an artificial neural 

network (ANN).  

ANNs are particularly suitable to approximate high-

dimensional and highly nonlinear relationships, in contrast to 

more conventional methods such as numerical curve-fitting, 

empirical or analytical modeling, or response surface 

approximations [21]. ANNs have been used in many areas of 

applications, including RF and microwave circuits [22], EM-

based design optimization [23], control process, 

telecommunications, biomedical, remote sensing, pattern 

recognition, and manufacturing, just to mention a few [24]. 

Recently, ANNs have been used for HSIO simulations, but 

they were focused to model the nonlinear relationships 

between channel parameters and system performance to speed 

up system simulations, as in [25] and [26]. In [27], authors 

proposed ANNs for eye diagram modeling based on 

simulations, and they use an adaptive sampling method for 

data collection process. 

Once trained, ANN provides a fast way to perform a large 

number of I/O links and channel simulations that take into 

account the die-to-die process variations, board impedances, 

channel losses, add-in cards, end-point devices, and operating 

conditions [28]. ANN modeling involves two inter-related 

process: a) neural network model development - that includes 

selection of representative training data, network topology, and 

training algorithms; and b) neural model validation - the neural 

network model is tested and validated according to its 

generalization performance in a given region of interest. A 

large amount of training data is usually needed to ensure 

model accuracy, and this could be very expensive in the post-

silicon validation environment. An alternative to reduce the 

dimension of the learning set is to properly select the learning 

points by using DoE, to ensure adequate design space 

parameter coverage [29]. 
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Fig. 2. Three-layer perceptron with n inputs, h inner-product hidden 

neurons and m linear output neurons [31]. 
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Fig. 3. Algorithm for training the neural model; ANN complexity is 

increased until generalization deteriorates. 
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A.  ANN Topology 

Multilayer perceptrons are feedforward networks widely 

used as the preferred ANN topology. Since a 3-layer 

perceptron (3LP) is in principle sufficient for universal 

approximation [30], we use a 3LP to implement our 

neuromodel, with n inputs (equal to the number of Rx knobs), 

h hidden neurons, and m outputs (number of system responses 

of interest), as shown in Fig. 2. The required complexity of the 

ANN, determined by h, depends on the generalization 

performance for a given set of training and testing data [31]. 

Following [32], we gradually increase h during training as a 

regularization scheme. 

B. ANN Modeling and Training 

Let Rf ∈ ℜm represent the actual electrical margining system 

response, denoted as a fine model response, which consists of 

the eye width ew ∈ ℜ and eye height eh ∈ ℜ of the measured 

eye diagram, 

 [ ]Tee ),,(),,(),,( hwf δψxδψxδψxR =  (1) 

The electrical margining system response depends on the Rx 

knobs settings x ∈ ℜn, the operating conditions ψ (voltage and 

temperature), and the devices δ connected to the system. The 

ANN is trained to find an optimal vector of weighting factors 

w, such that the ANN response, denoted as Rs, is as close as 

possible to the fine model response for all x, ψ, δ in the region 

of interest, 

 ),,(),,,( fs δψxRwδψxR ≈  (2) 

The ANN main input-output relationship is denoted as 

 )(xfR =s  (3) 

We aim to develop a fast and accurate ANN model for f by 

training the ANN with a set of measured learning data. The 

learning data are pairs of (xL, tL), with L = 1, 2…, l, where tL 

contains the desired outputs or targets (obtained from 

measurements) for the ANN model at the xL inputs, and l is the 

total number of learning samples. During training, we keep 

fixed the system at voltage/temperature (VT) nominal 

conditions and without changing the external device. Under 

these conditions, ψ  and δ  remain constant. Therefore, the 

ANN model during training is treated as 

 ),(ss wxRR LL =  (4) 

The ANN performance during training is evaluated by 

computing the difference between ANN outputs and the targets 

for all the learning samples, 

 ( ) LLLL twxRwE −= ,)( s  (5) 

where EL is the learning error matrix.  

Following [32], the problem of training the ANN is 

formulated as 

 
FL )(minarg wEw

w
=  (6) 

To control the generalization performance while solving (6), 

we use T testing base points (xT) not used during training. The 

scalar learning and testing errors are given by  

 ( )
FLLLL fs , RwxR −=ε  (7) 

 ( )
FTTTT fs , RwxR −=ε  (8) 

where RfT and RsT are the output matrices of the fine model and 

ANN model, respectively, at the T testing base points, and RfL 

is the fine model response at the L learning base points. 

The 3LP is trained by using the Bayesian regularization [33] 

method available in MATLAB Neural Network Toolbox. The 

algorithm for training the ANN is shown in Fig. 3. We first 

define the learning ratio to split the pairs of inputs and targets 

into the learning and testing datasets. The learning process 

often begins by initializing the ANN weights with arbitrary 

values using a random number generator [34], however, in our 

case we use a decoupling network process with initial set of 

inputs and outputs to compute initial weighting factors w0 and 

corresponding initial error εT
old. Then, we start training the 

3LP with just one hidden neuron (h = 1), and calculate the 
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Fig. 4. HSIO server post-silicon hardware configuration for Rx metamodeling. 
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corresponding learning and testing errors. We keep increasing 

the complexity of the ANN (h) until the current testing error is 

larger than the previous one, and the current learning error is 

smaller than the current testing error, as in [32] (see Fig. 3). 

