
Instituto Tecnológico  
y de Estudios Superiores de Occidente 

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 
15018, publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976. 

 

Departamento de Electrónica, Sistemas e Informática  
Maestría en Sistemas Computacionales 

 
 

 

 
 

Adaptive Big Data Pipelines 

 
TRABAJO RECEPCIONAL que para obtener el GRADO de 

MAESTRO EN SISTEMAS COMPUTACIONALES 
 

Presenta: ING. ALDO OROZCO GÓMEZ SERRANO  
 

Elija un elemento. PH.D. ALBERTO DE OBESO ORENDAIN  
 

Tlaquepaque, Jalisco. 22 de septiembre del 2020 
 



2 
 

ACKNOWLEDMENT 
First of all, I am very much obliged to my parents, Laura and Hector, who, mostly inadvertently, motivated 
me during this journey by always exemplifying that virtue can only be achieved through hard work and 
perseverance. In a similar manner, I also want to thank my nephew, Dante, whom I deeply respect and 
consider as my own son, for he has indirectly given me the courage to carry on despite the circumstances. 

I would also like to express my gratitude to the Consejo Nacional de Ciencia y Tecnología (CONACYT) 
for granting me the scholarship number 923982 thanks to which I was able to successfully complete my 
master’s degree. 

I am also very grateful towards my thesis tutor, ex-boss and good friend, Alberto De Obeso, who provided 
me with guidance as well as feedback whenever needed and, above all, was the first person to trust my 
skills and gave me the opportunity to switch careers despite my lack of experience in the area, to what 
ultimately became my current passion: big data.  

Lastly, I want to extend my gratitude to Apex Systems—formerly known as Intersys Consulting—and my 
current employer, Wizeline, for providing me with financial support during parts of this master’s degree. 



3 
 

AGRADECIMIENTOS 
Primero que nada, quiero agradecer a mis padres, Laura y Héctor, quienes sin darse cuenta me motivaron 
durante este viaje al siempre ejemplificar que la virtud solo puede ser adquirida a través de trabajo duro y 
perseverancia. De forma similar quiero agradecerle a mi sobrino, Dante, a quien respeto profundamente y 
considero como mi propio hijo, puesto que el me ha dado indirectamente el coraje de seguir adelante a 
pesar de las circunstancias. 

También deseo expresar mi gratitud al Consejo Nacional de Ciencia y Tecnología (CONACYT) por 
otorgarme la beca con numero 923982, gracias a la cual fui capaz de terminar mis estudios de forma 
exitosa. 

Asimismo, estoy muy agradecido con mi asesor de tesis, exjefe y buen amigo, Alberto de Obeso, quien 
me guio y proveyó retroalimentación siempre que la necesitaba y, sobre todo, porque fue la primera 
persona en confiar en mis habilidades y darme la oportunidad de iniciar una nueva carrera a pesar de mi 
falta de experiencia en el área, lo que finalmente me llevo a mi actual pasión: big data. 

Finalmente deseo extender el agradecimiento a Apex Systems—anteriormente conocido como Intersys 

Consulting—y a mi empleador actual, Wizeline, por apoyarme económicamente durante partes de este 
grado académico.  



4 
 

DEDICATION 
To my parents, friends, and wholeheartedly to anyone who supported or has supported me during my 
technological, mental and spiritual evolution; I truly hope that you find the same inspiration that led me to 
this exciting path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

DEDICATORIA 
A mis padres, amigos y, de todo corazón, a todos aquellos que me dieron o siguen dándome apoyo durante 
mi evolución tecnológica, mental y espiritual; de verdad espero que encuentren la misma inspiración que 
me llevo a este emocionante camino. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

ABSTRACT 
Over the past three decades, data has exponentially evolved from being a simple software by-product to 
one of the most important companies’ assets used to understand their customers and foresee trends. 

Deep learning has demonstrated that big volumes of clean data generally provides more flexibility and 
accuracy when modeling a phenomenon. However, handling ever-increasing data volumes entail new 
challenges: the lack of expertise to select the appropriate big data tools for the processing pipelines, as 
well as the speed at which engineers can take such pipelines into production reliably, leveraging the cloud. 

We introduce a system called Adaptive Big Data Pipelines: a platform to automate data pipelines creation. 
It provides an interface to capture the data sources, transformations, destinations and execution schedule. 
The system builds up the cloud infrastructure, schedules and fine-tunes the transformations, and creates 
the data lineage graph. 

This system has been tested on data sets of 50 gigabytes, processing them in just a few minutes without 
user intervention. 

 

 

 

 

 

 

 

 

 

 

 
 



7 
 

RESUMEN 
En las ultimas tres décadas, los datos evolucionaron exponencialmente de ser un simple subproducto de 
software a ser uno de los activos mas importantes de las compañías que se usan para entender a sus clientes 
y prever tendencias. 

El Deep Learning ha demostrado que grandes volúmenes de datos limpios proveen mayor flexibilidad y 
precisión cuando se modela un fenómeno. Sin embargo, manejar volúmenes de datos que se incrementan 
constantemente conlleva nuevos desafíos: la falta de experiencia para seleccionar las herramientas de datos 
apropiadas para la construcción de tuberías de procesamiento de datos, así como la velocidad con la cual 
se pueden llevar dichas tuberías a producción de forma confiable, aprovechando la nube. 

Presentamos un sistema llamado Adaptive Big Data Pipelines: una plataforma para automatizar la creación 
de tuberías de datos. Provee una interfaz para capturar fuentes de datos, transformaciones, destinos y 
agenda de ejecución. El sistema construye la infraestructura de nube, agenda y refina las transformaciones 
y crea el grafo de linaje de datos. 

El sistema ha sido probado en conjuntos de datos de 50 gigabytes, procesándolas en tan solo un par de 
minutos sin intervención humana. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

1. TABLE OF CONTENTS 
ACKNOWLEDMENT ....................................................................................................................................... 2 

AGRADECIMIENTOS ..................................................................................................................................... 3 

DEDICATION .................................................................................................................................................... 4 

DEDICATORIA ................................................................................................................................................. 5 

ABSTRACT ........................................................................................................................................................ 6 

RESUMEN .......................................................................................................................................................... 7 

FIGURES .......................................................................................................................................................... 11 

TABLES ............................................................................................................................................................ 12 

ACRONYMS AND ABBREVIATIONS ........................................................................................................ 13 

2. INTRODUCTION ................................................................................................................................... 14 

2.1. BACKGROUND .................................................................................................................................... 14 
2.2. JUSTIFICATION ................................................................................................................................... 15 
2.3. PROBLEM DESCRIPTION ...................................................................................................................... 16 
2.4. HYPOTHESIS ....................................................................................................................................... 17 
2.5. OBJECTIVES ....................................................................................................................................... 18 

2.5.1. General objective .................................................................................................................................. 18 
2.5.2. Specific objectives ................................................................................................................................ 18 

2.6. SCIENTIFIC, TECHNOLOGICAL NOVELTY OR CONTRIBUTION .............................................................. 19 

3. STATE OF THE ART ............................................................................................................................. 20 

3.1. GOOGLE FILE SYSTEM (GFS) ............................................................................................................. 20 
3.2. MAPREDUCE ...................................................................................................................................... 20 
3.3. DREMEL ............................................................................................................................................. 21 
3.4. HADOOP ............................................................................................................................................. 22 
3.5. HIVE ................................................................................................................................................... 24 
3.6. AMAZON WEB SERVICES (AWS) ....................................................................................................... 26 
3.6.1. AMAZON EC2 ................................................................................................................................ 27 
3.6.2. AMAZON S3 ................................................................................................................................... 27 
3.6.3. AMAZON IAM ................................................................................................................................ 28 
3.6.4. AMAZON VPC ................................................................................................................................ 28 
3.6.5. AMAZON EMR ............................................................................................................................... 29 
3.6.6. AWS GLUE .................................................................................................................................... 29 
3.6.7. AMAZON ATHENA .......................................................................................................................... 29 
3.7. AIRFLOW ............................................................................................................................................ 30 
3.8. SPARK ................................................................................................................................................ 30 
3.9. ARROW .............................................................................................................................................. 32 



9 
 

3.10. PARQUET ........................................................................................................................................ 32 
3.11. PRESTO .......................................................................................................................................... 33 
3.12. ATLAS ............................................................................................................................................ 34 
3.13. SPLINE ........................................................................................................................................... 36 
3.14. TERRAFORM ................................................................................................................................... 37 
3.15. GIT ................................................................................................................................................. 37 
3.16. DOCKER ......................................................................................................................................... 38 
3.17. KUBERNETES ................................................................................................................................. 39 

4. RELEVANT CONCEPTS ...................................................................................................................... 40 

4.1. SQL ................................................................................................................................................... 40 
4.2. DATA WAREHOUSE ............................................................................................................................ 40 
4.3. ETL .................................................................................................................................................... 41 
4.4. VERTICAL AND HORIZONTAL SCALING ............................................................................................... 41 
4.5. DISTRIBUTED SYSTEMS ...................................................................................................................... 42 
4.6. BIG DATA ........................................................................................................................................... 43 
4.7. NOSQL .............................................................................................................................................. 44 
4.8. DATA LAKE ........................................................................................................................................ 46 
4.9. ELT .................................................................................................................................................... 46 
4.10. BATCH AND STREAMING PROCESSING ............................................................................................ 47 
4.11. DATA GOVERNANCE ...................................................................................................................... 47 
4.12. CLOUD PLATFORMS ........................................................................................................................ 48 
4.13. INFRASTRUCTURE AS CODE ........................................................................................................... 50 
4.14. MICROSERVICES ............................................................................................................................ 51 
4.15. SERVERLESS ................................................................................................................................... 52 
4.16. REST ............................................................................................................................................. 53 
4.17. DATA ENGINEERS, ANALYSTS AND SCIENTISTS .............................................................................. 54 

5. APPROACH ............................................................................................................................................. 56 

5.1. METHODOLOGY ................................................................................................................................. 56 
5.2. USER STORIES .................................................................................................................................... 57 
5.3. REQUIREMENTS .................................................................................................................................. 58 
5.4. ASSUMPTIONS .................................................................................................................................... 59 
5.5. PROPOSAL .......................................................................................................................................... 60 
5.5.1. ARCHITECTURE .............................................................................................................................. 60 
5.5.2. DESCRIPTION ................................................................................................................................. 60 

6. EXPERIMENTS AND RESULTS ......................................................................................................... 64 

6.1. TABLES .............................................................................................................................................. 65 
6.1.1. USERS ............................................................................................................................................ 65 
6.1.2. SESSIONS TO USERS ........................................................................................................................ 66 
6.1.3. SESSIONS PURCHASES .................................................................................................................... 66 
6.2. AUTOMATING DATA GENERATION ...................................................................................................... 66 
6.3. DATACENTER REMOTE SETUP ............................................................................................................ 67 
6.4. SPIN UP LOCAL SERVICES ................................................................................................................... 69 



10 
 

6.5. BENCHMARK ...................................................................................................................................... 75 
6.5.1. ADAPTIVE BIG DATA PIPELINES .................................................................................................... 75 
6.5.2. DATA ENGINEER AND DEVOPS ENGINEER ..................................................................................... 76 
6.5.3. DATA ANALYST ............................................................................................................................. 77 
6.6. SUMMARY .......................................................................................................................................... 78 

7. CONCLUSIONS ...................................................................................................................................... 79 

7.1. CONCLUSIONS .................................................................................................................................... 79 
7.2. FUTURE WORK ................................................................................................................................... 81 

REFERENCES ................................................................................................................................................. 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

FIGURES 
Figure 1 - MapReduce execution overview [2] ......................................................................................... 21 
Figure 2 - HDFS architecture .................................................................................................................... 23 
Figure 3 - Hadoop ecosystem [8] .............................................................................................................. 24 
Figure 4 - Spark Modules [29] .................................................................................................................. 31 
Figure 5 - Components for distributed execution in Spark [29] ................................................................ 32 
Figure 6 - Project and predicate pushdown [34] ....................................................................................... 33 
Figure 7 - Apache Atlas architecture [38] ................................................................................................. 35 
Figure 8 - Atlas lineage ............................................................................................................................. 35 
Figure 9 -  Data Lineage in Spline UI ....................................................................................................... 36 
Figure 10 - Git workflow [43] ................................................................................................................... 38 
Figure 11 - Difference between horizontal and vertical scaling [60] ........................................................ 42 
Figure 12 - Big data landscape [26] .......................................................................................................... 43 
Figure 13 - Different NoSQL databases [65] ............................................................................................ 45 
Figure 14 - ETL vs ELT [68] .................................................................................................................... 47 
Figure 15 - Data Governance components [71] ........................................................................................ 48 
Figure 16 - Cloud service models [75] ...................................................................................................... 49 
Figure 17 - Scaling cube ............................................................................................................................ 51 
Figure 18 - Technical architecture of the adaptive data pipelines ............................................................. 60 
Figure 19 - ERD diagram .......................................................................................................................... 65 
Figure 20 - Data center permissions .......................................................................................................... 68 
Figure 21 - Data center security group ...................................................................................................... 68 
Figure 22 - Log into the data center .......................................................................................................... 69 
Figure 23 - Public IP location of data center ............................................................................................. 69 
Figure 24 - Disabled controls for web UI .................................................................................................. 70 
Figure 25 - New pipeline submission ........................................................................................................ 70 
Figure 26 - job_scheduler multi-part copy progress ................................................................................. 71 
Figure 27 - Data sets migrated to the data lake ......................................................................................... 72 
Figure 28 - Data sets available as Glue tables ........................................................................................... 72 
Figure 29 - New DAG created and visible from Airflow webserver UI ................................................... 73 
Figure 30 - Pipeline task being automatically executed by Airflow ......................................................... 73 
Figure 31 - Spark stage's metrics after processing the transformation ...................................................... 74 
Figure 32 - EMR cluster terminated successfully after processing ........................................................... 74 
Figure 33 - Pipeline's anatomy on Spline .................................................................................................. 74 
Figure 34 - AWS Costs ABDP April ........................................................................................................ 75 
Figure 35 - Costs benchmark ..................................................................................................................... 78 
Figure 36 - Time benchmark ..................................................................................................................... 78 
 

 

 



12 
 

 

 

TABLES 
Table 1 – Acronyms and abbreviations ..................................................................................................... 13 
Table 2 - Data warehouse vs data lake comparison [66] ........................................................................... 46 
Table 3 - HTTP status codes [83] .............................................................................................................. 53 
Table 4 - Data Analyst user stories ........................................................................................................... 57 
Table 5 - DevOps Engineer user stories .................................................................................................... 57 
Table 6 - Security Engineer user stories .................................................................................................... 57 
Table 7 - Business user stories .................................................................................................................. 58 
Table 8 – Requirements ............................................................................................................................. 59 
Table 9 - Epics to build and end-to-end pipeline ...................................................................................... 76 
Table 10 - Data Analyst Epics ................................................................................................................... 77 
Table 11 - Cost and time benchmark ......................................................................................................... 78 
 

 
  



13 
 

ACRONYMS AND ABBREVIATIONS 
ACID Atomicity, Consistency, Isolation and Durability 
ABDP Adaptive Big Data Pipelines 
API Application Programing Interface 
CRUD Create, Read, Update and Delete 
DAG Directed Acyclic Graph 
DW Data Warehouse 
EDW Enterprise Data Warehouse 
ETL Extract Transform and Load 
FSM Finite State Machine 
IaC Infrastructure as Code 
IoT Internet of Things 
JVM Java Virtual Machine 
RDBMS Relational Database Management System 
SQL Structured Query Language 
UI User Interface 
VM Virtual Machine 
YAML Yet Another Markup Language 

Table 1 – Acronyms and abbreviations 



14 
 

  

2. INTRODUCTION 

2.1. Background 
 

As with probably everything else in human history, the concept Big Data came into existence as a 
necessity: exponential economic growth. 

