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Abstract— A general formulation to develop EM-based 

polynomial surrogate models in frequency domain utilizing the 

multinomial theorem is presented in this paper. Our approach is 

especially suitable when the number of learning samples is very 

limited and no physics-based coarse model is available. We 

compare our methodology against other four surrogate modeling 

techniques: response surface modeling, support vector machines, 

generalized regression neural networks, and Kriging. Results 

confirm that our modeling approach has the best performance 

among these techniques when using a very small amount of 

learning base points on relatively small modeling regions. We 

illustrate our technique by developing a surrogate model for an 

SIW interconnect with transitions to microstrip lines, a dual band 

T-slot PIFA handset antenna, and a high-speed package

interconnect. Examples are simulated on a commercially available

3D FEM simulator.

Index Terms— EM-based design, FEM, multinomial theorem, 

package interconnect, PIFA antenna, polynomial surrogates, SIW 

interconnect, surrogate modeling. 

I. INTRODUCTION

Typically, direct optimization of microwave structures using 

full-wave electromagnetic (EM) simulators is computationally 

too expensive. A single EM simulation may take several hours, 

especially when using detailed physical models with high 

resolution discretization (fine EM model). Surrogate models 

can be exploited to accelerate the direct optimization process 

of high-frequency structures [1], [2], which additionally can be 

useful to hide the intellectual property of the EM design. In 

order to be useful for design optimization, surrogate models 

should be computationally cheap, smooth, and sufficiently 

accurate in the region of interest for the design parameters.  

We can identify two types of surrogate models: physical and 

functional surrogates. A physical surrogate is usually 

implemented by a quasi-static approximation or an equivalent 

circuit; it can also be implemented in the same EM simulator 

used for the original structure under design, but using a coarse 

discretization [3] and removing some details of the original 

structure to speed up the simulation time [4]. However, these 
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simplified and coarsely discretized full-wave EM models may 

exhibit numerical noise, discontinuous behavior, and non-

negligible simulation time with respect to the corresponding 

original fine model [5]. 

On the other hand, functional surrogates, also called 

metamodels, are generated by using a set of learning base 

points from the original fine EM model. These learning base 

points are usually selected within a specified modeling region 

and can be allocated using design of experiments (DoE) 

techniques [3]. Functional surrogate approaches treat the EM 

model as a black box, with the goal to approximate the 

relationship between inputs and outputs of the structure under 

study [6]. 

Different approaches can be used to develop functional 

surrogate models for EM-based design. Among the most 

popular are: response surface methodology (RSM), artificial 

neural networks (ANN), support vector machines (SVM) and 

Kriging.  

RSM uses a second-order polynomial to generate a surrogate 

model that represents the relationship between model inputs 

and outputs [7]-[9]. The number of unknowns in the second-

order approximation defines the required number of function 

evaluations [7]. Some RSM techniques, such as the D-optimal 

DoE, require twice that number of function evaluations [10].  

ANN can be seen as non-linear data modeling tools capable 

of representing complex relationships between model inputs 

and outputs [11], [12]. A multilayer ANN can approximate any 

input-output deterministic relationship by using a suitable 

amount of data and the correct number of hidden neurons [13]. 

Generally, the learning error hypersurface contains many local 

minima, making global optimization algorithms more desirable 

to train the ANN [14]. Additionally, the number of learning 

base points needed to approximate a function grows 

exponentially with the ratio between dimensionality and the 

degree of smoothness [13]. Generalized regression neural 

network (GRNN) is a special type of ANN that does not 

require an iterative training procedure [15]. The number of 

neurons in the hidden layer of a GRNN is equal to the number 

of learning samples. Some advantages of GRNN are fast 

learning and convergence to the optimal regression surface as 

the number of samples become very large, and no need of a 

minimum set of learning base points to train the neural 

network [16], [17]. Abundant examples of ANN-based 

surrogate modeling for microwave structures have been 

published, e.g., [13], [14], [18], [19]. 