IV. EXPERIMENTAL SYSTEM CONFIGURATION AND DOE 

APPROACHES 

The system under test is a server post-silicon validation 

platform, comprised mainly of a CPU and a platform 

controller hub (PCH). The PCH is a family of Intel microchips 

which integrates a range of common I/O blocks required in 

many market segments, and these include USB [35], PCI 

Express [36], SATA [37], SD/SDIO/MMC, and Gigabit 

Ethernet MAC, as well as general embedded interfaces such as 

SPI, I2C, UART, and GPIO. The PCH also provides control 

data paths with the Intel CPU through direct media interface 

(DMI), as shown in Fig. 4. This figure also shows the 

automation mechanism to read the Rx eye diagram parameters 

(eye width and eye height). Within the PCH, our methodology 

was tested on two different HSIO links: USB3 Super-speed 

Gen 1 and SATA Gen 3. 

The measurement system is based in the system margin 

validation (SMV) process [4], [38], which is a methodology to 

verify the signal integrity of a circuit board and assess how 

much margin is in the design relative to silicon characteristics 

and processes. The SMV methodology consists of measuring 

the Rx functional eye width and eye height by using on-die 

design for test (DFT) features until the eye opening has been 

shrunk to a point where the Rx detects errors or the system 

fails [6].  

We employ three different DoE techniques to explore the 

desired solution space with a reduced number of test cases. For 

each test case, we use seven input variables that represent Rx 

knobs (n = 7), which are settings used in three main Rx 

circuitry blocks (CTLE, VGA, and CDR), and then we retrieve 

the eye measurements from the system under test. The 

employed DoE techniques are: 1) Box Behnken (BB), which is 

type of second order response surface methodology (RSM) 
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Fig. 5. Comparison of SATA neural model generalization 

performance for different DoE techniques: a) eye height error; b) eye 

width error. 
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Fig. 6. Learning and testing errors during SATA neural training 

using Sobol50, for a) eye width and b) eye height. 
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Fig. 7. Neural model generalization performance using Sobol50 for 

a) SATA eye width; b) SATA eye height. 
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that combines factorial designs with balanced incomplete 

blocks designs [39], using 62 experiments; 2) orthogonal 

arrays (OA) [40], using an L27(39) array in order to capture 

non-linear effects in the objective function by only running 27 

experiments; and 3) Sobol [41] low-discrepancy sequence to 

sample the solution space. Given the quasi-Monte Carlo 

sampling approach of Sobol, the solution space is better 

explored as the number of samples increases, at the expense of 

increasing test time on the real system. Therefore, we use three 

different Sobol DoE, denoted as Sobol50, Sobol100, and 

Sobol150, with 50, 100, and 150 samples, respectively. 

System margining testing is very time consuming when 

running many test cases for PHY tuning. A single test case 

with 3 repetitions can take up 20 minutes, and then running a 

Sobol150 can take up 50 hours of testing for a single VT 

corner. The objective of comparing several DoEs is to find a 

suitable sampling strategy that provides adequate ANN model 

performance with the least amount of testing time. 

V. NEURAL MODELING RESULTS 

Figure 5 shows the generalization error of the already 

trained neural model (at w*), comparing the different DoEs for 

SATA. It is seen that the best performance is achieved with 

Sobol150. The three Sobol cases provide the best 

generalization performance, as confirmed in Fig. 5. However, 

Sobol50 is able to achieve acceptable accuracy with only 50 

samples. 

Figure 6 shows the learning performance of the neural 

training algorithm for SATA. The best performance is 

achieved with h = 3 for the eye width ANN, achieving a 

maximum relative learning error of 3.65%, and 7.63% for the 

relative testing error. For the eye height ANN, best 

performance is achieved with h = 4, yielding 7.98% of 

learning error and 6.75% of testing error. Thus, the 

metamodels are able to reach above 90% of accuracy for these 

initial sampling points. 

The neural model response at w* and h = 3 for ew and h = 4 

for eh from Sobol50 is compared in Fig. 7a and Fig. 7b, 

respectively, with the fine model (real measurements), by 

using 30 testing base points not used during training, in order 

to test the generalization performance. It is observed that the 

neural model effectively simulates the actual physical 

measurements with a total relative error of 1.7% for the ew 

response and 2.5% for the eh response. In other words, the 

ANN metamodel is able to predict margins with up to 95% of 

accuracy when using equalization values not used during the 

ANN training.  

We obtained similar results for the case of USB3 Super-

speed Gen 1, where we use ten input variables (n = 10) that 

represent the corresponding Rx knobs, which again are settings 

used in the three main Rx circuitry blocks. For the sake of 

brevity, we present only the final results in Fig. 8. It is seen 

that for USB, the resultant neural model also effectively 

simulates the fine model (physical platform), finding a total 

relative error of 6.7% for the ew response, as shown in Fig. 8a, 

and a 5.7% relative error for the eh response, as shown in Fig. 

8b. This metamodel performance was achieved using also a 

Sobol50 DoE. 

VI. CONCLUSIONS 

We presented a metamodeling technique based on artificial 

neural networks to efficiently simulate the effects of the 

receiver equalization circuitry in industrial HSIO links. The 

neural model is trained using different DoE approaches to 

identify the best system response sampling strategy that yields 

an acceptable neural model with a very reduced set of learning 

and testing samples. The resultant neural model approximates 

with sufficiently accuracy the eye diagram of a real post-

silicon HSIO validation platform. The proposed machine 

learning approach can be exploited to develop extremely 

efficient vehicles to drive fast PHY tuning in HSIO links. 
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