In the early 2000s, Google became one of the first companies in collecting and handling massive amounts 
of user data. In consequence, they soon reached the limits of storage and processing technologies and came 
up with new mechanisms to tackle the ever-increasing data demand: GFS and MapReduce. 

The Google File System (GFS) [1] is the first distributed storage solution capable of dealing with terabytes 
of data across thousands of disks. MapReduce [2] is, in contrast, the first distributed processing framework 
that breaks down a complex logic into simpler functions that are executed on a large cluster in parallel. 

Both papers marked the beginning of the big data era. Soon after their release, multiple open source tools 
emerged based on their philosophy. In particular, given the amount of data generated by increasingly 
complex and inter-connected sensors—Internet of Things (IoT). 

Below we outline the most important tools of the data ecosystem: 

• Apache Hadoop - A distributed framework for both storage and processing. Directly influenced 
by both papers. 

• Apache Hive – A data warehousing solution built on top of Hadoop. 
• Apache Spark – A distributed in-memory computing engine that is capable of 100x faster 

processing than Hadoop’s MapReduce. 
• Parquet – A columnar binary data format for analytics. 
• Amazon Web Services (AWS) – The number one cloud provider in the world at the time of 

writing. It provides countless services ranging from compute to storage on a pay-as-you-go model. 
• Terraform – An open source Infrastructure as Code (IaC) tool capable of leveraging some of the 

top cloud providers as of now. 
• Git – The de facto version control system for any software artifact. 
• Spline – A data lineage tool built specifically to interact with Apache Spark. 
• DBT – A data warehousing tool to build data pipelines on pure SQL. 
• Docker – A tool to build, manage and monitor containers. 
• Kubernetes – A distributed container orchestration service. 

 

 

 



15 
 

2.2. Justification 
 

Data analytics is the process of dissecting, aggregating, transforming and combining data sets, so that 
analysts can derive insights from them, in order for businesspeople to understand trends and detect 
anomalies. It is a crucial process in the companies’ operation as it further allows them to understand their 
customers and generate higher revenue. 

Over the last decade, deep learning has demonstrated that the more data users have, the more flexible and 
precise the modeling of a phenomenon may become. This is leading companies all over the world to collect 
more data from their customer interactions, for instance through their websites or through Internet of 
Things (IoT) devices. With this amount of data, most common technologies collapse after a few gigabytes 
are reached. 

Big data tools have matured considerably since the early 2000s, in response to this data volume soar. 
However, most of these technologies are use-case oriented, complex and require high user intervention 
and expertise to interconnect effectively. 

Companies are under competitive pressure to release products and services, see how clients interact with 
them, improve and iterate on a timely manner. Given the lack of expertise, companies often take up to a 
couple months to start organizing and analyzing the data they have and therefore may lay behind on market 
trends and react slowly to the user’s needs. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

2.3. Problem description 
 

Nowadays, Startups are materializing at an increasing pace. Although, admittedly, part of this proclivity 
is due to the media misconception and exaggeration of professional independence, it is also true that these 
small companies are tackling problems that larger companies often oversee or are unwilling to invest on. 
Technology has granted Startups the nimbleness to quickly prove hypothesis, for a given service or 
product, and improve it. Ultimately, this helps companies grow exponentially and expand their target 
market. 

Data plays a decisive role on the Startups’ success, as it provides a framework against which hypothesis 
are factually validated: if a company believes that a given service improvement will be liked by its 
customers, it will release the new service and measure how users interact and compare against previous 
iterations to see whether the experiment succeeded or failed. 

In order to generate precise hypothesis nowadays, firms are encouraged to collect and process large 
volumes of data, also known as Big Data, as they are the fuel for cutting-edge machine learning algorithms 
to achieve unprecedented precision and uncover hidden trends. The usage of big data is further facilitated 
by the open source community as it has implemented a myriad of tools to handle most data needs. 

The skills required to build an end-to-end big data solution are diverse and the offer is low, which means 
that data experts are extremely sought after, hence expensive. As such, companies often rely on software 
engineers to build a data ecosystem using open source technology. The insufficiency of fundamental 
knowledge forces them to naively adopt tools that are not suitable for the companies needs and end up 
with an inflexible and unscalable system. 

In this scenario, businesses are restricted to wait from several weeks to a few months to be able to see 
pipelines produce the desired outcome. Even when the firm achieves a fairly stable data ecosystem, 
scalability soon turns into the bottleneck. 

Proper migration to the cloud can alleviate scalability issues. However, the technical team must first 
understand a wide range of services each cloud provider offers, then create the right infrastructure and 
ultimately lay out a plan to gradually lift and shift to the cloud. This adds up to the delay to production 
causing companies to lose even more money. 

A key limitation in big data pipelines is the ability for data analysts to interact with them effectively in 
SQL, as many tools only support transformations using programming languages such as Python and Java. 

 

 

 

 

 

 



17 
 

2.4. Hypothesis 
 

Adoption of an self-deployable cloud-based data pipeline building system with a simple SQL 
interface by data analysts and business users will result in a dramatic time decrease to take advantage 
of the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

 

2.5. Objectives 
 

2.5.1.  General objective 
 

Implement a scalable data pipeline building system, capable of generating data pipelines with minimum 
user intervention, enforcing data best practices (i.e., data lake architecture, pipeline tuning and data 
governance) 

 

2.5.2.  Specific objectives 
 

1. Build containerized microservices for the different services to support the system, so that they are 
platform agnostic and isolated. 

2. Create an infrastructure-as-code (IaC) module capable of building and tearing down the 
infrastructure to minimize costs. 

3. Expose a simple web interface where users can create pipelines. 
4. Create a method to extract metadata from local source files. 
5. Implement a scheduling service capable of automatically pick up new directed acyclic graphs 

(DAGs). 
6. Develop a generic pipeline capable of handling ANSI SQL queries. 
7. Build a service capable of automatically capturing the data lineage of the data pipelines. 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

 

2.6. Scientific, technological novelty or contribution 
 

The contribution of this work is aimed toward streamline companies’ operations by granting a flexible 
data pipeline building system, underpinned by some of the top open source projects at the time of writing. 
In particular, the system encompasses the following data-related areas: 

1. Auto-scalable data pipelines 
2. Pipeline scheduling 
3. Containerized applications 
4. Cloud native applications 
5. Infrastructure as code 
6. Data governance 
7. Security 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

 

3. STATE OF THE ART 

3.1. Google File System (GFS) 
 

The Google File System (GFS) [1] is a scalable distributed file system for large distributed data-intensive 
applications. The research paper was published by Google in 2003 and it represented one of the first 
implementations of a highly scalable and battle-tested distributed filesystem.  

GFS stores data on a cluster of commodity hardware—nodes—that are assumed to fail, and hence the 
overall system must recover from any disaster automatically. Some key limitations are that write 
operations were strictly limited to appends and that files are organized into folders, resembling any other 
file system; underlying files are physically split into fixed size blocks and replicated across multiple nodes 
to guarantee consistency and high availability in case a node fails. 

Its architecture is comprised of a master node and N slave nodes to store data. This allows users to interact 
with a single interface which takes care of storing and orchestrating reads and writes. 

 

3.2. MapReduce 
 

MapReduce [2] is a programming model for massive data processing over large datasets. It was inspired 
by the way functional programming languages parallelize data processing on all available threads. It was 
published by Google on 2004. 

MapReduce, as the name implies, is comprised by two main processes: map and reduce. Map takes any 
number of inputs and performs a transformation for each input. The output of a mapper tends to be the 
same number of input records; transformations are performed in parallel by all nodes in the cluster. After 
that, the Reduce stage starts, which consists of taking data from all nodes and reducing it to execute an 
aggregation (e.g., to perform a group by, in SQL jargon). 

To enable fault tolerance, both mappers and reducers write intermediate data to each node’s disk. In this 
way, if a node fails, its progress can easily be restored and will not have to be recomputed. 

MapReduce is architected using a master node and an arbitrary number of worker nodes. The user submits 
a MapReduce job—a JAR file with a Main class implementing mappers and reducers—to the master, 
which automatically distributes the load to available nodes and recovers in case of a node failure. 

MapReduce’s leverages data locality (i.e., computation occurs in the nodes where the data is located) to 
avoid unnecessary network shuffling and hence speed up the processing. 



21 
 

 

 

The following figure illustrates the MapReduce process: 

 

Figure 1 - MapReduce execution overview [2] 

Even though MapReduce is losing momentum at the time of writing due to more advanced processing 
frameworks such as Apache Spark, MapReduce still has the niche of processing large unstructured datasets 
at scale. For instance, image processing or genome computations can be effectively computed using 
MapReduce. 

 

3.3. Dremel 
 

Dremel is a scalable interactive query system for massively large read-only datasets [3]. The tool was used 
at Google to effectively replace interactive analysis previously done in MapReduce jobs. As with many 
interactive query systems, it is based on SQL, to allow analysts to leverage it. 

Dremel was built considering that clusters are shared, meaning that commodity hardware could run an 
arbitrary number of applications at the same time [3]. Therefore, the possibility of a process failing soared 
and the system had to be able to deal with such scenario. 

The secret behind this technology is the idea of splitting the computation and storage. 

Computation uses multi-level execution trees: a root server receives incoming queries, reads the metadata 
of the underlying tables and routes the queries to intermediate servers until a leaf server, a server with 
local storage, is reached. 



22 
 

 

For storage, Google File System (GFS) is used. On top of that, Dremel proposes a new columnar format 
that is highly efficient for analytic purposes. These files incorporate metadata to describe repetition and 
definition levels to clearly locate nested values and overall data organization. Thanks to this format, each 
file block can easily be compressed by removing NULL values. 

This file format allows physically splitting records into columns for block storage when writing, and 
assembly of those records using a Finite State Machine (FSM) when reading. 

 

3.4. Hadoop 
 

In 2006, Doug Cutting, still working at Yahoo, started implementing Hadoop based on both GFS and 
MapReduce [4]. Hadoop is an open source platform that allows for distributed processing of nearly 
unlimited large data sets across clusters of computers. It is comprised of the following core components: 

• Hadoop Common: The common utilities that support the other Hadoop modules. 
• Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data. 
• Hadoop YARN: A framework for job scheduling and cluster resource management. 
• Hadoop MapReduce: A YARN-based system for parallel processing of large data sets [5]. 

HDFS is often considered the open source implementation of the Google File System and so it shares most 
of its concepts and the fact that is highly distributed. 

As described in [6], HDFS does not substitute any native filesystem, but it rather offers abstraction on top 
of your local filesystem to provide fault tolerance. Such layer emulates a hierarchical filesystem, such as 
the native Linux filesystem, comprised by folders and files; however, internally a complex data 
orchestration takes place. 

From a high-level perspective, once a user issues a request to write a file to HDFS, the system will break 
down the file into fixed-size blocks—currently 128MB. Each block is then replicated to multiple arbitrary 
nodes so that, in case of a node failure, the system can collect the different pieces from multiple nodes and 
hence the system is more resilient.  

The overall design and access pattern in HDFS is like a Linux-based filesystem: 

 



23 
 

 
Figure 2 - HDFS architecture 
As [7] points out, the three main services in HDFS are: 

1. DataNode: This service resides within each node in the cluster and is in charge of storing the 
different blocks on disk. 

2. NameNode: This service keeps track of all the different blocks and replicas, including attributes 
such as permissions, modification and access times, namespace and disk space quotas. In short, it 
works as an index to fetch a given file, block by block from the DataNodes. 

3. SecondaryNameNode: This service is just a hot replica that is invoked whenever the main 
NameNode fails to respond to the HDFS client. This is to avoid any single point of failure in case 
the NameNode were to fail. 

Files in HDFS are designed to be read-intensive. Because of this, once a file is written to HDFS, a user 
can only append data to it and not edit a specific portion, as it will involve a complex block redistribution. 
Instead, if a user wants to edit the file, he/she will have to modify it using MapReduce and write the result 
to a different location in HDFS. This immutability guarantees the system’s efficiency.  

Hadoop’s popularity and adoption skyrocketed thanks to its open source philosophy, which allowed 
companies all over the world to experiment at no licensing cost. 

A rich ecosystem was gradually built around Hadoop by the open source community to solve arising data 
use cases, derived from Hadoop’s usage. 