SVM modeling solves a constrained quadratic optimization 
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problem, allowing to find a global optimum for the model 

parameters. The optimization problem is feasible due to the 

utilization of a kernel function, including linear, polynomial, 

and radial basis functions. The radial basis function is the most 

employed kernel since it creates a nonlinear map, taking the 

samples into a higher dimensional space with less numerical 

difficulties to find an optimum solution [20], [21]. SVM 

models are trained by using the structural risk minimization 

principle, instead of the empirical risk minimization principle 

used by ANN models. The structural risk minimization 

principle allows SVM models to have a good trade-off 

between model complexity and generalization capability [22]. 

Since SVM models are based on small sample statistical 

learning theory, an optimum solution can be found by using a 

limited number of samples [21]. Examples of SVM modeling 

for microwave structures can be found in [23]-[26]. 

Kriging methodology exploits the best linear unbiased 

estimator (BLUE) of the output value for a given input to 

choose the weighting factors that minimize the prediction 

variance [27]. Implementation of RSM and ANN models 

usually employ classical DoE, where extreme scenarios are 

commonly simulated, such as the corners of the corresponding 

modeling region. However, Kriging methodology is based on 

space-filling experiments, usually implemented by using the 

Latin hypercube design (LHD) [27]. Kriging models aim at 

covering the whole experimental area, consequently, they can 

be seen as a global metamodels [28]. If there are not enough 

function evaluations of the EM model, the Kriging estimated 

correlation function tends to be noisy and the predictions 

become inaccurate [27]. Different Kriging techniques have 

been developed, such as simple Kriging, ordinary Kriging, 

universal Kriging, Taylor Kriging, and dynamic Kriging [29]. 

Examples of Kriging surrogate modeling of microwave 

structures can be found in [30], [31] 

The surrogate modeling methodology proposed in this work 

exploits the multinomial theorem to represent the relationship 

between model inputs and outputs by using polynomial 

functions at each simulated frequency point. Corresponding 

surrogate model weighting factors are calculated in closed 

form by using frugal learning base point distributions (e.g., star 

or box distribution), achieving a global minimum in the least 

squares sense. In contrast to RSM, the order of the polynomial 

function is not fixed and can be increased until generalization 

performance deteriorates.  

A similar approach to develop polynomial surrogate models 

is proposed in [32]; however, our new approach differs in 

three aspects: the surrogate model formulation, the calculation 

of weighting factors, and the surrogate order determination. 

For the surrogate model formulation, [32] implements the Nth 

order surrogate model by using an element-wise power 

operator, which creates some redundant terms, while our new 

formulation exploits the multinomial theorem, allowing us to 

expand a polynomial raised to an arbitrary power including all 

cross terms and no redundant terms. For the weighting factors 

calculation, the approach in [32] calculates simultaneously all 

weighting factors available for each surrogate model order. In 

contrast, the proposed approach in this work automatically 

calculates the weighting factors by assuming that lower-order 

surrogates are fixed or by calculating all weighting factors 

simultaneously, and the selection between both manners is 

based on the conditional number of the system matrix. Finally, 

the order of the surrogate model can be different for each 

simulated frequency point, while in [32] and [33] the same 

surrogate model order is used for all simulated frequency 

points. 

The present article expands our work in [34] by: a) 

presenting the general formulation for the Nth-order surrogate 

model; b) comparing and discussing the number of weighting 

factors required by the proposed new polynomial-based 

surrogate modeling (PSM) methodology versus the polynomial 

formulation presented in [32]; c) developing two additional 

surrogate modeling examples: a single-layer substrate 

integrated waveguide (SIW) interconnect with transitions to 

microstrip lines and a high-speed package interconnect; d) 

comparing at some testing base points the actual EM responses 

of the original fine model and the corresponding PSM model 

responses; and e) presenting and discussing the performance of 

our PSM proposal when varying the size of the region of 

interest, as well as some potential applications. 

