Direct Optimization of a PCI Express Link Equalization in Industrial Post-Silicon Validation (poster)

Rangel-Patiño, Francisco E.; Rayas-Sánchez, José E.; Vega-Ochoa, Edgar A.; Hakim, Nagib

Enlace directo al documento: http://hdl.handle.net/11117/5954

Este documento obtenido del Repositorio Institucional del Instituto Tecnológico y de Estudios Superiores de Occidente se pone a disposición general bajo los términos y condiciones de la siguiente licencia: http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-ND-2.5-MX.pdf

(El documento empieza en la siguiente página)
0. ABSTRACT

The optimization of receiver analog circuitry in modern high-speed input/output (HSIO) links is a very time consuming post-silicon validation process. Current industrial practices are based on exhaustive enumeration methods. In this PhD thesis, direct and surrogate-based optimization methods, including space mapping, are proposed based on suitable objective functions to efficiently tune the transmitter (Tx) and receiver (Rx) equalizers coefficients. Evaluation is realized by lab measurements on realistic industrial post-silicon validation platforms.

1. INTRODUCTION

Within the computer server segment, there are conditions that further increase system complexities. These include non-flexible form factors which implies the channel design remains unchanged. Therefore, physical layer (PHY) tuning based on equations (EQ) cannot be used to cancel any undesired effect [1]. The current industrial practices to perform PHY tuning consist of an exhaustive enumeration method, turning them into the most time-consuming processes in post-silicon validation [2]. This thesis presents several optimization techniques based on novel objective functions to optimize the Tx and Rx equalizers in a server post-silicon validation platform.

2. RX EQ SURROGATE OPT.

In the current practice for PHY tuning the Rx eye diagram margins are measured and optimized, and then a trade-off analysis is done with the jitter tolerance (JTO) tests to get a single set of EQ coefficients values that comply with the link specifications.

We present in [1]-[2] a holistic approach to concurrently optimize Rx system margins and JTO, by defining an innovative objective function that combines both type of measurements. The methodology was tested in a post-silicon industrial environment (Fig. 2.1). Our methodology was tested on three different HSIO links (USB3.0, SATA, and PCIe3).

![Fig. 2.1 Test setup for USB system marging and JTO optimization.](image)

We aim at finding the optimal set of coefficients to maximize the eye width (w_{ey}) and eye height (h_{ey}). The holistic approach is realized by adding a JTO penalty function, such that the optimization finds a set of EQ coefficients that maximize the eye diagram and simultaneously satisfies the JTO Lim spec. Our objective function is defined as:

$$U(x) = U_{JTO}(x) + U_{LR}(x, y) = \frac{1}{2} \left(\frac{1}{w_{ey}(x)} + \frac{1}{h_{ey}(x)} \right) + \lambda \left(\frac{1}{w_{ey}(x)} + \frac{1}{h_{ey}(x)} \right)$$

where U_{JTO} is the JTO penalty function, x is the EQ coefficients, y are the operating conditions, λ are the devices, and λ is the penalty coefficient. The area of the eye diagram and the asymmetries (w_{ey}, h_{ey}) are scaled by weighting factors w_i, h_i, w_j. To minimize $U(x)$, we use Kriging as the surrogate-based approximation method.

The results showed an improvement of 175% on eye diagram area as compared to the initial coefficients, and a 34% improvement as compared with the trade-off approach (Fig. 2.2a). Similarly, the JTO results showed a substantial improvement (Fig. 2.2b).

![Fig. 2.2. a) Comparing the proposed methodology against the initial design and the trade-off approach: a) eye width versus eye height; b) jitter tolerance (JTO) testing.](image)

3. PCIe Tx/Rx EQ DIRECT OPT.

PCIe specification defines an adaptive mechanism for EQ to determine the optimum value of the Tx and Rx EQ coefficients. The current practice is to find out a subset of coefficient combinations during post-silicon validation, and then program it into the system BIOS. The method consists of using maps of EQ coefficients, which are obtained by measuring the Rx system margins. In [3], we propose an efficient optimization methodology to find out the optimal subset of coefficients for the Tx and Rx.