The following diagram outlines some of the initial open source components: 



24 
 

 

Figure 3 - Hadoop ecosystem [8] 

As more industries convinced themselves of Hadoop’s benefits, they started to invest time translating their 
already-existing SQL queries to MapReduce jobs and move data to HDFS. However, those jobs soon 
became unmanageable in consequence of the framework’s inherent complexity. This key pain point was 
the one that ultimately led to the creation of Apache Hive. 

 

3.5. Hive 
 

Apache Hive is a data warehouse solution that facilitates reading, writing, and managing large datasets 
residing in distributed storage using SQL [9]. This meant that existing legacy queries could be translated 
to HiveQL easily to be able to analyze and perform aggregations on the data without the complexity of 
understanding MapReduce. 

Hives structures data into well-known database concepts like tables, columns, rows and partitions. It 
supports all the major primitive types: integers, floats, doubles and strings; as well as complex types such 
as maps, lists and structures [10]. 

Hive creates a layer on top of the data in HDFS. This means that instead of creating a physical table, it 
only registers metadata about the underlying data whenever the user creates a table. In light of HDFS’ 
architecture, HiveQL does not implement neither INSERTs nor UPDATEs, as the data is mostly write 
once read multiple times. 

Hive is primarily focused on data warehousing, as it performs large file scans to perform complex 
aggregations and may even store intermediate results on other tables used for business analytics or business 
intelligence to build dashboards or generate reports. Such analytic process is termed OLAP (Online 



25 
 

Analytics Processing) and differs from OLTP (Online Transaction Processing) which is focused on 
extracting a given number of rows rather than aggregating on the entire dataset. 

Metadata is written in what is known as the metastore. The metastore is fundamentally a central repository 
that contains information associated with Hive: databases, tables, etc. Multiple services, including Hive 
driver, uses this information every time a query is issued in order to effectively read the underlying data. 

As stated in [11] Hive metastore can be configured in 3 different ways: 

1. Embedded Metastore: This is the default mode. Hive will use a minimalist database engine, 
Derby, to store the metadata in the local filesystem. This mode is ideal for local unit testing, but 
it is far from ideal in production. 

2. Local Metastore: In this mode, multiple Hive servers are expected to run on the same Hive 
Service Java Virtual Machine, and they all point to an external metastore database. This delegates 
the storage to a more robust system (RDBMS). This configuration uses either a JDBC or ODBC 
driver to connect to the external database. 

3. Remote Metastore: This configuration uses different metastore servers, in completely separate 
JVMs, which in turn connect to the external metastore database. In this way, if other processes 
want to communicate with the metastore server, they can do so through the Thrift Network APIs. 
The ultimate goal of this configuration is to provide complete isolation between components so 
that security experts or DevOps engineers can firewall appropriately. 

Given the flexibility of this metastore, it is commonly utilized nowadays as the data repository on top of 
HDFS-like storage (such as Amazon S3 or Google Cloud Storage). Tools like Apache Spark or Presto can 
then read from this metastore and perform processing in a more efficient fashion, as lots of metadata is 
stored inherently in the metastore tables. 

At the time of writing, Hive supports the following databases: 

• Derby 
• MySQL 
• MS SQL Server 
• Oracle 
• Postgres 

An important downside of Hive is that execution of complex aggregation queries may take from several 
minutes to many hours. This because Hive translates SQL queries to MapReduce commands under the 
hood, which is far from ideal, as many MapReduce operations were unnecessarily writing to disk after 
each MapReduce stage. 

 

 

 

 



26 
 

3.6. Amazon Web Services (AWS) 
 

In 2003, Chris Pinkham and Benjamin Black, both working at Amazon, presented an internal paper to 
describe the vision for a new infrastructure, completely automated and standardized. This paper included 
a proposal of selling virtual servers as a service [12]. 

After a few months later, multiple discussions and refinement took place which led to the initial concept 
of Elastic Compute Cloud (EC2). 

In 2006, Amazon officially re-launched AWS with multiple base services, including: S3, SQS and EC2. 
Those services were designed with developers in mind. This allowed Amazon to convey the benefits of 
their usage across the companies and hence created immense momentum. 

As of 2020, Amazon is the biggest cloud provider in the world with over 32 percent in market share [13]. 
Similarly, at the time of writing, AWS has about 175 services available and releases new ones on a nearly 
monthly basis [14]. 

It is absurd mentioning all services AWS has, but some of the most important categories are [15]: 

• Analytics 
• Application Integration 
• Business Applications 
• Compute 
• Containers 
• Customer Engagement 
• Database 
• Internet Of Things 
• Machine Learning 
• Management and Governance 
• Mobile 
• Media services 
• Networking and Content Delivery 
• Security, Identity and Compliance 
• Storage 

AWS represents a dramatic shift from the traditional paradigm of in-house data centers, as it delegates 
most of the operation to the provider. This involves moving from capital expense (CapEx) to operational 
expense (OpEx). In summary, this means that companies will now have to focus on investing on services 
and platforms rather than on buying hardware, commodities and spending on IT engineers to set everything 
up. 

 

 

 



27 
 

The benefits that AWS provides, at a high level, are [16]: 

• Easiness to use 
• Flexibility 
• Cost-effectiveness 
• Reliability 
• Scalability and high performance 
• Security 

Finally, AWS’ nimbleness has empowered companies all over the world to enhance their products at a 
quick pace. This is because developers have closely worked with the engineers who are using their 
products, listen to their struggles and incorporates either product improvements or new services that 
supplement what is already existing. 

 

3.6.1. Amazon EC2 
 

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure, resizable compute 
capacity in the cloud. It is designed to make web-scale cloud computing easier for developers [17]. 
Roughly speaking, it as a service that provides configurable virtual servers on demand. 

EC2 provides a simple interface to choose from a wide range of operative systems, lets users configure 
security characteristics, amount of resources, and even keys to directly log into the instance. Thanks to 
AWS’ infrastructure, instances typically take up to two minutes to spin up and can be terminated at any 
time to not incur into additional costs. 

Finally, EC2 provides the concept of spot instances: the cheapest instances to which users offer a 
percentage of the original price. However, users may lose those instances once the bid price is over what 
user offered. 

 

3.6.2. Amazon S3 
 

Amazon Simple Storage Service (Amazon S3) is an object storage service that offers industry-leading 
scalability, data availability, security, and performance. Customer of all sizes and industries can use it to 
store and protect any amount of data for a range of use cases, such as websites, mobile applications, backup 
and restore, archive, enterprise applications, IoT devices, and big data analytics [18]. 

Given the fact that S3 is serverless, users can store data at any time and can rest assured their data will 
be durable, up to 99.99999999999% of the time, meaning that it is nearly impossible to lose data, as it is 
replicated across data centers, to avoid data corruption and degradation. 

 



28 
 

Amazon S3 provides different types of storage classes [18], including: 

• Standard – The highest availability for frequently accessed data. 
• Standard Infrequent Access – Less frequently accessed data. 
• One Zone Infrequent Access – Less frequently accessed data, only replicated in one 

datacenter. 
• Glacier – Once a month accessed data 
• Glacier Deep Archive – Once a year accessed data 

 

3.6.3. Amazon IAM 
 

AWS Identity and Access Management (IAM) enables you to manage access to AWS services and 
resources securely. Using IAM, you can create and manage AWS users and groups, and use permissions 
to allow and deny their access to AWS resources [19]. 

IAM’s basic resource is the policy, a JSON document that describes specific actions and resources that 
can accessed (e.g., access to create instances on EC2 or delete objects from an S3 bucket). Policies can be 
attached and removed in runtime to allow for automated deployments that reflect changes on near-real 
time. 

IAM policies can be attached to: 

• Users – a person in the company. 
• Groups – A collection of users. 
• Roles – A unique container that can further be attached to AWS services such as EC2. 

 

3.6.4. Amazon VPC 
 

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically isolated section of the AWS 
Cloud where you can launch AWS resources in a virtual network that you define. You have complete 
control over your virtual networking environment, including selection of your own IP address range, 
creation of subnets, and configuration of route tables and network gateways [20]. 

Amazon VPC works with all compute and database services, in order to rule out unwanted access. In 
particular, EC2 has an easy integration, so that virtual servers can be deployed using well-known access 
rules, limiting even the inbound and outbound traffic.  

 

 



29 
 

3.6.5. Amazon EMR 
 

Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using 
open source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and 
Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-
premises solutions and over 3x faster than standard Apache Spark [21]. 

Under the hood, Amazon EMR will deploy a configurable number of EC2 instances already pre-
configured to work as a single cluster. 

Amazon EMR works well with spot instances, given that most open source tools support losing nodes as 
part of their architecture. So, by using spot instances, users can have flexibility of autoscaling at lower 
costs. 

 

3.6.6. AWS Glue 
 

AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it easy for customers 
to prepare and load their data for analytics. AWS Glue can be configured to discover data sources’ 
metadata (e.g. table definition and schema) using the AWS Glue Data Catalog [22]. 

Developers working with AWS can benefit from AWS Glue Data Catalog as a serverless alternative of 
the Hive metastore. For Amazon EMR, all users need to do is configure the cluster to point to the metastore 
and have IAM role permissions to read/write Glue Data Catalog. Once that is configured and the cluster 
is running, any Spark application will be able to read and write tables to the Glue Data Catalog [23]. 

One important feature of the Glue Data Catalog is that all tables have automatic visibility on Amazon 
Athena, so that right after the table shows up in the catalog, analysts can start running queries on top of 
the data. 

 

3.6.7. Amazon Athena 
 

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using 
standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the 
queries that you run [24]. 

Athena lets you point to your data in Amazon S3, define the schema, and start querying using standard 
SQL. Most results are delivered within seconds. With Athena, there’s no need for complex ETL jobs to 
prepare your data for analysis. This makes it easy for anyone with SQL skills to quickly analyze large-
scale datasets. 



30 
 

3.7. Airflow 
 

Analogous to Apache Oozie, Apache Airflow is also a platform to programmatically author, schedule and 
monitor workflows [25]. It shares the concept of DAG, which consists of a collection of tasks to run, 
organized in a way that reflects their relationships and dependencies and a scheduling time, using CRON 
expressions. 

For any given task, Airflow facilitates Operators which can range from a data warehouse query to a cluster 
execution to a simple python callable execution. To name a few of the supported ones: Bash, Python, 
Email, SimpleHttp, MySql, Postgres, Docker, Hive, S3FileTransform, BigQuery, Slack [26]. 

Airflow can be divided in 3 individual services: 

1. Webserver:  Provides a rich UI where users can visualize, monitor, execute and stop DAGs 
and/or individual tasks. 

2. Scheduler: Coordinates the tasks execution, whether is a local execution or a distributed 
execution using celery. 

3. Worker: Process that performs the tasks the scheduler has queued up. 
 

All DAGs are created using simple python scripts that fundamentally specify a DAG, an arbitrary number 
of operators, relationships (or upstream dependencies). Once copied the script into airflow’s DAG folder, 
the scheduler periodically scans the DAG folder and incorporates it, which should be visible through the 
webserver user interface. 

Given the maturity and broad adoption of this tool, advanced features have been introduced, including 
inter-DAG dependencies using sensors, encrypted connection to a myriad of databases and/or clusters, 
resources pools, etc. 

3.8. Spark 
 

Apache Spark is a distributed compute engine used to leverage the full parallelism of every node in a 
cluster in an efficient manner. This was possible thanks to its simple yet clever architecture which analyzed 
the main architecture pain points of MapReduce and refactored them. Some benchmarks even demonstrate 
that Apache Spark is up to 100 times faster than a typical MapReduce job on Hadoop [27] [28]. 

To achieve such efficiency, Apache Sparks relies on in-memory computation. This allows both driver and 
workers to perform all operations in Random Access Memory (RAM) and keep the results in memory 
until they need to flush it somewhere. Moreover, by dynamically building a DAG, in a similar fashion to 
Apache Tez, Spark is capable of keeping track of all operations and hence delete redundant vertices. 

Spark has 4 high-level packages atop of its stack. Those packages are: 

1. Spark SQL: To interact with structured data using ANSI SQL. 
2. Spark Streaming: To process live streams of data. 
3. MLlib: To execute machine learning techniques using structured and semi-structured data. 



31 
 

4. GraphX: To manipulate graphs in a distributed fashion. 

 

 
Figure 4 - Spark Modules [29] 

 
As shown in the figure above, Spark relies on a cluster scheduler, or resource negotiator, to request nodes 
for up and down scaling. Such cluster managers were designed to be plug and play, meaning that Spark 
can work with any of the following: 

1. Standalone. The default one when running Spark locally. 
2. YARN. Hadoop’s resource negotiator. 
3. Mesos. Distributed cluster manager.  
4. Kubernetes. Cluster orchestrator. 

Another key feature of Spark is the separation of functions into two main categories: transformations and 
actions. Transformations specify a number of steps in which the input data will be changed in a particular 
way; this will not trigger any distributed computation, but rather will accumulate on Spark’s logical plan 
for future execution, this is called lazy evaluation. Actions on the other hand represent cues for Spark to 
run the transformations according to the logical plan it assembled along the way. 

Spark coins the term Resilient Distributed Dataset (RDD) which, as the name implies, is a distributed 
collection of structured elements. Since this collection is represented as a typical object, the programmer 
does not have to worry about complex tuning or any composition to make RDDs work. It works just the 
same as a collection, with the only difference being that the actual execution takes place on a set of nodes 
on a cluster rather than in the master [27]. 

This simplicity allows users to quickly understand data lineage and run complex queries, including 
merging from a variety of sources and formats, all within a few lines of code. 

Latest versions of Spark offer two more sophisticated structures built on top of: Datasets and DataFrames. 
They allow users to impose data types on all columns of a dataset, support almost native ANSI SQL and 
offer a more standard interface to read, aggregate and write data [30]. 

Spark uses a master node and an arbitrary number of worker nodes. Inside those worker nodes a number 
of executors are allocated. Those executors interface directly with the SparkContext to get information 



32 
 

about the task to be executed: where to find the data, what code to execute, etc. This architecture is depicted 
as follows: 

 

Figure 5 - Components for distributed execution in Spark [29] 

 

3.9. Arrow 
 

Apache Arrow [31] is a cross-language development platform for in-memory big data applications. It 
specifies a columnar memory format for flat and hierarchical data, organized for efficient analytic 
operations on modern hardware. 