The organization of this paper is as follows: Section II 

describes the general PSM formulation. Section III presents 

the PSM training, including the selection of the polynomials 

order. Section IV shows the performance of our proposal for 

three surrogate modeling examples, comparing it versus other 

approaches. Section V elaborates on the modeling region size 

and potential applications. Finally, Section VI concludes this 

work. 

II. GENERAL PSM FORMULATION 

Let Rf  p denote a fine model response sampled at p 

frequency points. We assume that Rf only depends on the 

design variables x  n. We treat the fine model as a 

multidimensional vector function, Rf(x) : Xf  p whose 

domain is Xf  n. We aim to develop a surrogate model 

Rs(x): Xs  p that approximates Rf(x) in a region of interest 

Xs  Xf, around the reference design x(0), where x  n is the 

distance from a given design to that reference, x = x x(0). 

A. Nth-order Surrogate Model 

A general expression for an Nth-order surrogate model at the 

k-th simulated frequency point can be written as 

 Rsk
(N)(x) = Rsk

(N 1)(x) + wk
(N)Tq(N)(x) (1), 

where wk
(N)  (N + n – 1)!/((n – 1)!(N)!)  has the weighting factors 

and q(N)(x)  (N + n – 1)!/(n – 1)!(N)! the multinomial terms for x. 

The scalar elements of q(N) are given by 

 
N

ΔxΔxΔxq N
 

21
)()( Δx  (2), 

for 1 = 1:n, 2 = 1:n, …, N = N1:n.’ 

The zero-order model response is equal to Rf(x(0)) at all 

frequency points, as described in [34]. The first-order 

surrogate model is formulated by including weighting factors 

wk
(1) and multinomial terms q(1). The second-order surrogate 

model is formulated by incorporating the second-order terms 

wk
(2) and q(2), etc. See [34] for more details. 
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B. Comparing Polynomial Surrogate Model Structures 

The total number of weighting factors, Nw, used by the N-th 

order polynomial surrogate model employed in [32] is  

 nnNN  2
w )1(  (3). 

On the other hand, our new polynomial surrogate model uses 

 
)!1(!

)!1(

!3

)2)(1(

!2

)1(
w












nN

nNnnnnn
nN   (4). 

A comparison between both formulations in terms of the 

total number of weighting factors is realized in Fig. 1. Both 

formulations use the same number of weighting factors in the 

following cases: a) when N = 1, for any n; b) when n = 1, for 

any N, c) when N = 3, for n = 5; and d) when N = 4, for n = 2. 

The new formulation uses a smaller number of weighting 

factors in two cases: a) when N = 2, for any n; and b) when N 

= 3, for n ≤ 4. Moreover, since our new formulation does not 

incorporate redundant terms, the generalization performance is 

expected to be better than in [32], at least in all the previously 

mentioned cases, as it was experimentally confirmed in [33]. 

III. PSM TRAINING 

“Training” the surrogate models formulated in the previous 

section is done by calculating in closed form the corresponding 

weighting factors. We define a region of interest Xs delimited 

by a vector   n containing the relative deviations for each 

design variable with respect to x(0). The corresponding 

weighting factors are calculated in closed form by using L 

learning base points within Xs, denoted as x(1), x(2), …, x(L). 

The generalization performance is measured by using T testing 

base points within the same region. Weighting factors can be 

calculated in two different forms: a) by reusing lower-order 

weights and calculating only current-order weights, or, b) by 

calculating all weights simultaneously for each surrogate 

model order. 

A. Weighting Factors Calculation Reusing Weights 

Considering that the lower-order weights are already 

calculated and fixed, the fine model and the Nth-order 

surrogate model are matched at the   j-th learning base point, 

 Rfk(x(j)) = Rsk
(N-1)(x(j)) + wk

(N)Tq(N)(x(j)) (5), 

for j = 1, …, L. The Nth-order weights are then calculated by 

solving for wk
(N) the following system of linear equations 

 Q(N)wk
(N) = Rk

(N) for k = 1, …, p (6), 

with Q(N)  (N + n – 1)!/((n – 1)!(N)!) and Rk
(N)  L defined as 

 























T)()(

T)2()(

T)1()(

)(

)(

)(

)(

LN

N

N

N

Δxq

Δxq

Δxq

Q


 (7), 

 

























)()(

)()(

)()1(
s

)(
f

)1()1(
s

)1(
f

)(

LN
k

L
k

N
kk

N
k

RR

RR

xx

xx

ΔR   (8). 

