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Abstract — The increase of analog and mixed-signal circuitry 
in modern RF and microwave integrated circuits demands for 
improved analog fault diagnosis methods. While digital fault 
diagnosis is well established, the analog counterpart is relatively 
much less mature due to the intrinsic complexity in analog faults 
and their corresponding identification. In this work, we present 
an artificial neural network (ANN) modeling approach to 
efficiently emulate the injection of analog faults in RF circuits. 
The resulting meta-model is used for fault identification by 
applying an optimization-based process using a constrained 
parameter extraction formulation. The proposed methodology is 
illustrated by a faulty analog CMOS RF circuit. 

Index Terms — analog faults, artificial neural network, gross 
faults, fault injection, fault identification, parameter extraction. 

I. INTRODUCTION

The growing need of analog and mixed signal integrated 
circuits (IC) has increased the demand not only of fault 
tolerance but also of fault detection and isolation [1]. While 
fault diagnosis techniques for digital circuits are mature and 
well established, those for analog circuits are still relatively 
unexplored. This is mainly due to three key points [2]-[4]: a) 
there are not only two possible signal values, but in principle 
an infinite number of possible values; b) the timing 
characteristics of signals are not discrete, but continuous; and 
3) the failure mode does not necessarily propagate to the
output pins of the circuit.

Analog faults are categorized as catastrophic (or gross) 
faults and parametric (or soft) faults [5]. Gross faults are 
typically caused by structural deformities, such as open and 
short circuits, while parametric faults are generally caused by 
variations of component parameters outside of their tolerance 
range. Prior work has used these two types of basic fault 
models and pursued a fault injection methodology to capture 
the circuit behavior under faulty conditions [5], [6]. 

On the other hand, as one of the knowledge-based fault 
diagnosis methods, machine learning techniques that exploit 
the use of neural networks have become the most extensively 
used method for fault diagnosis of many types of systems, 
including analog circuits [7]-[12]. Most of the previous work 
focuses on the usage of neural networks as classifiers, to 
distinguish only between faulty and non-faulty responses [13]-
[16]. Other works have used the wavelet transform as pre-
processing methods to improve not only the detection but also 
the isolation of faults [17], [18], namely, the localization of the 
specific faulty circuit component. However, they require 

complex neural networks as well as prior processing methods 
to achieve correct identification. This paper proposes using a 
simple artificial neural network (ANN) to model the effects of 
injecting gross faults to the circuit under diagnosis. Once the 
ANN is trained, it is used for fault identification through a 
simple yet efficient optimization process based on constrained 
parameter extraction, reproducing a faulty circuit response by 
optimizing the already trained ANN model inputs. A classical 
RF CMOS feedback amplifier illustrates our methodology. 

II. ANALOG FAULT MODELS

Analog fault models aim at exposing the circuit under 
diagnosis to: a) a catastrophic failure, where the circuit cannot 
operate; b) a performance degradation, where the circuit still 
works but the performance is lower than its specification; and 
c) an acceptable performance, despite having the faults. This
work employs gross fault models that emulate open and short
circuits within the main circuit topology. Opens are modeled
by using a high enough value of a serial resistance, while
shorts are modeled by using a small enough value of a parallel
resistance. The nominal values chosen for the faults in this
work are 200 MΩ for opens and 1 mΩ for shorts.

III. ANALOG FAULT INJECTION ON A CIRCUIT EXAMPLE

The circuit selected for fault injection is a classical CMOS 
negative feedback RF amplifier depicted Fig. 1, whose 
nominal voltage gain is shown in Fig. 2. 

We inject an open to the drain and source pins of each 
transistor, and a short between each pair of transistor nodes, in 
a parametrized manner, in such a way that each fault can be 
individually activated and have a specific resistive value. 
When faults are not active, the value used for opens is 1 mΩ 
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Fig. 1. Original negative feedback CMOS RF amplifier. 
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and for shorts is 200 MΩ. In this way, we guarantee that under 
no-fault conditions, the fault-injected circuit behaves as the 
original circuit, as it is confirmed in Fig. 2. 

IV.  ARTIFICIAL NEURAL NETWORK MODELING 

A. Problem Definition 

As an initial approach, we aim to neuro-model the behavior 
of the circuit when injecting a single fault at a time. We define 
the vector of ANN inputs, x, as follows: x1 represents the 
location of the fault, from one out of 8 transistors; x2 
represents one out of the 5 possible faults for each transistor 
(RD, RS, RDS, RDG and RSG), as seen in Fig. 3; and x3 represents 
the amount of deviation from the nominal fault value. Given 
that the faults are analog, their values could take in theory an 
infinite number of possible values. However, for this work we 
employ a reduced range from −5% to +5% for x3, which is a 
reasonable manufacturing tolerance. 