The technology is extremely fast for data interchange between services, as there is no overhead in 
serializing and de-serializing data structures. 

For instance, one prominent use case for Arrow is moving PySpark data to Pandas/NumPy. When Spark 
Dataframes are converted to Pandas Dataframes, the Spark driver first collects all rows, then each row is 
serialized into Python’s pickle format and sent to Python worker processes. This child process, in turn, 
unpickles each each row into a list of tuples, which are ultimately used to generate the Pandas Dataframe 
[32]. 

 

3.10. Parquet 
 

Parquet [33] is a columnar storage format to support complex and nested data types out of the box. The 
format was developed by Cloudera and Twitter to work with multi-column datasets. It uses the record 
shredding and assembly algorithm described in the Dremel paper to simple flattening nested name 
spaces. 



33 
 

Unlike CSV and JSON, Parquet files are binary files that contain metadata about their content. In this way, 
without reading/parsing the content of the file(s), Spark can just rely on the metadata to determine column 
names, compression/encodings, data types and even some basic statistics. The column metadata for a 
Parquet file is stored at the end of the file, which allows for fast, one-pass writing [34]. 

Parquet files are immutable, following HDFS’ principles and do not natively support schema evolution. 
Spark can nonetheless merge the schema of multiple parquet directories, but user has to specify a read 
option for that to occur. 

Parquet is optimized for Write Once Read Many (WORM) paradigm—it is slow to write, but incredibly 
fast to read, especially when you’re only accessing a subset of the total columns. 

Finally, Parquet natively supports both predicate (or filter) pushdown and projection pushdown [34]. 

Predicate pushdown is a technique wherein parts of the queries, the filters, are pushed directly to where 
the data is stored. This means that instead of reading the entire file to memory and executing the filter 
condition to discard rows, Parquet will only return those values that meet the predicate criteria, saving 
lots of memory and processing time. 

Similar to the predicate pushdown, the projection pushdown is a technique that leverages the columnar 
format, so that when queries specify a subset of columns, the format only scans and returns those 
columns, which results in better I/O performance. 

The following figure illustrates both predicate and projection pushdown: 

 

Figure 6 - Project and predicate pushdown [34] 

 

 

3.11. Presto 
 

Presto is an open source distributed SQL query engine that supports both relational data sources (including 
MySQL, PostgreSQL, Amazon Redshift and Teradata) and non-relational data sources (including HDFS, 



34 
 

Amazon S3, Cassandra and MongoDB) [35]. Presto has been successfully tested over 300PB of data at 
Facebook. 

Some of the most important characteristics of Presto include [36]: 

• It is a multi-tenant system capable of concurrently running hundreds of memory, I/O and CPU-
intensive queries and scaling. 

• Its design allows administrators to setup clusters to query data from various data sources within 
the same cluster. 

• It can be configured to support many use cases with different constraints and performance 
characteristics. 

Presto is well-known as one of the best tools for interactive analysis (e.g., handling hundred GB to a few 
TB of data) and can easily be connected to BI technologies for dashboard generation. 

Other Presto use cases include batch ETL, A/B Testing, and developer/advertiser analytics. 

At the time of writing, Amazon Web Services offers a product based on Presto, named Athena, which 
connects to the Hive metastore of another service called Glue. 

3.12. Atlas 
 

Apache Atlas [37] is data governance and metadata management solution. It is comprised by a set of 
services and helps users discover and classify datasets so that it becomes easy to pinpoint the source(s) of 
any given table and what transformations led to it. 

Atlas includes the following main features: 

• Metadata types and instances 
• Classification 
• Lineage 
• Search/Discovery 
• Security and Data Masking 

Atlas leans on other Hadoop-related technologies, as observed in the following architecture diagram: 



35 
 

 

Figure 7 - Apache Atlas architecture [38] 

The system collects metadata directly from sources such as Hive, and Sqoop; when a user creates a new 
table on Hive, it automatically registers the action and populates the data lineage graph, which is shown 
below: 

 
Figure 8 - Atlas lineage 
Atlas can only read metadata from Hive, Falcon, Storm and Sqoop. Unlike Hive, the rest of the tools are 
rarely used in the industry nowadays and therefore Atlas hinders engineers to run Hive queries in order to 
create new tables, which is impractical; frameworks such as Apache Spark are preferred for data 
manipulation and data set creation.  

 

 

 



36 
 

3.13. Spline 
 

Spline [39] is a data lineage tracking tool designed to work with Spark out of the box. The tool leverages 
the broad adoption of Apache Spark in the industry not only as a standalone service, but as the backbone 
of other services such as Hive and Apache Mahout [40]. 

Spline is designed with three principles in mind: 

1. Lightweight – no heavy computation overhead for spark execution 
2. Unobtrusive – if anything goes wrong while computing the data lineage, the spark job will not 

be affected 
3. Easy to use – preferably be able to initialize with a single line of code 

Spline’s clever design leverages Spark internal execution plan to extract information about the datasets 
being read, the transformations applied, and the destination(s) so that the actual graph with the lineage is 
automatically stored, once the datasets are written. 

The following figure shows an example of a data lineage graph in the Spline web UI: 

 
Figure 9 -  Data Lineage in Spline UI 
 
Splines stores the metadata in a database (similar to the Hive metastore). Thanks to this, Spline is highly 
resilient by storing the lineage information in a separate system, allowing the agent to restart in case of a 
failure or the system to create new instances and pointing them to the metastore. 

At the time of writing, Spline supports the following metastores: 

• MongoDB: Primarily for testing purposes. 
• ArangoDB: To leverage the full potential and reliability of Spline. 

 



37 
 

3.14. Terraform 
 

Terraform is an IaC tool created by Hashicorp. It is used for building, changing and versioning 
infrastructure safely and efficiently [41]. It works with most of the top cloud providers and provides a rich 
syntax that allows users to deploy complex architectures in a reproducible and descriptive way. 

Terraform uses configuration files written in Hashicorp Configuration Language (HCL) to describe 
infrastructure components—the syntax of which resembles a typical JSON format, but with support to 
advanced features such as looping and dependency injection. 

The main advantage of using Terraform in comparison to other cloud provider specific tools is that 
companies can avoid locking into the provider. This means that whenever companies need to move their 
infrastructure to a different cloud provider, they just need to create the equivalent modules in other 
Terraform repository and execute terraform apply. The rest is taken care of by Terraform. 

One of the most advanced design principles of terraform syntax is that it is declarative rather than 
imperative, i.e., every time a user executes terraform apply, terraform will look up the difference between 
the actual state and the desired state and will plan the updates, deletes and creates in the optimal order, 
making the deployment of new infrastructure components, seamlessly. 

Often times, people think of Terraform as an alternative or substitute for configuration management tools 
such as Ansible, Puppet, etc. But, on the contrary, they tend to complement each other just fine. For 
instance, users can first lay the infrastructure groundwork using Terraform; once that is ready, they can 
use Ansible to configure and install dependencies for a fresh start. 

 

3.15. Git 
 

Git is an open source distributed version control system [42]. Version control helps software developers 
supervise code changes of an artifact or product incrementally over time. Thanks to this, several 
developers can work on the same project at the same time, without interfering with each other’s changes. 

Git uses the term repository to refer to a file system folder that contains source code to keep track of. 
The user simply has to initialize a repository running a git init command on the folder to monitor, and git 
takes care of the rest. Once initialized, the repository will automatically detect deltas on all files and 
users can include specific pieces of those deltas to create commits. 

A commit is an object that represents a set of changes on a given repository. Git forms these commits by 
recording the deltas of each file, the parent commit’s reference, as well as information related to the 
author, the commiter, the commit message and timestamp of creation. To represent a commit, Git uses a 
SHA1 hash of all gathered data to ensure uniqueness. 

To further organize and allow for more fluent working environments, Git creates the concept of 
branches. Branches are independent work lines in that can coexist without interfering with each other. 
By default, Git uses master as the first branch, but users can create as many as they want. A typical 



38 
 

workflow involves a few dozen branches to keep track of different features being developed on the 
repository. 

Git streamlines storage by only storing deltas physically in the .git folder, rather than complete code 
snapshots, in comparison to previous version control tools. 

The following figure depicts a typical Git workflow: 

 
Figure 10 - Git workflow [43] 
 

3.16. Docker 
 

Docker is an open source tool for developing, shipping, and running various applications in a fast, secure 
and isolated way [44]. Docker enables the applications to run separately from the host infrastructure and 
treat the infrastructure like a managed application. This is achieved by deploying applications in what is 
known as containers. 

Containers leverage two Linux features: kernel namespaces and CGROUPS; which allow containers to 
execute independently within a single host without interfering with each other. 

Containers share the same underlying kernel and each container is constrained to only use a defined portion 
of resources available in the host machine, unlike traditional virtual machines, which inexorably demand 
an operating system [44]. In consequence, if the Linux kernel fails, all containers running on that host will 
certainly go belly up. 

Containers are extremely lightweight granted that they only require a small software layer on top of the 
kernel. For instance, an entire Ubuntu VM installation may be well beyond 5 GB in size, whereas the 
Alpine image is around 5 MB in size. 

To import a Docker image, users either pull existing ones from Dockerhub—the official repository for 
pre-built images—or they can create their own using a Dockerfile, that dictates a recipe for building that 
image. Once the image is done, Docker can use it to create any number of containers. 



39 
 

Even though containers work isolated from the external world, they commonly depend upon interaction 
with the external world, e.g., exposing a port for a web server, or interacting with files from a given mount 
point. For the latter case, Docker features volumes. 

Docker volumes are named filesystem trees managed by Docker. Essentially, the user, or the script for 
that matter, only specifies the mount point from the local filesystem and the container path where that 
mount point will be visible, along with any file permissions. This is of the utmost importance since 
containers are ephemeral in nature; so, once they are deleted, all data produced within will be wiped out. 

In light of all these benefits, architects and developers have been either migrating their existing 
microservices to containers, or designing new ones using them as backbone. However, keeping track and 
deploying a myriad of services becomes cumbersome and error prone on the long run. Docker provides a 
new level of abstraction called Docker Compose to solve this. 

Docker compose is a high-level declarative abstraction, which uses a YAML file to represent all services, 
volumes, networks, configurations and even start up dependencies (e.g., service A requires service B to 
start properly). Docker compose figures out a way to deploy them either locally or on a cluster [45]. 

 

3.17. Kubernetes 
 

Kubernetes is an open source orchestrator for deploying containerized applications [46]. It was original 
developed by Google and inspired by a decade of experience deploying scalable, reliable systems in 
containers. It radically changes the way applications are developed and deployed in the cloud. 

As a Kubernetes user, you can define how your application should run and the ways they should be able 
to interact with other applications. Users can easily scale services up and down, perform graceful rolling 
updates and switch traffic between versions of applications to test features, or rollback problematic 
deployments [47]. This is also known as blue green deployment. 

Kubernetes uses a master server that coordinates the deployment of the containers in the cluster and is 
responsible for monitoring and deciding where to allocate containers in an optimal way. 

Rather than using simple containers, Kubernetes defines pods as its basic abstraction mechanism. A pod 
can be thought as either one or more intimately related services that come packed together and can reach 
each other natively. 

Kubernetes supports a myriad of other advanced features, some of which are outlined below [47]: 

• Replication set: A feature to scale and monitor health on pods. These are used to increase the 
number of pods given a certain life cycle rule. 

• Stateful set: Specialized pod controller that offers ordering and unique guarantees, so that pods 
can be finely orchestrated. 

• Ingress controller: A high level abstraction that allows simple host or URL based HTTP 
routing. The idea is that the outside world can have access to specific services in the cluster. 

 



40 
 

 

4. RELEVANT CONCEPTS 

4.1. SQL 
 

The Structured Query Language (SQL) has been the de facto domain language to read and aggregate 
databases for nearly 5 decades [48] and was developed in 1970 by IBM researchers [49]. SQL allows users 
to transform and query data sets using an expressive syntax that closely resembles set theory concepts, 
rather than a typical programming language such as C or Java. 

SQL is a language to read, insert, update and delete fields in Relational Database Management Systems 
(RDBMS) (until Dremel and all NoSQL databases came into existence). RDBMS organize data in a 
hierarchical way, starting from the concept of database. A database is a high-level abstraction that 
encompasses a group of related tables. Tables in turn are a data set with a defined schema that are 
composed by columns and rows. 

Queries can be split into two categories, depending on their purpose [50]: 

• Data Manipulation Language (DML): SELECT, INSERT, UPDATE and DELETE 
• Data Definition Language (DDL): CREATE, ALTER, DROP 

RDBMS, and by extension traditional SQL systems, were originally designed with individual machines 
in mind, as the underlying data structures that SQL engines utilize are optimized for concurrency in a 
multi-threaded environment to comply with ACID transactions (Atomicity, Consistency, Isolation and 
Durability) [51]. Once the data overpasses certain volume, in the order of billions of rows, SQL queries 
become slow and computationally inefficient. 

 

4.2. Data Warehouse 
 

A Data Warehouse (DW) or Enterprise Data Warehouse (EDW) is a system to collect and manage data 
from a variety of sources. It is commonly used as the backbone behind BI systems for analysis and 
reporting [52]. 

Data in a warehouse is commonly historical, consolidated, time variant non-volatile, integrated and 
subject-oriented [53]. 

Data warehouses typically provide high performant storage as well as optimizations in performing 
calculations and aggregations at scale [54]. 



41 
 

Unlike any other Relational Database Management System (RDBMS), capable of Create, Read, Update 
and Delete (CRUD) process, data warehouses perform Reads using a normalized data model in the start 
scheme [54] and involve a much more complex architecture. 

4.3. ETL 
 

The process of creating new tables in a data warehouse is often referred to as Extract, Transform and 
Load (ETL). It describes the process of reading data from an arbitrary data source (e.g., a Data 
Warehouse, a relational database, files in a distributed object store); applying some aggregation or 
enrichment such as cleaning, concatenating, grouping, etc.; and storing the result in a destination (similar 
to the ones observed as data sources) [55]. 

One of the key considerations while choosing the ideal ETL tool is the data connectors available. A data 
connector refers to the ability for a tool to read data from a specific system natively. In most modern 
tools, connectors could easily be a NoSQL database, a data warehouse or a basic RDBMS. 