B. Calculating All Weighting Factors Simultaneously for 

Each Surrogate Model Order 

Consider now that all the weighting factors are 

simultaneously calculated at each surrogate model order. The 

corresponding responses of the fine model and the Nth-order 

surrogate model are matched at the j-th learning base point, 

      Rfk(x(j))=Rsk
(0)(x(j))+wk

(1)q(1)T(x(j)) +…+wk
(N)q(N)T(x(j))  (9), 

for j = 1, …, L. Weighting factors are then calculated by 

solving for W(N) the following system of linear equations 

 k
NN

ΔRWQ )()(
All  for k = 1, …, p (10), 

with Q(N)
ALL  L×C, W(N)  L×C and C defined as 

  )()2()1()(
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C. Selecting Weighting Factors Calculation 

The selection between the both previously defined forms to 

calculate the weighting terms is automatically realized in our 

surrogate modeling algorithm by comparing the condition 

number of matrices Q(N) in (6) and Q(N)
ALL in (10). If the 

condition number of matrix Q(N) is smaller than the condition 

number of matrix Q(N)
ALL, weighting factors are calculated by 

solving (6), otherwise, by solving (10). This test is 

inexpensive, since no fine model evaluations are implied. In 

summary, we solve the best conditioned system of linear 

equations between (6) and (10), which only depends on the 

input learning base points and the order of the current 

polynomial surrogate. 

D. Setting the Order of the Polynomial Function 

As mentioned before, a polynomial function is developed at 

each simulated frequency point. The order of that polynomial 

is increased until generalization error deteriorates. This allows 

us to use a different polynomial order at each simulated 

frequency point, depending on the behavior, within the region 

of interest, of the EM response of the structure under study. 

IV. EXAMPLES 

For developing the surrogate models in all the following 

 
Fig. 1. Comparison in terms of total number of weighting factors for 

both polynomial surrogate formulations: a) old formulation [32] 

(solid line) and b) new formulation (dashed line).  
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examples, we employ a small amount of learning base points 

by using star and box distributions. The resultant number of 

base points are 2n and 2n, respectively. For reliable assessment 

of the generalization performance we use Kn testing base 

points uniformly distributed, where K corresponds to the 

number of points for each design parameter. 

For all the examples, we calculate the maximum absolute 

error in all the learning base points at each simulated 

frequency point, denoted as ϵL, as well as the maximum 

absolute error in all the testing base points at each simulated 

frequency point, denoted as ϵT. Since both errors, ϵL and ϵT, are 

calculated from S-parameters, they are dimensionless. To 

denote the largest maximum absolute error in the complete 

frequency sweep we use ϵLmax and ϵTmax, for the learning and 

testing sets, respectively. 

The corresponding polynomial-based surrogate model 

performance for each example is compared with other four 

functional surrogate modeling techniques: RSM, SVM, 

Kriging and GRNN. SVM, Kriging and GRNN are 

implemented using the corresponding Matlab Toolboxes with 

the default settings. 

In all the following examples, we perform the EM 

simulations using a conventional laptop (core i5 CPU with 8 

GB RAM). 

A. SIW Interconnect with Transitions to Microstrip Lines 

Consider the SIW interconnect with transitions to microstrip 

lines proposed in [32], whose geometry is shown in Fig. 2. The 

purpose of the tapered microstrip transitions is to perform field 

conversion and impedance matching of the two dissimilar 

guiding structures [35].  