The output R ∈ ℜm for the ANN model, is defined as 
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where Avnf is the complex amplifier voltage gain when no 
faults are injected, Av is the gain with the injected fault, and N 
is the number of sampled frequency points. In other words, the 
neuro-modeled output represents the deviation of the circuit 
voltage gain from a no-failure condition.  

B. ANN Characteristics 

We select a 3-layer perceptron for the topology of our ANN. 
The ANN is implemented and trained using the Matlab neural 

network toolbox. We select the Bayesian regularization 
algorithm for training, and use 1,000 base points generated 
using the Sobol pseudo-random sequence to sample the 
selected solution space as uniformly as possible [19]. Out of 
the total number of base points, 70% are selected for learning 
and 30% are selected for testing. The algorithm used for 
training increases the number of neurons in the hidden layer, h, 
until the generalization performance deteriorates (similarly to 
[20]), or until the learning and testing errors are below 1%, 
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where et_old is the testing error at the previous iteration and 
et_new and el_new are the testing and learning errors, 
respectively, at the current iteration. The ANN performance 
while increasing h is seen in Fig. 4.  The final value of h is 21. 

Once the ANN is trained, we test it using 100 extra base 
points not used during training. The output from the ANN 
model is compared against actual circuit (SPICE) simulations. 
The ANN can closely predicts the circuit faulty response, with 
around 0.00635% of maximum relative error. 

V.  FAULT IDENTIFICATION BY PARAMETER EXTRACTION 

Here we exploit parameter extraction (PE) as an 
optimization problem that aims at minimizing the difference 
between a target response and the system response being 
optimized [21]. In our work, we aim at finding the input values 
x of the ANN model that minimize the difference between the 
objective function value of a faulty circuit, calculated in (1) 
and treated as the target, and the ANN output. The 
optimization procedure is executed by solving 
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where R(z) is the ANN model output and Rt is the target 
output. In our case, (3) is solved by using the Nelder-Mead 
method. In order to keep x, the ANN inputs, within feasible 
values during the optimization iterations, we use box 
constraints defined as 
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Fig. 4. ANN performance while increasing h, the number of neurons 
in the hidden layer. 

  
Fig. 2. Response (voltage gain) comparison between the original 
circuit and the fault-injected circuit with all faults inactive. 
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Fig. 3. Five possible faults in a transistor, modeled with opens on the 
drain (RD) and source (RS) terminals, and shorts between each pair of 
terminals (RDS, RDG and RSG). 



 

  
Fig. 5. Comparison between the circuit responses at predicted fault 
and those at the actual fault injected (gain magnitude and phase). 

where x1
lb = 1 and  x2

ub = 8 are the selected lower and upper 
values, respectively. Similarly, x1

lb = 1 and x2
ub = 5 correspond 

to the upper and lower values for x2. 
Given the expected high number of local minima, and to 

overcome the issue of different faults yielding a similar 
response, we use a statistical PE algorithm, where the starting 
point of the optimization procedure is slightly perturbed each 
time the normalized difference between the optimal ANN 
response and the target response is larger than a desired value, 
εPE. In our case, the value selected is εPE = 1×10−5. 

C. Fault Identification Results 

To validate the effectiveness of our proposal, we select a 
random fault as target, and followed the PE procedure. The 
values of x for the actual faults are [2 3 0.1498%]. The 
resulting values of x match exactly on x1 and x2, thus the fault 
location within the circuit and the fault type (one out of five 
possible faults) are identified precisely on each case. There is, 
however, a slight variation between the predicted (0.02967%) 
and the actual value in the variable corresponding to the 
deviation from the nominal fault value, x3. Nevertheless, the 
simulated outputs from the circuit with the identified fault 
closely resemble the outputs with the original injected fault, as 
shown in Fig. 5. This consistency was verified for other 5 
cases of different injected faults, observing a similar behavior. 

VI.  CONCLUSION 

An analog gross fault diagnosis method based on artificial 
neural networks and constrained parameter extraction was 
proposed in this paper. Our method was illustrated by injecting 
analog gross faults in a CMOS RF negative feedback 
amplifier. The gross faults were modeled as resistances with a 
high enough value in series to cause an open circuit and with a 
low enough value in parallel to cause a short circuit. The ANN 
reached the desired learning and generalization performance 
using 21 neurons at the hidden layer. The ANN was then used 
as a metamodel, with an extremely low computational cost, to 
automatically identify faults through a statistical constrained 
parameter extraction process. Following this process, we were 
able to properly identify the actual injected faults. 
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