As described by [56], ETL systems add value to the data, as they: 

• Remove mistakes and correct missing data 
• Provide documented measures of confidence in data 
• Capture the flow of transactional data for safekeeping 
• Adjust data from multiple sources to be used together 
• Structure data to be usable by end-user tools 

 
As the complexity of the transformations grows, the latency between the data acquisition and results 
availability increases considerably. Furthermore, whenever the tool finds an exception while 
transforming the data, the processing tool will simply fail, and the data will not be stored at all. 

 

4.4. Vertical and horizontal scaling 
 

Vertical scaling is the process of increasing a server’s capacity, either the memory size or the storage.  

This was possible thanks to the evolution of CPUs and the steady transistor size reduction. Unfortunately, 
this trend was rapidly coming to an end. Researchers found out that CPU clock frequencies directly 
influence heat radiation on the device, which will eventually reach the device’s maximum temperature, 
hence downgrading the microcontroller’s performance [57].  

Moreover, despite the huge efforts of hardware designers, the transistor’s size cannot be infinitely reduced; 
at some point, transistors are so small that quantum effects prevent them from working properly [58]. All 
this forecasted that vertical scaling would have severe limitations, beside costs, in the near future. 

Intel and AMD came up with revolutionary CPUs featuring multiple cores within a single chip, as well as 
optimized CPU cache. This allowed programs to perform operations in true parallelism and effectively 
fetch frequently used data. 



42 
 

Horizontal scaling alleviates the above-mentioned challenges by interconnecting commodity hardware in 
a cluster so that they can work as a single system. This means that, in order to scale, a system 
administrator or IT engineer will only have to attach more computers to the network and the system will 
automatically pick up the new capacity [59]. 

 
Figure 11 - Difference between horizontal and vertical scaling [60] 
 

4.5. Distributed systems 
 

The evolution of computer systems has come a long way since their inception but has seen a tremendous 
paradigm shift in the XXI century. Prior to that, computers that were purpose-built became general-
purpose and so many different applications could run on a single machine by sharing an operating system 
that coordinated the execution. 

Gradually, machines were networked together, and client-server architecture were born. This meant that 
commodity computers could be connected to a mainframe to execute processing: the clients made requests 
and the server dispatched them [61]. 

In the early 2000s, the rise of internet and large-scale datacenters consisting of thousands of low-cost 
commodity computers networked together gave rise to the development of distributed systems [61]. 

The term distributed system describes many commodity computers interconnected and acting as a single 
system. In essence, a distributed system leverages horizontal scaling to increase capacity. 

One important shift from vertical scaling mentality is that processes need to dive into smaller pieces, 
depending on the data size, so that each computer can work independently on a piece. In the end, the 
master or coordinator node will take care of orchestrating the whole operation and instruct the slaves to 
dump the data elsewhere [62]. 

 



43 
 

4.6. Big Data 
 

In 2005, Roger Mougalas from O'Reilly Media coined the term Big Data for the first time. It broadly refers 
to a wide range of large data sets almost impossible to manage and process using traditional data 
management tools—due to their size, but also their complexity [63]. 

Over the years, the term has been refined and nowadays scholars as well as industry experts identify 5 
characteristics that any Big Data project has in common: 

1. Velocity – Speed at which data should be processed 
2. Volume – The amount of data 
3. Value – The insights that can be extracted from raw data 
4. Variety – The different formats that can be handled 
5. Veracity – Trustworthiness or accuracy of the data [62] 

 
To give the reader an idea of the Big Data ecosystem, in 2019 the following infographic showed the most 
popular tools, grouped by category. 
 

 
Figure 12 - Big data landscape [26] 
 
 
 



44 
 

4.7. NoSQL 
 

SQL has been the cornerstone of many processing tools and data analysis/business intelligence tools. SQL 
databases are ideal to store information with a well-known schema in a per-row basis. ACID consistency 
allows users to segregate data in different tables (fact and dimension tables) so that all data is normalized 
and stored as efficiently as possible. 

However, as data started to proliferate, and grow in complexity, thanks to IoT devices, APIs and customer 
telemetry; SQL proved not to be nimble and flexible enough to accommodate such data. For instance, if a 
given table required a schema update to incorporate a new column, users would need to update the whole 
table, even if the prior record did not require so. This generated problems while wrangling the data, as 
NULL values are the default for the newly created column. In consequence, downstream logic must handle 
those special values in a graceful way, which often cripples the development of new features in an Agile 
manner. 

To tackle all those limitations, NoSQL philosophy came into existence. NoSQL databases systems are 
non-relational databases uniquely intended to give high accessibility, reliability, and scalability for 
enormous data. NoSQL databases can store unstructured data such as email, multimedia, documents, and 
social media with high performance and very low latencies [64]. 

NoSQL flexibility allows for schema evolution by not limiting the user to specify it once a collection or a 
table is created. 

As described in [5], NoSQL databases can be divided into four main categories: 

1. Key-value stores 
2. Columnar or wide-column stores 
3. Document databases 
4. Graph databases 

 



45 
 

 

Figure 13 - Different NoSQL databases [65] 

Key-value databases are good to represent simple and close-to structured data that can be queried with a 
unique key. Some examples are: Redis, Riak and Voldemort. 

Columnar datastores are used in a similar fashion as SQL databases, since they can be thought of as a table 
with columns. One key difference is that instead of having NULLs in a column when a record does not 
have the value, the whole column is missing. This allows to save lots of storage and also improve the read 
speed. These databases are optimized for large analytics when only a set of columns are required, as they 
organize same columns within the same file. This allows to scan files quicker and retrieve huge volumes 
of data efficiently. Also, compression is easier to perform on these records as they are all of the same type 
within the same column. Some examples include Cassandra and HBase. 

Document databases are somehow similar to key-value databases as they use a unique id to represent a 
document, however document databases are capable of storing much more complex structures and the 
documents can be enriched with new fields at any time. This enables users to evolve schemas as soon as 
new properties are discovered for a particular document. The most prominent example is MongoDB. 

Graph databases are the least common type of database used. They represent records with nodes or 
vertexes on a graph and each record may be related, connected to another via an edge, to a bunch of other 
records. This type of relationship is found frequently on social media where an individual has multiple 
friends and each of them have their own set of friends. One example is Neo4J. 

Although the use cases for NoSQL are increasing and the popularity is surging, NoSQL is by no means a 
SQL replacement. In fact, as with most technologies in the Big Data world, NoSQL can go hand-in-hand 
with SQL datastores, each one storing a specific type of data. Distributed processing tools can then take 
the data from multiple sources and aggregate it to generate rich reports and visualizations. 

 



46 
 

4.8. Data Lake 
 

A Data lake represents a data storage in which all formats are permitted. Usually, they store files from 
different sizes and formats and is commonly replicated across data centers for further fault tolerance. It is 
the analogous of a local filesystem in which files are the abstraction to represent some piece of information. 
As the description implies, there is no restriction to what type of data it may contain [62]. 

Data lakes are very good for data exploration and getting new insights from unexplored data, as it allows 
to stash in any data and analyze it in the future. As such, Data lakes are frequently the starting point for 
onboarding data from the outside world or an application. 

The following figure compares data warehouses and data lakes: 

 

Table 2 - Data warehouse vs data lake comparison [66] 

 

4.9. ELT 
 

Extract, Load and Transform (ELT) processes are a simple yet clever variation of ETLs. ELTs are better 
suited for Data Lakes, whereas ETLs are almost always used to feed Data Warehouses. ELT process 
extracts data in the same way as in the ETL approach. Then, the data is loaded into the target Data Lake 
or Warehouse. Once loaded, the transformations and business logics are applied using native SQL drivers 
(for Data Warehouses) or in-memory transformations (with Apache Spark, for instance). This helps saving 
costs by pushing down the transformations to the distributed compute engine and ensures data is 
checkpointed first, making the whole process fault-tolerant [67]. 

The following figure compares ETLs and ELTs: 



47 
 

 

Figure 14 - ETL vs ELT [68] 

 

4.10. Batch and streaming processing 
 

Batch processing [69] consists in reading a large volume of historical data at rest aggregating and enriching 
it and writing it elsewhere. Given that this process often takes a huge amount of data, results could take 
from hours to a couple days to come out. Historically, this has been the common ETL processing used in 
data warehouses. 

Streaming processing [69] refers to the ability of handling data arriving on-the-fly in the form of streams. 
Stream systems are not particularly good comparing live data to that coming from the pipe, as the main 
goal is to either perform simple aggregations or de-duplications. 

 

4.11. Data governance 
 

Data governance enables an organization to create a systematic data standardization, monitoring and 
management process, so that all data flows are transparent to any authorized user. To establish an effective 
data governance system, it needs to be set up in connection with corporate governance, IT governance, 
and ITA / EA from a company-wide perspective [70]. 

Data governance involves not only tools, but also a solid methodology to handle data in an efficient yet 
secure manner. Some of the most important aspects of data governance involve security, catalog, quality 
and policies, as observed in the following figure: 

 



48 
 

 

Figure 15 - Data Governance components [71] 

A crucial aspect of data governance is data lineage, also known as data provenance, which can be 
defined as the data flow control and visibility of all pipelines across the organization. Data lineage helps 
users drill down into any step of a dataflow process, keep traceability of what transformations are being 
carried out and what type of data is being utilized for a given output. Literature around data lineage 
commonly associates it with metadata management, since part of the lineage traceability requires 
understanding the metadata of a given dataset before doing any processing. 

Even though the use of data lineage approaches is a promising way for big data management, the process 
is rather complex. The challenges include scalability of the lineage store, fault tolerance, accurate 
capture of lineage for black box operators and many others. These challenges must be addressed 
carefully and trade-offs between them need to be evaluated to make a realistic design for data lineage 
capture [72]. 

 

4.12. Cloud platforms 
 

The time required for businesses to acquire and set up servers could take from a couple days to a whole 
month and needed a huge investment to continuously upgrade to the latest hardware. Even so, after a 
couple years, those servers may be obsolete. Finally, managing those servers becomes a gigantic burden 
as more servers are bought to handle extra capacity. 

On-premise hardware allowed corporations to split their workloads into multiple computers, leveraging 
the power of newest tools. However, this entailed a new set of problems, as they had to manage the 
infrastructure by themselves, which involved hiring specialized people to: 

• Update the operating systems of all computers 
• Keep the important software up to date 
• Diagnose whenever a network issue occurred 
• Monitor the overall health of the datacenter 
• Replace any damaged hardware 



49 
 

 

To circumvent all of this, cloud computing became extremely popular and is, at the time of writing, one 
of the most profitable services in the world. Cloud computing refers to a number of on-demand services 
of compute power, database, storage, applications and other IT resources via internet in a pay-as-you-go 
pricing model [73]. 

According to [74], cloud service models can be broadly categorized as: 

• Software as a Service (SaaS). Cloud user release their applications on a hosting environment, 
which can be accessed through internet from diverse terminals (e.g. web browser, PDA, etc.). 
Cloud consumers do not have control over the multi-tenant cloud infrastructure. Cloud consumers' 
applications are managed in a single virtual environment on the SaaS to leverage optimized 
amount of resources in terms of availability, speed, security, maintenance and disaster recovery. 

• Platform as a Service (PaaS). PaaS is a development platform supporting the full "Software 
Lifecycle" which allows cloud consumers to develop cloud services and applications (e.g. SaaS) 
directly on the PaaS cloud. Hence the difference between SaaS and PaaS is that SaaS only hosts 
completed cloud applications whereas PaaS offers a development platform that hosts both 
completed and in progress cloud applications. 

• Infrastructure as a Service (IaaS). Cloud consumers directly use IT infrastructures (processing, 
storage, networks, and other fundamental computing resources) provided in the IaaS cloud. 
Virtualization is extensively used in IaaS cloud in order to integrate/decompose physical 
resources in an ad-hoc manner to meet growing or shrinking resource demand from cloud 
consumers. The basic strategy of virtualization is to set up independent virtual machines (VM) 
that are isolated from both the underlying hardware and other VMs. 

 

Figure 16 - Cloud service models [75] 



50 
 

4.13. Infrastructure as Code 
 

As cloud services are embraced, developers started to work on ways to keep track of all the infrastructure 
they were generating, so that they could easily replicate, version and update infrastructure components. 
This concept is known as Infrastructure as Code (IaC). 

Infrastructure as code [76] is a code-centric approach for infrastructure automation. Commonly, a tool is 
used to deploy, update and destroy cloud infrastructure changes on demand, for multiple cloud providers 
in contrast to proprietary tools such as AWS CloudFormation. 

When talking about IaC it is important to highlight the main differences with a configuration management 
tool. The latter refers to tools designed to install and manage software on existing server. Some examples 
of configuration management tools are: Chef, Puppet, Ansible and SaltStack [77]. 

Such tools commonly utilize the YAML format to specify the configurations and installations that need to 
take place on a given server, or fleet of servers. As described in [77] offers a number of advantages: 

• Coding conventions: Tools like ansible enforce consistent and predictable structure, including 
documentation, code layout, parameters and secret management. 

• Idempotence: Refers to the ability for an artifact to produce the same result no matter how many 
times the process is executed. This ensures that users will always have a given configuration, no 
matter how many times they try to execute it, rather than having duplicates. 

• Distribution: Configuration management tools are designed specifically for managing large 
number of remote servers as a single group. 

When the infrastructure is defined as code, users can speed up the software delivery process including the 
following aspects: 

• Self-service: Removing the dependency of sysadmins, as infrastructure can be deployed and 
destroyed automatically by a service. 

• Speed and safety: If the deployment of the infrastructure is automated, developers do not need 
to worry about their changes breaking anything on the infrastructure, as the tool takes care of 
finding that optimal state to not alter already existing infrastructure. 

• Documentation: Similar to any piece of code, IaC can contain comments and a folder hierarchy 
that can easily describe the components the infrastructure uses. 

• Version control: Being code means that users can enter the code in a version control system such 
as git, and you can rollback to specific versions of the infrastructure effortlessly. 

