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Biological Neuron

(Kartalopoulos, 1996)
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axon

dendritic tree

axonic endingnucleus
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Artificial Neural Networks (ANNs)

§ An Artificial Neural Network (ANN) is a massively parallel 
distributed processor made up of simple processing units, 
that is able of acquiring knowledge from its environment 
though a learning process

§ ANNs are also information processing systems that emulate 
biological neural networks: they are inspired in the ability of 
human brain to learn from observation and generalize by 
abstraction
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Artificial Neurons

§ An artificial neuron is a simple processing unit that receives 
and combines signals from many other neurons

§ Common types of artificial neurons are:
Linear Neurons
Inner-Product Nonlinear Neuron
Euclidean Distance Neuron
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Linear Neuron

vk = [vk1 … vkn]T vector of inputs

wk = [wk1 … wkn]T vector of weighting factors 

bk bias or offset term

zk activation potential or induced local field, output signal
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Inner Product Nonlinear Neuron
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vk = [vk1 … vkn]T inputs wk = [wk1 … wkn]T weighting factors 

bk bias or offset term sk activation potential

zk output signal

ϕk(sk)  activation function or squashing function
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Typical Activation Functions

Sigmoid or logistic function
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Some ANN Paradigms

§ Multilayer Perceptrons

§ Radial Basis Functions

§ Recurrent Neural Networks
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3-Layer Perceptrons (3LP)
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Automated Model Generation (AMG)

Fast
neural
model

EM simulators
(examples used: 

Ansoft HFSS, 
Sonnet em, 

Faustus MEFiSTo)

AMG

• Data sampling and generation

• ANN structure adaptation

• Over-learning detection

• Under-learning detection

• Other actions as needed

User-required
accuracy
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AMG for Spiral Inductor

Data Generators: 
Sonnet em 
Ansoft-HFSS

εr

S W

….

RS11     IS11     RS12     IS12

w    s     ε f

0.85%Advanced AMG
(KAMG-PKI)

2.34%AMG

6.25%Conventional 
training

Testing 
Error

ANN Training 
TechniqueAMG uses data sampling algorithm to 

sample data at critical locations. With the 
same amount of training data, AMG obtains 
better model accuracy than conventional 
training techniques.

Model accuracy under limited training data
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Inverse Modeling by Neural Network

(Waveguide Filter Example, H. Kabir, Y. Wang, M. Yu and Q. Zhang, 2006)

Data Generator:  Ansoft-HFSS (3D EM)

I/O coupling iris

Coupling screws

Tuning screws

Internal coupling iris

I/O coupling iris

Input neurons: electrical parameters
Output neurons: geometrical parameters
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Filter Dimensions By Neural Net vs Measurement

-0.0011.8641.865Cavity length

0.0040.1150.111M12/M34 coupling screws

0.0020.1350.133M22/M33 tuning screws

-0.0400.0050.045M11/M44 tuning screws

0.0040.2160.212M14 iris

-0.0020.2970.299M23 iris

00.4050.405I/O irises

Difference
(inch)

Measurement
(inch)

Neural Model
(inch)
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Time-Domain Modeling by Neural Networks

Location of conducting posts (d ) controls 

pass band behavior

Data Generator:  MEFiSTo 3D Professional

WR-28 Rectangular Waveguide Ka-band (26.5 to 40Ghz)

u(t)

τ

….

f(t)

y(t-τ )  y(t-2τ) x(t-τ )  x(t-2τ)

τ τ τ

d

Recurrent neural network (RNN)

(With see thru top)
1

2
a = 280 mil

a

b

b = 140 mil

d

d
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EM and RNN Transient Responses

t (ns)

f1

0 0.2 0.4 10.6 0.8

d = 3.88 mm

d = 5.17 mm

d = 4.53 mm

f21

0 0.2 0.4 10.6 0.8

d = 3.88 mm

d = 5.17 mm

d = 4.53 mm
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… EM test data (MEFiSTo)
RNN
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EM-based Interpolating Surrogates 

for Yield Estimation using 

Neural Space Mapping Methods

18

EM-based Statistical Analysis

§ Statistical analysis and yield prediction are crucial for 
manufacturability

§ Reliable yield prediction typically requires massive amount 
of high-fidelity simulations (full-wave EM simulations)

§ Performing Monte Carlo yield analysis by directly using 
EM simulations is not feasible for most practical problems

§ Using an interpolating surrogate based on linear-input 
neural-output space mapping can be a solution
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Input Space Mapping

coarse
model

xc
P

fine
model

Rf (xf ,ψ)
ψ

xf

Rc(P(xf),ψ)

fine
model

Rf (xf ,ψ)
ψ
xf coarse

model
xc

ψ
Rc(xc,ψ)