1) Design Parameters 

The SIW is designed on a substrate with a relative 

permittivity εr = 3.6 and a thickness H = 0.4064 mm. The SIW 

interconnect has a length LSIW = 4W and an external width W = 

9.6446 mm. According to the required cutoff frequency for the 

dominant mode fc10 = 10 GHz, the internal width of the SIW 

interconnect is WSIW = 8.6845 mm [32]. Vias have a diameter 

d = 0.4801 mm and are separated from their neighboring via 

by a center-to-center spacing s = 2d. The microstrip lines have 

a width Wp = 0.8672 mm and a length Lp = 1.5W. The 

transition uses Ltap = 3WSIW and Wtap = (WSIW + Wp)/2. 

Our model, implemented in COMSOL, neglects dielectric 

and metallic losses. Lateral and upper walls of the simulation 

bounding box are configured as scattering boundary condition. 

We follow a meshing scheme by zones as proposed in [36] and 

the bounding box dimensions proposed in [37]. We use a fine 

resolution discretization. Each frequency sweep takes around 1 

h 20 min. 

2) Surrogate Model Implementation 

We develop a polynomial surrogate model for |S21| as a 

function of x = [Wtap  Ltap]T (see Fig. 2), using as a reference 

design x(0) = [(WSIW+Wp)/2   3WSIW]T, over a region defined by 

 = ± [5%  5%]T. EM response of the SIW interconnect at x(0) 

is shown in Fig. 3. To measure the generalization performance 

of the resultant polynomial surrogate we use a uniform 

distribution with K = 4 (resulting 16 testing base points). 

The maximum absolute testing errors as well as the order of 

the polynomial implemented at each simulated frequency 

point, for both learning base point distributions, are shown in 

Fig. 4. Notice that there are some frequency points where the 

polynomial reaches the 10th order. This is due to the high 

nonlinearity of the EM responses, within the modeling region, 

at those frequency points.  

EM responses of the surrogate model at some testing base 

Lp

Ltap Wtap

s
d

Wp

H

W

LSIW

WSIW

r

 
Fig. 2. Single-layer substrate integrated waveguide (SIW) 

interconnect with microstrip transitions. From [32].  
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Fig. 3. EM response of the SIW interconnect with microstrip 

transitions at x(0). From [32].  
 

 
a) 

 
b) 

Fig. 4. Surrogate model maximum absolute testing error (solid line) 

and polynomial order (dotted line), at each frequency point, for the 

SIW example, using: a) a star distribution; b) a box distribution of 

learning base points. 
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points, with polynomial surrogates trained with both learning 

base point distributions, are shown in Fig. 5. We can see there 

is a very good match between the fine and the surrogate model 

responses at the testing base points. 

3) Performance Comparison 

Using the same learning and testing base point distributions, 

the corresponding maximum absolute testing errors at each 

simulated frequency point, for the five implemented surrogate 

models, are shown in Fig. 6. Numerically, Table I shows the 

largest maximum absolute learning and testing errors for each 

implemented surrogate model. These results show that the 

proposed polynomial-based surrogate model achieves the best 

generalization performance with both learning base point 

distributions. 

B. Dual-Band Planar Inverted F Handset Antenna with 

Slotted Ground 

For the second example, consider the T-slot planar inverted 

F handset (PIFA) antenna proposed in [38]. Its geometry is 

shown in Fig. 7. The bandwidth is increased by removing two 

portions of the metallization at the ground plane. The antenna 

design is intended to operate at the following bands: GSM900 

(880-960 MHz), GSM1900 (1850-1990 MHz), UMTS2100 

and WCDMA2100 (1920-2170 MHz).  

1) Design Parameters 

The PIFA is implemented on a substrate with a relative 

permittivity r = 2.2, a dielectric loss tangent tan( = 0.009 

and a thickness H = 3.962 mm. The design parameters values 

are defined as W1 = 3.83 mm, W2 = 8.85 mm, W3 = 11 mm, W4 

= 1.54 mm, L1 = 8.10 mm, L2 = 20.34 mm, Lp = 24 mm, Yf = 

14 mm, Xf = 19.16 mm, Yg = 18.9 mm and, Xg = 1 mm.  