 

 

 

 



51 
 

4.14. Microservices 
 

A monolith service represents an immutable black box wherein all the business logic runs—and is 
deployed—as a single system. A monolith is almost always easier to develop initially and involves little 
to no architecture planning. In fact, most legacy systems nowadays work this way. If a piece of the business 
logic fails, the rest of the system will eventually crash as a consequence; due to the close dependency 
between libraries and/or function calls. 

In light of this tight coupling, monoliths do not scale well. For instance, if the system is all of a sudden 
bottle necked due an unusual website traffic spike, and only specific pieces of the code require to increase 
capacity, the monolith is not capable of automatically assign new resources or prioritize that specific logic.  

Microservices architecture, on the other hand, considers business logic components as individual and 
loosely coupled elements (services) that have bounded contexts [78]. Each service must be small, isolated 
and define ways to interact with the external world (e.g., through APIs and ports). 

Microservices are harder—and take longer—to design and develop, as they need special mechanisms to 
communicate and strategies for failover, disaster recovery and scalability. 

Microservices follow the three-dimensional scalability model, or scale cube [78]: 

 

Figure 17 - Scaling cube 

In the x-axis we have horizontal duplication, which includes adding more instances. To supplement this 
concept, a load balancer is commonly used in front of the services, so that all requests go through it and 
are delivered to any number of services of the same nature. 

The z-axis refers to having different instances of the service working on different parts of the data (i.e., 
sharding). A router is used in this case to determine where the request should go to. 



52 
 

The y-axis is specifically aimed to decompose, and route requests based on its type (e.g., customer, order, 
review, etc.). This is the basis of all microservices. 

Modularity should be the top priority when working with microservices: a small group of developers 
should be able to focus on a piece of service without interfering with the development of other teams. In 
this way, teams achieve full independence and are able to evolve systems more efficiently. 

Another benefit of modularity is that systems can be tested and deployed independently; if done properly, 
the rest of the services should not notice any downtime. Overall, this leads to much smaller code bases 
and in consequence quicker ramp up from project’s newcomers.  

As data shuffling is one of the most expensive operations any service may incur in, each microservice 
must be designed to allocate its own database inside it and only expose the most important data via APIs 
or Remote Procedure Calls (RPCs). 

For APIs, the most used ones at the time of writing are RESTful, whereas RPCs the most efficient one is 
gRPC, developed by Google.  

 

4.15. Serverless 
 

Serverless is an implementation model where the cloud provider is accountable to execute a given function 
or piece of code, by managing underlying compute and storage resources without user intervention [79]. 
In this model, you pay only for execution time of your function or the throughput it required, rather than 
the servers running underneath. 

Serverless is sometimes referred to as Function as a Service (FaaS) as the actual function is executed. To 
further illustrate this statement, think of a typical application that requires an entry point—a main function, 
for instance; that entry point will then, given specific conditions, reach the function to execute. In a cloud 
environment, the server setup is also mandatory to allow the function to be invoked. FaaS abstracts away 
all those complexities from the user and let them develop reactive applications that closely resemble—or 
in some cases are—microservices. 

AWS Lambda, Google Cloud Functions, IBM Cloud Functions and Microsoft Azure Functions are just a 
few FaaS products provided by the major cloud vendors nowadays. 

The serverless architecture is also an event-driven architecture since each function is invoked in 
consequence to one or more events [80]. A primary advantage of this architecture is the possibility to 
execute—theoretically—unlimited number of functions in parallel. Combined with the cloud philosophy 
of pay for what you use, this may lead to enormous savings for the company. 

 

 

 



53 
 

4.16. REST 
 

Representational state transfer (REST) is an architecture style for distributed hypermedia systems [81]. 
REST web applications expose information about the service organized by its resources. It enables clients 
to take actions on resources such as creating new ones (e.g., purchases, profiles) or edit existing ones (e.g., 
update user’s password). 

A RESTful API is deemed a callable object that, once invoked, will transfer the representation of the 
requested resource’s state [82]. When a developer calls an API to fetch a specific user’s data, the API may 
return the state of that user, including name, age, address and phone number. 

REST APIs commonly return data in JSON format, as it allows for nested and complex structures such as 
maps, lists and internal structures. Some infrequent APIs may also return XML or HTML which may 
indicate an outdated or purpose-specific service. 

REST APIs commonly leverage the HTTP protocol, which defines two components: 

1. Endpoint: An identifier for the resource you are interested in. Given a hierarchy of resources—
e.g., company, team, employee—the endpoint can define the broadest category first and go deeper 
into the subcategories: company/<company_id>/team/<team_id>/employee/<employee_id>. 

2. Operation: The action to take upon the resource, which is guided by the HTTP method or verb. 
The most used verbs are: GET, POST, PUT and DELETE. 

An advantage of RESTful APIs is the fact that they decouple client and server: both can work 
independently of each other, if the server goes down, the clients gets its corresponding error message 
clearly hinting that the server is not up and running. 

RESTful APIs commonly utilize the following error codes to roughly describe the result that is returned 
to the user: 

CATEGORY DESCRIPTION 
1xx: Informational Communicates transfer protocol-level information 
2xx: Success Indicates that the client’s request was accepted successfully 
3xx: Redirection Indicates that the client must take some additional action in order to 

complete their request 
4xx: Client Error The client made an invalid request. 
5xx: Server Error The server takes responsibility for these error status codes 

Table 3 - HTTP status codes [83] 

In order for an API to be RESTful, it must adhere to 6 constrains: 

1. Uniform interface: Refers to the ability for clients to call the exact same way the API, no matter 
where it is invoked from. Also, it includes a homogeneous resource name. 

2. Client/server separation: As the name implies, the client and the server act independently and 
the communication is only initiated by the client: the server just waits for requests to be queued 
up. 



54 
 

3. Stateless: The server does not remember anything about the user who uses the API. This is often 
translated as idempotence, which means that no matter how many times you execute a request, 
you should always obtain the same result. 

4. Layered system: Between the client and the server, there might be any number of layers (security, 
caching, processing, etc.) that interact with the server to provide the request’s response. 

5. Cacheable: The server may send information hinting that some data was cached. If so, it will 
provide a means to decommission or refresh it. 

6. Code-on-demand: (Optional) In some cases, the resource may be a code snippet, so the code is 
returned in plain text to the user to store and execute later on. 

Several microservices and serverless applications nowadays leverage REST APIs as a means to 
communicate with each other efficiently and decoupled. This is crucial, as there could be no dependencies 
between microservices, and REST APIs ensure that communication is always working, regardless of the 
state of the service.  

 

4.17. Data engineers, analysts and scientists 
 

Over the recent years, the role of developers and integration teams has shifted significantly with respect 
to the technologies and the responsibilities each engineer has. With the advent of micro services, for 
instance, developers were able to deliver higher quality software in a more predictable way and generating 
less bugs by decoupling large chunks of code into bite-size modules. Once the number of microservices 
and software products were humongous, it became hard and error-prone to manage infrastructure to deliver 
on time. This is when DevOps gained momentum. 

Site Reliability Engineers, often times known as DevOps Engineers, are usually in charge of isolating the 
pieces of code in containers (Docker, most of the time) and deploy them on a given cluster. At the same 
time, developers and analysts had to share responsibilities to be able to handle the data challenges that the 
companies were facing in order to be able to perform more organic analytics. In consequence the following 
roles appeared: Data Engineer, Data Scientist and Data Analyst. 

A Data Engineer is a developer focused on big data pipelines creation. His/her primary duty is to design, 
implement, test and improve data pipelines to move data from multiple sources to another while 
performing some transformation or cleaning. One of the key responsibilities is the optimization of the 
pipelines on a cloud environment [84], since the costs of overusing resources may soar unexpectedly if 
the right considerations are not in place. Data Engineers also participate in introducing new tools or 
updating previous ones, create jobs to execute ETL or ELT processing on a periodic basis, cleaning dirty 
data from its raw form, exposing APIs for analysis, and managing the metadata so that subsequent 
processes can leverage the data without worrying about any missing piece. 

A Data Scientist combines parts of the developers and analysts. They are in charge of extracting value of 
the data. They are particularly good at machine learning and proficient on selecting the most suitable 
models for a given problem, optimizing and testing hypothesis based on data, as well as generating future 
predictions [84]. Data Scientists have much more contact with businesspeople than Data Engineers, as 
they generate proof of concepts for a particular business opportunity. 



55 
 

Data Analysts are those in charge of performing day-to-day analysis to fill in reports and observe common 
behaviors. They have even more contact with businesspeople. Analysts are specialized in SQL and BI 
tools to leverage diagnosis and exploratory work. Data Scientists’ discoveries may trigger the 
incorporation of new analysis into the pipeline, which is performed by the Analysts. 

 

 

  



56 
 

5. APPROACH 
In this section we will establish the methodology that will be followed throughout the execution of this 
project. Then, we will state the initial proposal, backed up by requirements and assumptions, to better 
delimit the scope of the project. 

 

5.1. Methodology 
 

As with many software engineering projects nowadays—and being the standard in the technology 
industry—we chose Agile to develop and continuously improve both the documentation, as well as the 
code base while keeping a dynamic communication. 

Agile process is an iterative approach in which customer satisfaction is the utmost priority and the 
customer has direct involvement in evaluating the software [85]. This process follows the software 
development life cycle which includes requirement gathering, analysis, design, coding, testing and 
delivery. 

Agile came into existence in 2001 and organizations have tried to adopt it ever since, with the promise of 
improving software development and overall product quality. However, few studies have been made to 
measure the effectiveness of this methodology in the industry [86]. 

One of the most embraced processes of Agile is Scrum, which is an agile way to manage a project, usually 
related to software development. Scrum relies on self-organizing, cross-functional teams in order to 
achieve agility to deliver [87].  

Preliminary analysis demonstrates that a large number of big organizations have adopted Scrum, including 
Amazon, Yahoo Music and BabyCenter [86]. 

To effectively harness the power of the methodology, a combination of organization mindset and product 
necessity is required. For the sake of this project, the background of both my tutor and I, as well as the 
necessity of the project, fit into the Agile process. 

Given the time restrictions, we agreed on synching up every two months at minimum and a demo with all 
the features by the end of each semester. In case something goes off-track we can easily get in touch. 

 

 

 

 

 



57 
 

 

5.2. User Stories 
User stories are general explanations of a software feature written from the perspective of the end user or 
customer. The purpose of a user story is to articulate how a piece of work will deliver a particular value 
back to the customer [88]. 

Data Analyst 
I want to have a simple web interface so that I can create new pipelines 
I want infrastructure to be automatically set up once I start the system, so that my pipelines can be built on 
top of it 
I want to know when the basic infrasture is ready, so that I can start submitting pipelines.  
I want to specify data sources residing in my data center as the transformation input 
I want to specify transformations, in ANSI SQL, that will be applied to one or more data sources 
I want to specify the destination table name where the result of the transformation shall be stored 
I want to specify a specific date time pattern, using CRON expressions, so that this pipeline can be executed 
then. 
I want to visualize the progress of the pipeline creation, so that I can keep track of all intermediate steps. 
I want to easily access the data lineage system, so that I can visualize the relationship between datasets in 
my cluster as well as the transformations. 
I want to easily access the scheduler system, so that I can visualize all active pipelines. 
I want to disable already-existing pipelines, so that they do not longer run. 
I want files to be automatically migrated to the cloud, once I create the pipeline. 
I want to be able to query results, in ANSI SQL, from the output table, so that I can verify if the output 
makes sense. 

Table 4 - Data Analyst user stories 

 

DevOps Engineer 
I want pipeline infrastructure to be automatically managed by the microservices, so that I do not need to 
manage it myself. 
I want a means to access different resources, so that I can configure and update when needed. 

Table 5 - DevOps Engineer user stories 

 

Security Engineer 
As a security engineer, I want to be able to visualize trails from the infrastructure, so that I can audit what 
services did what. 
As a security engineer, I want processing cluster to be hidden from the outside world, in a private VPC, so 
that my nodes are more secure. 
As a security engineer, I want cloud services to only have the absolute necessary access to other services, 
via firewalls. 

Table 6 - Security Engineer user stories 

 



58 
 

Business User 
As a business user, I want infrastructure to be automatically created and torn down whenever the system is 
not using it, so that I can save money. 
As a business user, I want pipelines to be optimized for to the data that will be consumed, so that I both the 
execution time is reduced and the costs keep at minimum. 

Table 7 - Business user stories 

 

5.3. Requirements 
 

Requirement Comments 
The user shall provide a valid AWS credentials file before 
deploying the system locally. 

Permissions must include EC2FullAccess, 
EMRFullAccess and S3FullAccess 

The system shall be architected using independent 
microservices.   

Microservices shall be containerized, so that they can be 
platform independent.   

The system shall include a convenience script to start the 
webserver, infrastructure manager and pipeline 
administrator. 

  

The code repository shall contain all templates and scripts 
required for both the local agent as well as the cloud agent to 
work properly. 

  

The input data shall be migrated to the data lake.   
The output data shall be stored in the data mart.   

The system shall block the user from entering new pipelines 
until the basic infrastructure is ready. 

This can be achieved by disabling the create 
button and/or the fields to enter the pipeline 
specifics. 

The infrastructure microservice shall deploy the basic 
infrastructure at startup.   

The infrastructure microservice shall notify when the basic 
infrastructure is ready.   

The infrastructure microservice shall provide an API to get 
the status of the infrastructure setup.   

The infrastructure microservice shall provide an API to 
build infrastructure modules.   

The infrastructure microservice shall provide an API to tear 
down infrastructure modules.   

The pipeline microservice shall provide an API to create a 
new pipeline.   

The pipeline microservice shall verify the existence of the 
file(s) used as input.   

The pipeline microservice shall extract the metadata from 
the input file(s).   



59 
 

The pipeline microservice shall coordinate the migration of 
the input datasets to the data lake.   

The webserver shall check for any missing or incorrect field 
in the web page.   

One or more remote virtual machine shall be set up to 
handle the remote setup of the system. 

The remote system shall contain the required 
services to handle scheduling and lineage 
tools. 

The DAG manager microservice shall include a folder 
where all DAGs are to be stored.   

The DAG manager microservice shall trigger the creation of 
tables on top of the input datasets.   