Rf (xf
SM,ψ) ≈ Rc(xc

*,ψ)

L Rc(P(xf
SM)) can not 

accurately estimate the 
fine model yield 
around xf

SM

☺
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Linear-Input Neural Output Space Mapping

coarse
model

xc
P

fine
model

Rf (x f ,ψ)
ψ

xf

w

Q
ANN

Rc(P(x f),ψ)

Q(Rc(P(xf),ψ), xf,ψ, w)

),(),,),,(( * ??? ffffc xRwxcBxRQ =+
for all xf and ψ in the training region
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LINO-SM approach to Yield Estimation

Calculate xf  
SM and P through 

input space mapping

Generate learning and testing 
data around xf

SM according to 
tolerances

Start

End

Obtain xc
* by optimizing 

the coarse model  

Obtain Q by training an   
output neuro mapping

Calculate yield using
 Q(Rc(P(xf),ψ),xf,ψ)) 
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Constrained Broyden-Based SM
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Generating Learning and Testing Points

testing base point
learning base point

xf
SM

xf 1

xf 2

xf 3

2n+1 learning base points in a star distribution
2n testing base points in a rotated star 
distribution
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Training the Output Neuro Mapping

Begin 
Generate RCL, RCT, RFL and RFT 
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Microstrip Notch Filter
 

εr

H

W50

W50

Lc

Lp

W50

W50

Lc

Lc

W50

W50

Lp

SgSg

Lo

Lo

Lo

xf = [Lc Lo Sg]T

H = 10mil
W50 = 31mil
εr = 2.2
loss tan = 0.0009
(RT Duroid 5880)

Specifications:
|S21| ≤ 0.05 for 13.19GHz ≤ f ≤ 13.21GHz

|S21| ≥ 0.95 for  f ≤ 13GHz and f ≥ 13.4GHz  
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Microstrip Notch Filter – Fine Model

1

2

Hair

ygap

ygap

ygap

Hair = 60 mil
Lp = ½(Lo+Lc)
Ygap = Lo
grid = 0.5mil×0.5mil
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Microstrip Notch Filter – Coarse Model

Mclin
Mclin

W=W50
L=Lc
S=Sg

Mclin

W=W50
L=W50

W=W50
L=Lc
S=Sg

outin

W=W50
L=Lc
S=Sg

W=W50
L=W50

var W50 31mil
var Lp 31mil 
var Lzero 1e-9mil

W=W50
L=Lp

W=W50
L=Lp

MSub RT-Duroid-5880
H=10mil
ER=2.2
TAND=0.0009
LEVEL=2

var Lc 143mil
var Lo 158mil
var Sg 8mil

Preassigned Parameters:Optimization Variables:

L=Lo
W=W50 L=Lzero

W=W50

L=Lo
W=W50

L=Lzero
W=W50

L=Lo
W=W50 L=Lzero

W=W50
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Microstrip Notch Filter – Starting Point
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Microstrip Notch Filter – SM Solution
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Microstrip Notch Filter – Training Q

0 1 2 3 4 5
-1.6
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-1.2

-1

-0.8
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-0.4

-0.2

0

hidden neurons, h

log
10

(ε
L
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log10(ε
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tolerance region: ±0.5mil



2008 IEEE MTT-S International Microwave Symposium, Atlanta, GA, June 15, 2008
Tutorial on Advances in CAD Techniques for EM Modeling and Design (TSC)

Fast Parametric Models for EM Design Using Neural Networks and Space Mapping
Q.J. Zhang, Carleton University, Canada; José E. Rayas-Sánchez, ITESO, Mexico

31

Microstrip Notch Filter – LINOSM Solution 
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Microstrip Notch Filter – LISM Yield
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Yield = 98 %

max dev: ±0.2mil
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Microstrip Notch Filter – LINOSM Yield

12.7 12.8 12.9 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency (GHz)

S
21

Q(R
c
(P(x

f
)), x

f
)

for x f around xf
SM

Yield = 58 %

max dev: ±0.2mil
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Conclusions

§ We described a method for highly accurate EM-based 
statistical analysis and yield estimation of RF and 
microwave circuits

§ It consists of applying a constrained Broyden-based linear-
input space mapping, followed by a neural-output space 
mapping, in which the responses, the design parameters and 
independent variable are mapped

§ The output neuromodel is trained using reduced sets of 
learning and testing samples

§ The resultant interpolating surrogate model is used as a 
very efficient vehicle for accurate statistical analysis and 
yield prediction