The structure is implemented in COMSOL by using the 

simulation bounding box dimensions, boundary conditions, 

and the meshing scheme proposed in [38]. All metals are 

defined as perfect electric conductors. We use a relatively 

coarse resolution discretization, such that each frequency 

sweep takes around 2 min 20 s. 

2) Surrogate Model Implementation 

To develop the surrogate model, we define as design 

variables the parameters x = [W1   W2   L1   L2]T, using as a 

reference design x(0) = [3.83   8.85   8.10   20.34]T (mm), over 

a region defined by  = ± [5%  5%  5%  5%]T. The EM 

response of the antenna at x(0) is illustrated in Fig. 8. To 

  

  
a) 

  

  
b) 

Fig. 5. Comparison between EM model and polynomial surrogate 

model responses at some testing base points, for the SIW example. 

Polynomial surrogate obtained from: a) a star distribution; and b) a 

box distribution of learning base points.  

 

 
a) 

 
b) 

Fig. 6. Maximum testing errors for |S21| of the SIW interconnect 

using a uniform testing base point distribution with K = 4 and using: 

a) a star distribution of learning base points (2n = 4); b) a box 

distribution of learning base points (2n = 4).  
 

TABLE I 

SIW INTERCONNECT SURROGATE MODELS PERFORMANCE FOR |S21| 

model 
star distribution  box distribution 

ϵTmax ϵLmax  ϵTmax ϵLmax 

RSM 0.16921 1.93e-14  0.15296 8.44e-15 

PSM 0.11067 0.08567  0.12502 0.096922 

SVM 0.16160 0.14324  0.16686 0.083662 

Kriging 0.19523 0.12441  0.15086 0.150860 

GRNN 0.20462            0  0.17695              0 
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measure the generalization performance of the resultant 

surrogate model we use a uniform distribution of testing base 

points with K = 3 (resulting 81 testing base points).  

For both learning base point distributions, the maximum 

absolute testing errors as well as the order of the polynomial 

implemented at each simulated frequency points are shown in 

Fig. 9. Notice that, for the star distribution, a polynomial order 

higher than 2 is not required, while for the box distribution, a 

polynomial order higher than 4 is not required.  

EM responses of the surrogate model at some testing base 

points, with polynomial surrogates trained with both learning 

base point distributions, are shown in Fig. 10. It is seen that 

there is an excellent match between the fine and the surrogate 

model responses at the testing base points. 

3) Performance Comparison 

Using the same learning and testing base point distributions, 

the corresponding maximum absolute testing errors at each 

simulated frequency point, for the five implemented surrogate 

models, are shown in Fig. 11. Numerically, Table II shows the 

largest maximum absolute learning and testing errors for the 

 
a) 

 
                              b)                                           c) 

Fig. 7. T-slot dual band PIFA handset antenna: a) 3D view, b) top 

view, c) bottom view. From [38]. 
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Fig. 8. EM response of the T-slot dual band PIFA antenna at the 

reference design x(0). From [38].  

 
a) 

 
b) 

Fig. 9. Surrogate model maximum absolute testing error (solid line) 

and polynomial order (dotted line), at each frequency point, for the 

PIFA example, using: a) a star distribution; b) a box distribution of 

learning base points. 

  

 

 
a) 

 

 
b) 

Fig. 10. Comparison between EM model and polynomial surrogate 

model responses at some testing base points, for the PIFA example. 

Polynomial surrogate obtained from: a) a star distribution; and b) a 

box distribution of learning base points. 
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surrogate models. Again, these results indicate that the 

proposed polynomial-based surrogate model achieves the best 

generalization performance. 

C. Package Via-Stripline Interconnect 

Finally, as a third example, consider the package via-

stripline-via interconnect shown in Fig. 12 (similar to that one 

in [39]). The interconnect starts with a coaxial port in contact 

with a via pad, whose via connects the top and middle layers. 