The DAG manager microservice shall create the scheduling 
script using the SQL transformation and the table inputs.   

The remote server setup shall include all necessary 
databases for both the scheduling and the lineage 
microservices 

  

The lineage microservice shall automatically capture the 
data lineage from the execution of all DAGs   

The different components of the scheduling microservice, 
shall be deployed independently. 

The components include the webserver, the 
scheduler and the celery worker 

Table 8 – Requirements 

 

5.4. Assumptions 
 

• The cloud provider is Amazon Web Services (AWS). 
• An AWS account is available. 
• Input files are located in the host filesystem or mounted onto it. 
• Docker is properly installed and configured. 
• An IAM role is available and has a policy with the following actions: 

 
o s3:* 
o elasticmapreduce:* 
o ec2:* 
o glue:* 

 
• Input files are in either CSV or JSON format. 
• A copy of the Adaptive Big Data Pipelines repository [89] is already available in the local 

filesystem. 
• The system is manually triggered by a script. 
• A minimalistic non-reactive web interface will be provided. 
• SQL transformations are not validated for correctness. 
• Jinja templates are not supported. 
• Dashboards are not provided. 



60 
 

• Previously created DAGs’ edition is not supported. 
• Logging is available exclusively via Docker. 

 

5.5. Proposal 
 

5.5.1. Architecture 

 

Figure 18 - Technical architecture of the adaptive data pipelines 

 

5.5.2. Description 
 

The adaptive big data pipelines system is a multi-layered architecture, comprised of several interwoven 
software artifacts; all of which are orchestrated as individual microservices and deployed using Docker 
Compose. Hence, it is worthwhile first providing a broad level overview so that it becomes clear once we 
dive into the individual components. 

At a high level, the system is spun up on the company’s data center. The system provides a web interface 
the user can interact with locally using a web browser. At startup, the cloud infrastructure is set up and 
configured automatically under the hood. The web interface is fully enabled once the minimum 
dependencies are up and running. At this point, the user could enter information about the pipeline to be 
created: 

 



61 
 

1. Name of the pipeline. 
2. Up to three data sources path in the local filesystem. 
3. Table aliases for each data source. 
4. Transformations and/or aggregations in ANSII SQL. 
5. Output table name. 
6. A CRON expression. 

Once the above information is entered, and the user clicks on Submit, the pipeline extracts metadata from 
the files, including the file size, format, schema, and row count; these metadata will later on be used to 
tailor the pipeline transformations on Apache Spark for maximum performance and lowest cost. 

The local microservices (i.e., webserver, infrastructure and job scheduler) coordinate with the remote 
super server—the central cloud virtual machine in charge of creating the DAG and fine-tuning the cluster 
settings to run smoothly. The webserver sends the gathered pipeline requirements to the job scheduler, 
which calculates the metadata, depending on the file. Then, it starts the migration process to the data lake. 

Once the migration is ready, the job scheduler creates a Glue crawler over the data, in order to generate 
the corresponding tables on top of the data. Once that is done, the DAG manager creates the Airflow DAG 
specifying the parameters for the pipeline’s execution. 

The configured DAG will be automatically launched once Airflow picks it up from the DAGs folder. For 
the ETL execution, an EMR ephemeral cluster—i.e., a cluster that is created with the unique purpose of 
performing a data transformation and then it is automatically wiped out—is created. The cluster is 
bespoken to the data volume and transformation necessities (number of nodes and Spark configurations). 
It will perform the specified transformations and dump the result in the output table. 

The above described ETL will report the Spark data lineage to Spline and it will automatically make it 
available for users through the Spline UI to drill into specific transformations. 

Communication is key when talking about microservices. Therefore, both the infrastructure and DAG 
admin microservices expose an endpoint for other services to poll their current processing state. This is 
particularly useful in the web interface, so that its components are reactive (i.e., to the first time the 
infrastructure is being set up, to disable controls and avoid having inconsistent states). Also, when 
submitting a job, the user can see first-hand what is happening on the remote server with the pipeline 
creation and execution. 

Once the DAG is up and running, the user just sits and relaxes: the pipeline is automatically scheduled to 
run according to the CRON task provided at design time. The scheduling and execution are taken care of 
by Airflow. 

As briefly outlined, microservices are created as individual Docker containers that expose a minimalistic 
web server with a set of well-defined REST APIs/endpoints to interact with each other. In this manner we 
achieve the following: 

• Fault tolerance 
• Modularity 
• Separation of concerns 
• Scalability 



62 
 

• Isolation 
• Decoupling 
• Easiness to install dependencies 

Now that we described the main pieces of the system, we can focus on breaking down the architecture in 
bite-size segments. First off, we can classify the system in two broad contexts: 

• On-premise 
• Cloud 

The on-premise context is comprised by the three initial microservices: the webserver, the job scheduler 
and the infrastructure (manager), whereas the cloud system is comprised by all the cloud infrastructure, 
created on runtime and 9 other microservices are created: 6 related to Airflow, 2 to Spline and the DAG 
admin. 

Alternatively, the system may also be divided in the following more granular blocks: 

1. Cloud infrastructure 
2. Web interface 
3. Data Migration 
4. DAG setup 
5. ETL processing 
6. Lineage tracking 

Cloud infrastructure uses Terraform to create the corresponding infrastructure at startup. It offers an 
endpoint to consult the status of the infrastructure creation. This is mainly used in the web interface to 
enable and disable controls. Many variables are generated during the cloud infrastructure setup, including: 

• IP address of the remote server 
• Security group ids 
• Roles ids 
• Bucket names 
• Public and private subnet ids 

This information is stored. Once the pipeline is submitted, the job scheduler polls this information to 
communicate and coordinate pipeline creation with the DAG admin. 

The web interface is comprised by a backend micro-engine using Nodejs, and a simple web page that the 
user can consult. As described above, controls are disabled until the underlying infrastructure is running 
to avoid accidents. This service communicates with both infrastructure and job scheduler to submit 
pipelines. 

Data migration is taken care of by the job scheduler. This process involves extracting the metadata of the 
input files and copying the files to the data lake. This process leverages the infrastructure outputs. 
Migration highly relies on the network connection, so the bigger the file, the longer it will take to copy it. 
Once the migration is ready, a Glue table is created using a Glue crawler. This process finishes once the 
crawler successfully finishes creating the table(s). 



63 
 

DAG setup occurs entirely on the remote server given a cue from the on-premise data center. This process 
creates a python file that contains both the transformations and the complementary data so that the Airflow 
DAG can be picked up. The resulting file is stored in the DAG bag for Airflow to find it. 

Given the complexity of Airflow, all its components are segregated in different containers, including the 
scheduler, the task queue, the DAG metastore, the webserver, etc. 

ETL processing occurs both once the DAG is successfully picked up the first time, and every time the 
CRON expression indicates an execution. This process will create an ephemeral cluster, on EMR, tailored 
to the data volume and schema requirements. 

The internal Spark application template is controlled by the DAG admin service and is automatically 
deployed to the data lake for EMR to pick it up. 

The cluster is configured to read from the Glue metastore and so it leverages the Glue tables both for input 
and output. Along with that, Spark SQL has full support for ANSII SQL syntax, which allows the 
application to execute the plain query as is. The cluster is terminated after the processing is done to not 
incur in unnecessary charges. 

Data lineage tracking is comprised by a web server and a MongoDB database. The latter is where the 
lineage metadata is automatically stored from the EMR cluster. Once the transformation is evaluated, i.e., 
when the Spark application writes the results to Glue metastore, the application automatically takes care 
of sending that information to the lineage database. At this point, Spline’s UI can pick up the latest lineage 
updates instantaneously and users can visualize the transformations as a Directed Acyclic Graph (DAG). 

Security is of the utmost importance in modern cloud systems. Data pipelines are by far the most 
vulnerable of all systems, as often times the information that is transported contains either personal 
identifiable information (PII) or any hashed values related to passwords. Therefore, the adaptive data 
pipelines infrastructure is generated with all critical components isolated in a private subnet—inside the 
VPC—and the access is restricted via security groups, which only allow access from the data center’s IP 
address and inside the cloud infrastructure to the mandatory components (analogously to how a firewall 
operates). 

Furthermore, by attaching roles to the different components, we can control what access they have over 
other services. For instance, the EMR cluster has only access to create EC2 instances, which in turn have 
access only to read from the metastore and S3. Any other malicious action will ensue an access denied. 
This prevents that, in case of a hacker makes his/her way into the data center, the component is restricted 
to the bare minimum services and hence the impact is severely reduced. 

 

  



64 
 

 

6. EXPERIMENTS AND 
RESULTS 

In this section we describe the main experiments and results obtained during the validation of the adaptive 
big data pipelines. All the code as well as the initial documentation can be found in the open source 
repository on GitHub [89]. 

Since this project is aimed towards big data processing, the first obvious prerequisite is to get a hold of an 
interesting and large data set, preferably in the order of dozens to a few hundred GBs. 

Unfortunately, most of the data sets available in internet (Kaggle, UCI, etc.) proved not useful for any of 
the following reasons: 

• Format is neither CSV nor JSON. 
• Many thousand small files instead of few hundred big ones. 
• Extremely dirty data. 
• Volume of data is too low (KB or MB). 
• Data analysis will not provide an interesting and real-world scenario. 
• Data is not related to any other dataset to perform combinations. 

Given the above reasons, I decided to create my own synthetic data set that resembles real-world as closely 
as possible, while keeping the format, relations and data volume. In this case, I created data for a medium-
sized ecommerce company. 

One important oversimplification of data generators available online is random information production. 
For sheer data processing time estimation, this may suffice, however, my approach must also consider a 
slight data skewness—that is, not all users behave the same way and not all countries generate the same 
number of events. For this particular case we will use normal distributions to generate tendencies [90]. 

I generated 3 data sets: 

• Users 
• Sessions to users 
• Sessions purchases 

 

 



65 
 

6.1. Tables 
 

Figure 19 represents an ERD diagram with the overview of the tables structure. Specific details are 
elaborated in the following sub section. 

 

Figure 19 - ERD diagram 

 

6.1.1. Users 
 

This dimension data set contains information of 10 million unique users. It contains basic information 
from the platform users. The file format will be CSV. The table contains following fields: 

• user_id 
• full_name 
• email 
• city 

I leveraged Mexican’s top 500 most common male and female names, along with the top 1000 most 
common last names [91]. Mexican full names are made up of one or more names followed by two last 
names: the first one is the father’s father surname and the second is the mother’s father surname. 
Considering that, I could encode up to 500 million unique names (although in real life, a perfect match 
between two full names is not unheard of). 

Emails are generated by concatenating name and surnames using a dot. Emails will have gmail extension 
(i.e., @gmail.com). 

The city field is generated based on 12 of the most important mexican cities: 

1. Mexicali 
2. Hermosillo 
3. Veracruz 
4. Guadalajara 
5. Monterrey 
6. Tampico 
7. CDMX 



66 
 

8. Pachuca 
9. Tuxtla Gutierrez 
10. Cancun 
11. Colima 
12. Tepic 

 

6.1.2. Sessions to users 
 

This data set is an intermediate table between users and purchases. It only contains unique identifiers 
from both tables to join them, as there is a one-to-many relationship between users and purchases (i.e., 
any given user may buy an arbitrary number of times). Files will be given in JSON format. 

The fields included in this table are: 

• user_id 
• session_id 

 

6.1.3. Sessions purchases 
 

This last data set represents the actual purchases of the users. It will be given in JSON format. Files will 
contain the following schema: 

• session_id 
• transaction_type 
• amount 
• timestamp 

transaction_type can be credit_card, cash or paypal. 

amount is a decimal ranging from 0 to 2000. Represents the amount spent on this transaction. 

timestamp represents the purchase unix timestamp. It ranges from 2019 to mid 2020. 

 

6.2. Automating data generation 
 

Since I needed to carry out a few tests over different volumes of data, I decided to generate three python 
scripts, one for each data set, and add command line arguments to specify how many records and how 
many files to split data sets into. 



67 
 

Given the cost implications of storing, distributing and scanning large volumes of data, I ended up creating 
the following arrangement: 

1. 10 million unique users divided in 5 CSV files 
2. 300 million unique relations between users and purchases divided in 30 JSON files 
3. 300 million unique purchases divided in 30 JSON files 

The above-mentioned data is then generated using the following high-level script: 

• ./create_data.sh 10000000 5 300000000 30 

The resulting data is about 45 GB in size. This is perfect for demonstration purposes, as it appropriately 
emulates a medium-sized company data volume. 

 

6.3. Datacenter remote setup 
 

As described in previous sections, data migration takes place along the pipeline creation. Since data is 
directly copied to S3, a mechanism called multi-part upload is implemented in the job scheduler 
microservice. This process speeds up the upload process by dividing files into roughly equal-sized chunks 
and delegating each thread a set of chunks to transmit. 

Despite such improvement, data transfer is ultimately constrained by the internet bandwidth of the data 
center—or, in my case, my internet provider. Early tests showed that 1 GB files could take up to 40 mins 
to upload, depending on the network conditions. To circumvent this limitation, an EC2 instance is created. 
We call this instance the data center (in resemblance to an actual data center with decent internet 
connection). 

The data center instance is created with two purposes in mind: generate the synthetic data efficiently (using 
last generation CPUs) and run the local data center logic—including the webserver, job scheduler and 
infrastructure. 

The instance type I chose is c5n.xlarge, as it features a high-speed network card that allows for rapid data 
transfer to S3 while migrating. Moreover, in order to avoid copying credentials over to the instance, an 
EC2 role is attached to the instance. As described in the assumptions, the role has the following access: 

• VPC full access 
• EC2 full access 
• S3 full access 
• IAM full access 



68 
 

 

Figure 20 - Data center permissions 

Notice that full access is granted on all 4 services. This is to avoid any complications while experimenting. 
Further restrictions could be applied to increase security. I will elaborate on this on the future work section. 

A security group is created for the data center in order to have inbound traffic access on ports 22 (SSH) 
and 8080 (webserver’s port to dispatch the actual web form) to the public IP from where I was conducting 
my experiments. Since my service provider sporadically changes my public IP, I had to periodically update 
it on the console. In my case, this was particularly notorious while trying to SSH into the instance and no 
warning message was shown immediately. 

