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Abstract — The Broyden-based input space mapping (SM) 
algorithm, better known as the aggressive space mapping (ASM) 
algorithm, is revisited in this article. The most fundamental SM-
based optimization methods developed until now, in which ASM 
is framed, are overviewed. More than two decades of ASM 
evolution are briefly accounted, evidencing its popularity in both 
academia and industry. The two main characteristics that explain 
its popularity are emphasized:  1) simplicity, and 2) efficiency 
(when it works, it works extremely well). The fundamentals 
behind the Broyden-based input SM algorithm are illustrated, 
accentuating key steps for its successful implementation, as well 
as typical scenarios where it may fail. Finally, some future 
directions regarding ASM are ventured. 

Index Terms — aggressive space mapping, Broyden, EM-based 
design, non-linear systems, optimization. 

I. INTRODUCTION

Space Mapping (SM) optimization methods belong to the 
general class of surrogate-based optimization algorithms [1], 
which aim at efficiently optimizing computationally expensive 
objective functions. Prof. John Bandler invented the space 
mapping (SM) technique in 1994 [2]. This paper, based on [3], 
is focused on the Broyden-based input space mapping (SM) 
algorithm, better known as the aggressive space mapping 
(ASM) algorithm, which is the simplest and by far the most 
widely used SM design optimization approach [3].  

To place ASM into proper context, the most fundamental 
SM-based optimization methods developed until now are 
briefly mentioned. ASM evolution over more than two decades 
is accounted, in terms of both theoretical developments and 
applications, confirming its popularity in academia and 
industry. The fundamentals behind the Broyden-based input 
SM algorithm are briefly described, emphasizing key steps for 
its successful implementation, as well as typical cases where it 
may fail. Finally, some future directions regarding ASM are 
ventured.  

II. SPACE MAPPING OPTIMIZATION EVOLUTION

ASM emerged in 1995 [4]. Since then, many other SM-
based design optimization algorithms have been developed, as 
illustrated in Fig. 1. These more advanced algorithms aim at 
making SM optimization more general, more robust, and more 
efficient. Excepting perhaps implicit space mapping [8], most 
of them have a significantly higher complexity than ASM, 
making them less accessible to practicing engineers [3]. 
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Fig. 1 Fundamental design optimization methods emerged from the 
SM concept: aggressive SM [4]; hybrid ASM [5]; neural SM [6,7]; 
implicit SM [8]; neural inverse SM [9]; output SM [10]; linear 
inverse SM [11]; manifold mapping [12]; aggressive output SM [13]; 
adaptive response correction (ARC) [14]; shape-preserving response 
prediction (SPRP) [15]; SM with adjoint sensitivities [16]; SPRP 
exploiting SM [17]; SPRP using adjoint sensitivities [18]; response 
features [19,20] (emerged from ARC and SPRP). From [3]. 

III. TWO DECADES OF ASM APPLICATIONS

The most important theoretical contributions to the 
Broyden-based input SM algorithm, as well as its main 
publicly documented applications are graphically summarized 
in Figs. 2 and 3, in which the fine and coarse models utilized 
on each application case are also illustrated. Several 
observations can be inferred from those two figures: 

a. Diverse engineering disciplines. ASM has been applied not
only to electromagnetics-based design optimization of RF
and microwave circuits, as originally intended, but also to
several other areas, including magnetic circuits, mechanical
engineering, materials design, medical instrumentation,
environmental sciences, etc.

b. Diverse of CAD tools. Models of the optimized structures
have been implemented using a variety of numerical
simulators, including commercially available CAD tools
and internal tools. Physical data obtained from direct
measurements have also been used as “fine models”.

c. Diverse contributors. A very significant number of
theoretical contributions and applications have been made
from research groups outside the originator group at
McMaster University, especially for the second decade of
evolution.

d. Stable production of applications. A quite steady
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generation of engineering applications of ASM over time, 
spanning over two decades, with no signs of an imminent 
end to ASM applications. 

IV.  THE ESSENCE OF ASM 

ASM starts by finding the optimal coarse model design xc
* 

that yields the target coarse model response, Rc(xc
*) = Rc

*, and 
serves as the starting point for the fine model design 
parameters xf. The central part of the Broyden-based input SM 
algorithm is the parameter extraction process [3], which can be 
interpreted as a multidimensional vector function P 
representing the mapping between both design parameter 
spaces, xc

(i) = P(xf
(i)). If the current extracted parameters xc

(i) 
correspond approximately to xc

*, then the current fine model 
response approximates the desired response, Rf(xf

(i)) ≈  Rc
*. It 

is seen that the ASM algorithm iteratively finds a solution to 
the following system of nonlinear equations 
 *

cff )()( xxPxf −=  (1) 
since any root xf

SM of the above system of equations f(xf) 
implies that Rf(xf

SM) ≅  Rc
*.  

A typical evolution of ASM from the perspective of the 
system of nonlinear equations associated to the mapping 
function is illustrated in Fig. 4, where the Broyden matrix B is 
initialized with the identity (a one-dimension design 
optimization problem is considered for simplicity). In this 
illustration, it is assumed that the initial design is very bad (or 
a very deviated coarse model), implying a very large value of || 
f(xf

(0))||. In spite of that, ASM converges very quickly to a 
space mapped solution xf

SM. 
Plots in Fig. 4 also provide some insight regarding the 

famous efficiency of ASM, by which many highly complex 
problems are frequently solved in just a few fine model 
evaluations, regardless of the number of optimization 
variables, even in cases were the initial fine model response 
Rf(xc

*) is very much deviated from the target response Rc
*. As 

seen in Fig. 4, the efficiency of ASM depends on the degree of 
nonlinearity of f(xf), which in turns depends on the degree of 
nonlinearity of the mapping P between both model parameter 
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Fig. 3. Second decade of evolution of ASM: key theoretical 
contributions and main applications to design optimization. See [3]. 
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Fig. 2. First decade of evolution of ASM: key theoretical elements 
contributed to ASM and main applications to design optimization 
using ASM (indicating fine and coarse models employed). From [3]. 



 

spaces. If the mapping is relatively linear (even with a large 
offset), ASM solves the design problem in a few iterations, 
regardless of the problem dimensionality, even when the initial 
fine model response is significantly deviated from the target. 

The parameter extraction process is the weakest part of 
ASM, since this optimization sub-problem may present 
multiple local minima, some of them yielding a good match 
(several coarse model designs able to approximate with 
acceptable accuracy the current fine model response). The 
non-uniqueness of the parameter extraction solution may lead 
to oscillations or even divergence in the ASM algorithm [21]. 
Several successful strategies are known to overcome this 
difficulty [22]. 

V. FUTURE DIRECTION AND CONCLUSION 

Based on the most recent applications of ASM, it is seen a 
trend towards the development of fully automated CAD tools 
based on ASM, for efficient and accurate synthesis and design 
optimization algorithms dedicated to particular structures in 
specific technologies. This trend might lead to the future 
incorporation of ASM into industrial CAD tools as built-in 
design functions for specific structures. 

This paper recognizes Prof. Bandler as one of the founders 
and most influential figures of the MTT-S CAD arena.  
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Fig. 4. Typical evolution of the aggressive space mapping (assuming 
a one-dimension design optimization problem and a very bad initial 
design): a) initial fine model response calculated, first extracted 
parameters are very different to xc*; b) Broyden matrix is initialized 
with the identity and first iterate is predicted; c) Broyden matrix is 
updated with formula and next iterate calculated; d) Broyden matrix 
is updated and next iterate is practically a root (extracted parameters 
are practically equal to xc*). From [3]. 

 