In the middle layer there is a stripline. At the end of the 

stripline there is another via that goes up to the top layer and 

connects to the other coaxial port.  

1) Design Parameters 

The interconnection is implemented on an FR4 substrate 

with a relative dielectric permittivity r = 3.34, a loss tangent 

tan ( = 0.018, and thickness H1 = H2 = 22.5 m. The length 

and width of the stripline are ltr = 3000 m and Wtr = 21 m, 

respectively. Vias, pads and antipads radius are rlv1 = rlv2 = 26 

m, r2p1 = r1p1 = r2p2 = r1p2 = 54 m, r1a1 = r1a2 = 104 m, r2a1 = 

r2a2 = 220 m. Distances from the interconnect to lateral and 

front walls are xgap = ygap = 280 m, respectively. Lossless 

metals with thickness t = 15 m are used (thick metals). 

The structure is implemented in COMSOL by using the 

simulation bounding box dimensions, boundary conditions, 

coaxial ports, and the meshing scheme proposed in [39]. We 

use a relatively coarse resolution discretization, such that each 

frequency sweep takes approximately 3 min. 

2) Surrogate Model Implementation 

For developing the surrogate model of the interconnect we 

use as input parameters the pads radius with r1p = r1p1 = r1p2. 

Then, x = r1p. We use as a reference design x(0) = 54 (m) over 

a region defined by  = ± 5%. The EM response of the 

interconnect at x(0) is shown in Fig. 13. 

To measure the generalization performance of the resultant 

polynomial surrogate model we use a uniform distribution with 

K = 10. Since this is a one-design variable example, star and 

box distribution yields to the same 2 learning base points, 

corresponding to the limits of the modeling region. 

The maximum absolute testing errors as well as the order of 

the polynomial implemented at each simulated frequency point 

are shown in Fig. 14. Notice that a polynomial order higher 

than 2 is not required.  

 
a) 

 
b) 

Fig. 11. Maximum testing errors for |S11| of the PIFA antenna using a 

uniform testing base point distribution with K = 3 and using:  a) a 

star distribution of learning base points (2n = 6); b) a box 

distribution of learning base points (2n = 8). 
 

TABLE II 

PIFA ANTENNA SURROGATE MODELS PERFORMANCE FOR |S11| 

model 
star distribution  box distribution 

ϵTmax ϵLmax  ϵTmax ϵLmax 

RSM 0.116770 0.080603  0.114430 0.107880 

PSM 0.098251 0.054615  0.061406 0.013724 

SVM 0.176450 0.077729  0.166740 0.166740 

Kriging 0.106600 0.022197  0.066893 0.013126 

GRNN 0.170990 0.081205  0.162690 0.162690 
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c) 

Fig. 12. Via-stripline package interconnect: a) 2D top view (top 

layer), b) middle layer 3D-model, and c) cross section. 
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The EM responses of the surrogate model at some testing 

base points are shown in Fig. 15. As in the previous examples, 

a very good match is obtained between the fine and the 

surrogate model responses at the testing base points. 

3) Performance Comparison 

Performance comparison for the five implemented surrogate 

models is illustrated in Fig. 16. Numerically, Table III shows 

the largest maximum absolute learning and testing errors for 

each implemented surrogate model. Once again, the results 

confirm that the polynomial surrogate model achieves the best 

generalization performance. 

V. DISCUSSION ON THE MODELING REGION SIZE AND 

POTENTIAL APPLICATIONS 

In all the previous examples (five different cases in total), 

we consider a relatively small modeling region size, using 

symmetric deviations of 5% for each design variable. The 

corresponding results for the surrogate models show that the 

proposed PSM exhibits the best performance, according to the 

generalization error, in all the five cases. We also implemented 

these examples using larger regions, with deviations of ±10% 

and ±15% for each design variable. The corresponding 

numerical results are in Tables IV to IX. It is seen that when 

using deviations of ±10%, the proposed PSM has the best 

performance in 4 out of the 5 cases, while when using 

deviations of ±15%, PSM shows the best performance in 3 out 

of the 5 cases. In those cases where PSM does not have the 

best performance, it still shows a very competitive behavior 

with respect to the surrogate modeling technique with best 

performance, which turned out different for each case. We 

have observed this same general trend when using even larger 

regions, finding that, when using a large modeling region size 

combined with a small number of learning base points, none of 

these surrogate modeling approaches consistently exhibits the 

best performance. 