We aim at finding the optimal set of coefficients to maximize the eye diagram. Here we follow our work [2] for the objective function. However to avoid selecting an optimal solution with too a high sensitivity, the four margin responses around $\sigma(x)^2$ must be at least 80%. (Fig. 3.1) of the value of $\sigma(x)^2$, where $C_{Rx, T}$ and $C_{Rx, C}$ represent the three filter taps coefficients in the Tx, $C_{Rx, T}$ is the tap coefficient in the Rx, and λ_{eq} are the objective function values for the i-th $C_{Rx, T}$ and i-th $C_{Rx, C}$ variables.

![Fig. 3.1 EQ map coefficients space for optimization.](image)

The optimization problem can be defined through a constrained formulation by adding a penalty term, as:

$$U(x) = U_{JTO}(x) + U_{LR}(x, y) = \frac{1}{2} \left(\frac{1}{w_{ey}(x)} + \frac{1}{h_{ey}(x)} \right) + \lambda \left(\frac{1}{w_{ey}(x)} + \frac{1}{h_{ey}(x)} \right)$$

where U_{JTO} is the JTO penalty function, and U_{LR} is a corner limits penalty function. We solve $U(x)$ by using a combination of pattern search and Nelder-Mead methods. The system under test is an Intel validation platform as shown in Fig. 3.2.

![Fig. 3.3. a) Objective function across iterations; b) Eye diagram: proposed methodology (Rx*) vs initial design (Rx) vs current method (Rx*).](image)

The optimized coefficients yield an eye diagram improvement by 35% as compared to that one with the initial coefficients (Fig. 3.3b). The efficiency of this approach is demonstrated by a significant time reduction in post-silicon validation.

4. SFP TX EQ DIRECT OPT.

Ethernet enhanced small form factor pluggables (SFPs), are regulated by a 4Tx eye diagram mask in terms of voltage and time. Per IEEE standard, the EQ, for SFP Tx may be accomplished with a 3-tap FIR filter, where $C_{Rx, T}$, $C_{Rx, C}$ and $C_{Rx, R}$ represent the three filter taps coefficients. SFPs Tx FIR filter is not self-adaptive, and then tuning is required during post-silicon validation. The current post-silicon practices for SFP+ tuning consumes a large amount of validation time. We propose in [4] an efficient optimization technique, by defining an effective objective function and by using direct numerical optimization in a post-silicon validation platform.

![Fig. 4.1. Eye diagram mask.](image)

This signal integrity response is a function of the PHY tuning settings x, and the operating conditions y. Since we want to maximize the eye diagram, our objective function is defined as:

$$U(x) = \frac{1}{2} \left(\frac{1}{w_{ey}(x)} + \frac{1}{h_{ey}(x)} \right) + \lambda \left(\frac{1}{w_{ey}(x)} + \frac{1}{h_{ey}(x)} \right)$$

where λ_1 is the total jitter, $J(x)$ is the eye mask limit penalty function, and λ_2 is the penalty coefficient. λ_1 and λ_2 are scaled by weighting factors w_1, h_2. We aim at finding the optimal set of coefficients values x^* by solving (3e) using the Nelder-Mead method. The results show a substantial improvement on λ_1 and λ_2 (Fig. 4.2). The efficiency was also demonstrated by a significant time reduction on validation.

5. RX EQ SPACE MAPPING OPT.

While an accurate surrogate model is desirable for direct surrogate-based optimization, it can be very computationally expensive. However, by combining a good modeling technique with a suitable design of experiments (DoE) approach, an efficient surrogate model can be developed. In [5]-[6], we analyze several surrogate modeling methods and DoE techniques to find a model that approximates the system with a very reduced set of data. For future work, we are looking to use aggression space mapping where a map between the coarse (surrogate) and fine model (real system measurements) responses is built, allowing the coarse model to perform as close as possible to the real system.

6. CONCLUSIONS

Product complexity, performance requirements and time-to-market have added big pressure on post-silicon validation. Therefore, validation teams have to continuously look for opportunities that make validation faster and cheaper. In this thesis we presented several optimization techniques based on novel objective functions to optimize the Tx and Rx analog circuitry equalizers. Our experimental results, based on a real industrial validation platform, demonstrated the efficiency of our methods, showing a substantial improvement as compared with the current industrial practice, and accelerating the typical required time for equalizers tuning.

7. SELECTED REFERENCES

