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The NARX neural network has a recurrent architecture based on a class of               

discrete-time nonlinear systems called Nonlinear Autoregressive with eXogenous      

inputs (NARX), which is mathematically represented by: 

Where, u(t) and y(t) : the inputs and outputs of the system at time t, respectively, 

du  and dy : the embedded input and output memory, respectively, 

f is a nonlinear function, that represents the behavior of the system to be modeled.  

       1 ,... , 1 ,...y f u t u t du y t y t dy      

When  f  is approximated by a Multilayer 

Perceptron (MLP), the topology is called  

NARX neural network. 

DPD model with NARX Network 

PREDISTORTER block: The neural architecture 

is used to process the input signal of the PA.  

The DPD model with NARX uses an         

indirect learning architecture and linearize 

the memory effects of the PA. 

PREDISTORTER TRAINING block: The model of the 

inverse characteristics of the PA is obtained by the 

training of the NARX network. 

Experimental Results  

 

Abstract - This work presents a novel Digital Predistortion (DPD) scheme 

based on a NARX network, suitable for linearizing power amplifiers (PAs). The 

NARX network is a Recurrent Neural Network (RNN) with embedded memory 

that allows efficient modeling of nonlinear systems. Its neural architecture is 

very effective to  model long term  dependencies, such as the typical memory   

effects of PAs. To demonstrate the feasibility of the NARX network as a DPD 

system, a GaN class F PA with two LTE signals with 5 MHz of bandwidth is 

used. Experimental results show a distortion correction better than 10 dB. 

INTRODUCTION  

Digital Predistortion (DPD) is nowadays the most widely used technique to linearize Power Amplifiers (PAs), due 

to its high capability to correct distortion using digital signal processing (DSP).  Recently,  Recurrent Neural Net-

works (RNN) have provided effective modeling solutions for memory effects of PAs. Different topologies have 

been proposed to linearize PAs with memory effects. All these include experimental validations with class B, AB or 

Doherty PAs.  There are few published studies that use DPD techniques to linearize class F PA.  In this work, we 

present a novel DPD technique based on an RNN called NARX network. Our proposed DPD model based on 

NARX network was experimentally validated by using an indirect learning architecture to linearize long term 

Conclusions 

This paper presents a DPD technique based on a NARX neural     

network to linearize class F PAs with high nonlinearities and long-

term memory effects. The NARX network has a recurrent neural            

architecture with embedded memory in the input and output that 

proves to be highly effective to model long-term dependencies,   

possesses fast convergence and a good generalization performance. 

The proposed DPD model has the capability of modeling the        

nonlinearities and the long-term memory effects of the PAs.          

Experimental results with a class F PA using two contiguous LTE 

signals centered at 2 GHz,  verify the usefulness of the NARX       

network as an effective DPD scheme for class F PAs. 
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The experimental setup was implemented to linearize a GaN class F PA. The 

tests are performed under a simulation environment with hardware verification. 

The GaN class F PA is designed at 2 GHz. The input signal is an LTE with   

Carrier  Aggregation of two contiguous 2x5 MHz components carriers.  

Fig. 4. Comparison of the AM-AM  and AM-PM characteristics of the PA between 

the measurements and the inverse model.  

Fig. 3. Measurement setup for the validation of the DPD model based on NARX network.   

Fig. 5. Performance DPD model based in NARX network . 

Fig. 3. Neural architecture of the NARX network in the PT block. 

The output of the hidden layer G(k) for each neuron is given by: 

 

 

 

Where the activation function g  is given by a tansig function and:  

   

 

 

 

being  du and dy are the memory order of the input and output, respectively, and  k = 1,2,…,m  are the number of 

neurons in the hidden layer. 

 

The outputs of the inverse model are : 

The NARX networks parameters to obtain the inverse model of the AM-AM 

and  AM-PM characteristics were: 4 memory order, 10 neurons, 61440 samples  

divided in training (40%), validation (40%), and test (20%).   

NARX Neural Network 
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