Our PSM technique can be useful for statistical analysis and 

yield estimations of RF and microwave circuits. A reliable 

Monte Carlo yield prediction requires a very high number of 

EM fine simulations to cover the entire statistics of possible 

outcomes [40]. To reduce this high computational cost, a PSM 

could be developed around the nominal design considering 

typical parameter tolerances due to the manufacturing process 

variability, which are usually small. Then, the statistical 

analysis could be realized directly on the PSM surrogate 

model, which is computationally cheap to develop, extremely 

fast to evaluate, and accurate for a small design region. 

Our PSM methodology could also be used for design 

optimization of RF and microwave circuits. At each iteration, a 

0 10 20 30 40
0

0.05

0.1

0.15

frequency (GHz)

|S
1

1
|

R
f
(x

(0))

 

 

 
Fig. 13. EM response of the via-stripline interconnect at reference 

design x(0).  

 

 
Fig. 14. Surrogate model maximum absolute testing error (solid line) 

and polynomial order (dotted line) at each simulated frequency point 

for the via-stripline package interconnect example. 

  

  
Fig. 15. Comparison between EM model and polynomial surrogate 

model responses at some testing base points for the via-stripline 

package interconnect. 
 

 
Fig. 16. Max. testing errors for |S11| of the via-stripline package inter-

connect using a uniform testing base point distribution with K = 10. 
 

TABLE III 

PACKAGE INTERCONNECT SURROGATE MODEL PERFORMANCE FOR |S11| 

model ϵTmax ϵLmax 

RSM 0.004435 3.15E-16 

PSM 0.004435 0.001623 

SVM 0.011196 0.010852 

Kriging 0.009493 0.009354 

GRNN 0.005134 0.000146 

 



ID TMTT‐2016‐07‐0763.R4 (IMS2016 <198-FL441>) 

 

9 

PSM model with a reduced number of learning base points 

around the current iterate can be obtained on a relatively small 

region; the optimal solution of the current PSM model would 

yield the next iterate, around which a new PSM model can be 

obtained, etc. This approach should require a smaller number 

of EM fine model simulations than that one required by direct 

EM optimization. 

A third potential application for the proposed PSM 

methodology consists of using it to build mathematical maps 

between coarse and fine model design variables, for input 

space mapping approaches [41]. Since the relationship 

between fine and coarse model variables is usually not too 

complex [42], the use of low-order polynomial surrogates is 

appropriate to represent it. This application is currently being 

developed by the authors. 

VI. CONCLUSIONS 

We presented a general formulation for a polynomial 

surrogate modeling (PSM) approach exploiting the 

multinomial theorem. Some features of our proposal are: a) the 

polynomial is expanded using the multinomial theorem, which 

includes all cross terms and avoids redundant terms; b) 

globally optimal weighting factors are calculated in closed 

form using two different approaches, automatically selecting 

one of them according to the best conditioned system; c) a 

minimum number of learning base points is not required for 

developing the surrogate model; and d) the order of the 

polynomial can be different at each simulated frequency point, 

according to the local generalization performance. 

Our PSM methodology was compared with four surrogate 

modeling techniques: response surface methodology, support 

vector machines, generalized regression neural networks and 

Kriging; by modeling three microwave structures. Our 

proposal showed the best performance when the size of the 

region of interest is small, and a very good performance for 

larger regions, in spite of its simplicity of formulation and 

implementation. Our PSM methodology proves to be an 

excellent candidate for developing EM surrogate models when 

the amount of base points is very limited and the size of the 

region of interest is relatively small. 
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