 

Figure 21 - Data center security group 

At this point, I already had most of the adaptive pipeline’s code already implemented—or so I thought. 
The original design contemplated the webserver as well as the local services to be executed locally (thence 
the name). 



69 
 

In order to successfully execute the local setup remotely, I had to strip off the microservice interaction 
from the client-side script and incorporate it in the webserver logic. The client-side script redirects the 
requests to the webserver, and it calls the corresponding microservices on its end.  

 

6.4. Spin up local services 
 

Once the data center is created, SSH into it using the keypair generated for it (lekeypair.pem in my case). 

 

Figure 22 - Log into the data center 

Once the data is generated in the data center, as per previous sections outline, the repository is cloned, and 
we navigate to the services folder. From there, the local setup can be instantiated using the convenience 
script as follows: 

• ./setup.sh local 

Once the services are up and running, we copy the data center’s public IP, from EC2 dashboard, and enter 
it into our web browser with port 8080: 

 

Figure 23 - Public IP location of data center 

• <data_center_ip>:8080 

Once the web form is loaded, the underlying infrastructure build is triggered. Right above the Create 
button, a text label shows the status of the build. All buttons are disabled while the underlying 
infrastructure is being created to avoid inconsistencies. 



70 
 

 

Figure 24 - Disabled controls for web UI 

The four stages of the infrastructure creation are: 

1. INITIALIZING 
2. SETTING UP FOUNDATIONS 
3. SETTING UP SUPERSERVER 
4. READY 

Once in READY state, the buttons will turn green, meaning that they are now enabled. We now proceed 
to enter the pipeline information including pipeline name, 3 data source paths (from the data center’s 
filesystem perspective) and names, SQL transformation, output table name, and schedule time. 

 

Figure 25 - New pipeline submission 



71 
 

The transformation we use in this experiment provides insights as to the total spend users have in total, 
per city per month, where the spending is above 50 pesos. 

SELECT 
u.city, 
MONTH(FROM_UNIXTIME(sp.timestamp)) as month, 
SUM(sp.amount) as total_spent 
FROM users u 
INNER JOIN sessions_users AS su 
ON u.user_id = su.user_id 
INNER JOIN sessions_purchases AS sp 
ON su.session_id = sp.session_id 
WHERE sp.transaction_type = 'credit_card' 
GROUP BY u.city, MONTH(FROM_UNIXTIME(sp.timestamp)) 
HAVING SUM(sp.amount) > 50.0 

   

After clicking the create button, the pipeline creation kicks off. As described in previous chapters, the 
process extracts the metadata from the files, and migrates to the data lake in S3. 

 

Figure 26 - job_scheduler multi-part copy progress 

Once the migration is done, we can take a look inside the abdp-datalake bucket, under the raw folder, to 
find the data successfully stored in folder with the name of the tables. 



72 
 

 

Figure 27 - Data sets migrated to the data lake 

 

After that, a set of AWS Glue crawlers are created (if not existing yet) to scan the folders and create Glue 
tables on top of the data, which will then be used by Spark to process the data sets as tables. 

 

 

Figure 28 - Data sets available as Glue tables 

 

Once the crawlers finished and the new tables are available, the job scheduler coordinates with the dag 
admin to build a new Airflow DAG. The DAG is based on a template available in the service. The dag 
admin replaces the placeholder configurations with the actual values sent from the data center and so the 
Airflow Scheduler pick it up and is now shown in the Airflow webserver. 

From the adaptive big data pipeline’s webserver, the user can click on View Scheduling and to visualize 
new DAG on Airflow’s main panel. By default, Airflow will execute the job after being incorporated to 
the DAG bag. 



73 
 

 

Figure 29 - New DAG created and visible from Airflow webserver UI 

 

 

Figure 30 - Pipeline task being automatically executed by Airflow 

 

The airflow job will automatically create an ephemeral EMR cluster and pass the configurations on to the 
spark job as command line arguments. 

As part of the cluster setup, the number of nodes is determined by the number of partitions, which in turn 
vary according to the data volume. This ensures that the maximum resource allocation is attained. 

The Spark job that is automatically executed by EMR consists of a template, built in Scala, that executes 
a SQL transformation passed on as command line argument. The job executes it using the Spark SQL, 
then dumps the result to both S3 and Hive metastore (on AWS Glue). Once done, the cluster automatically 
terminates to not incur in additional charges. 



74 
 

 

Figure 31 - Spark stage's metrics after processing the transformation 

 

Figure 32 - EMR cluster terminated successfully after processing 

 

The data lineage is automatically written in Spline. Once the Spark job finishes, the user can access it by 
clicking on View Lineage from the webserver’s page. In Spline, all transformations for a given job can 
be visualized by clicking on the left pane, on the output name. 

 

Figure 33 - Pipeline's anatomy on Spline 

  

 



75 
 

6.5. Benchmark 
 

In order to have a perspective as to the benefits of this solution, 3 different business scenarios are put 
forward in which an end-to-end cloud-based big data pipeline is required: 

1. Using the Adaptive Big Data Pipelines 
2. Having a Data Engineer and a DevOps Engineer 
3. Having a Data Analysts 

For each scenario, we showcase 2 different metrics: 

1. Cost in Mexican pesos 
2. Time to get the insights 

In the following sub sections, the main assumptions are presented for each scenario. 

 

6.5.1. Adaptive Big Data Pipelines 
 

In this scenario, the company already has either a business or a data analyst. According to Glassdoor [92], 
the salary of a Data Analyst is around 21,000 Mexican pesos. 

Now, since ABDP is an open source tool, companies do not incur in costs using it. 

According to the AWS billing page, in April—the month I was doing most of my tests—the total cost of 
of processing 45 GB was 14.8 USD, or 329 Mexican pesos. 

 

Figure 34 - AWS Costs ABDP April 

The average time it takes for a data analyst to have results ready to query on Athena, once the SQL 
query is ready, breaks down to: 

 



76 
 

• 3 mins filling in the web form 
• 8 minutes cloud setup 
• 4 mins file copy 
• 8 minutes data processing 

Which add up to 23 minutes. 

In conclusion: 

• Employee costs – 21,000 Mexican pesos. 
• Cloud costs – 329 Mexican pesos. 
• Time – 23 minutes. 

 

6.5.2. Data Engineer and DevOps Engineer 
 

According to Glassdoor [93] [94], Data Engineers make on average 26,000 Mexican pesos, whereas a 
DevOps Engineer earns over 46,000 Mexican pesos. 

For the sake of simplicity, we add 100 USD on cloud costs for the experimentation, or 2,227.22 pesos, to 
the original 329 pesos, which adds up to 2,256 Mexican pesos the first month. 

In the consulting firms I have worked on, I have seen a couple projects with similar end-to-end pipelines 
requirements. On average this will be the epics and the time estimation: 

Epic Duration Responsibility 

Set up cloud infrastructure 3 weeks DevOps 

Set up repositories 1 week DevOps 

Develop Spark SQL job 2 weeks Data Engineer 

Install and configure Airflow 2 weeks Data Engineer 

Tests and fine tune of the pipeline 2 weeks Data Engineer 
Table 9 - Epics to build and end-to-end pipeline 

Since the DevOps and Data Engineer can work independently for the most part, we assign a maximum 
of 2 months for project completion. This translates in 52,000 Mexican pesos for the Data Engineer and 
92,000 Mexican pesos for the DevOps Engineer. Both salaries add up to 144,000 Mexican pesos. 

Since the Data Analyst is the one designing the SQL query, we incorporate him as per the ABDP 
estimation. 

 

 

 



77 
 

In conclusion: 

• Employee cost – 144,000 + 42,000 = 186,000 Mexican pesos. 
• Cloud cost – 2256 + 329 = 2585 Mexican pesos. 
• Time – 6 weeks. 

 

6.5.3. Data Analyst 
 

In this last scenario, we consider the same salary pointed out in the ABDP section for a single data 
analyst across all the project. The following table shows the activities the analysts will have to work on 
in a sequential manner. The first ones involve training, for the sake of simplicity, will incur in an 
additional 500 USD or 11,130 Mexican pesos. 

Epic Duration 

AWS Fundamentals 4 weeks 

Security Fundamental 2 weeks 

Big Data Fundamentals 6 weeks 

Spark, Airflow, Terraform and Git 6 weeks 

Set up cloud infrastructure 3 weeks 

Set up repositories 1 week 

Develop Spark SQL job 2 weeks 

Install and configure Airflow 2 weeks 

Tests and fine tune of the pipeline 2 weeks 
Table 10 - Data Analyst Epics 

Which add up to 28 weeks (7 months). 

In conclusion: 

• Employee cost – 21,000 * 7 = 147,000 Mexican pesos. 
• Cloud cost – 2256 + 329 * 6 = 4,230 Mexican pesos. 
• Training cost – 11,130 Mexican pesos. 
• Time – 28 weeks. 

 

 

 



78 
 

6.6. Summary 
 

Aggregating the above sub section’s results, both costs and time estimation, we get the following table: 

Scenario Cost (Thousand pesos) Time (days) 

ABDP 21.3 0.015 

DataEng + DevOps 188.5 42 

Data Analyst 162.3 196 
Table 11 - Cost and time benchmark 

 
Figure 35 - Costs benchmark 

 
Figure 36 - Time benchmark 

 
As observed in the benchmark results, there was a dramatic reduction of both time (99.96% and 99.99%, 
respectively) and costs (88.7% and 86.8% respectively). 

Given all the above, we demonstrated how easy it is for business, and data analysts with no knowledge on 
distributed systems, to construct scalable pipelines with significant cost and time savings. 



79 
 

7. CONCLUSIONS 

7.1. Conclusions 
 

The ABDP is an open-source initiative. This is granted that all tools this project leverages are open source, 
and I also believe that the only way technology has been able to flourish exponentially is thanks to the 
community support and contributions. In consequence, the repository had to be available publicly—and 
in fact is, at the time of writing. While transitioning from a private repository to a public one, I learned 
that using plain text files or environment variables to share AWS credentials between services was an 
eyesore practice. At that point, I started migrating towards IAM roles, which could be easily managed 
from the infrastructure microservice. This ensured that credentials were directly attached to the services 
that require access to other services in a secure way. 

The first obstacle I faced while investigating the state of the art for this project is the lack of academic 
research on practical big data tool integration. Most research papers and books would either cover one 
specific tool—explaining how it works internally and architectural decisions—or elaborate on how they 
combined a few tools to solve a unique use case. Likewise, when compared to similar data-related areas 
such as machine learning, I observed the latter to be more compelling for academia, as it has a stronger 
mathematical component to it. All this forced me to underpin a good portion of this project on either online 
blogs or some niche books, which is often times seen with contempt by the academia. 

At the inception of this project, back in August 2018, my experience—and by extension, my knowledge—
on big data tools was not particularly broad or deep. As with most thesis, I recognize there were several 
assumptions and initial misconceptions that drove me towards cul-de-sacs, which translated into countless 
months spent prototyping and discarding a fair number of tools. On the one side, this forced me to narrow 
down the scope of the system to account for the uncertainty. On the other hand, I was able to integrate 
more cutting-edge tools, not originally envisioned in order to provide more usability to the end user. 

The pipeline fine-tuning involved a simple algorithm to determine right number of partitions the EMR 
Spark job was going to use for shuffling operations—join and group by. Originally, Spark was intended 
to read the number of records and schema, in order to determine the partition count. However, since the 
execution of Spark was local, when working with dozens of GB, the execution took a lot of time or even 
fail due to lack of memory. Plus, those metadata did not practically improve the pipeline execution. 
Ultimately, I decided to boil down the algorithm to the total file size. 

When dealing with the public cloud, one important metric to bear in mind is costs. One huge downside of 
the pay-as-you-go model is that you may inadvertently spend hundreds of dollars in just a few days. Even 
though I was fully aware of the costs most of the services entail, while experimenting some eventuality 
happened, and my costs would soar—and I ended up pulling my hair off when the bill arrived. So, I would 
have saved a few dozen dollars by reserving instances instead of using on-demand instances. 



80 
 

AWS provides a staggering number of services to allow for scalable and powerful application 
development, ranging from Infrastructure as Code all the way to Serverless (e.g., Lambda, Kinesis, Glue). 
Even though Serverless may look enticing, it can easily cause vendor lock-in. In my professional 
experience, I have seen several times customers trying to migrate from one platform to another. The tighter 
the coupling with the cloud provider services, the longer the migration is going to take. This was the main 
motivation behind using open-source tools, including Terraform for the infrastructure: in this way, if 
someone wants to implement ABDP in, say, Google Cloud Platform, he/she only needs to mirror the 
components in the infrastructure microservice using the exact same syntaxis. 

In my experience, by utilizing thousands of small files—roughly 100KB each—the pipeline’s performance 
is severely impacted, as Hive tables need to serialize and deserialize more files in order to provide the data 
to Spark. To attain the ideal performance file sizes were above 100 MB should be favored. On the other 
hand, if the data sets are small—less than 100 MB in size—and I zipped them into a single file, that would 
also worsen the pipeline’s performance. 

When working with a microservice architecture and a client-side JavaScript artifact, I discovered that 
JavaScript cannot directly refer to the DNS names provided by docker compose, as it lies outside the 
services scope; the web server, on the other hand, does have access to the microservices by DNS name. 

The most perplexing thing I found while looking for data to work with for this project is the lack of good 
quality data on internet. I struggled for months to find something remotely interesting. Platforms such as 
Kaggle are flooded with datasets that are either small or are unstructured formats (e.g., text files or images). 
Because of this, I decided to create my own scripts to generate as much data as I wanted. One of the 
challenges of following this path is that I had to emulate real-world tendencies using statistics, which led 
me to the binomial distributions. However, as they are computationally expensive over large datasets (i.e., 
over hundreds of billions of records), the task of generating such data becomes challenging. In the end, I 
was not able to represent real world tendencies with the granularity I desired, but it was acceptable enough 
for the experimentation. 

Another architectural pattern I understood and implemented down the road is microservices. Originally, I 
started the implementation as a huge monolith, similar to what most small company would do if not 
properly guided. However, soon I discovered that dependencies were all over the place and it was going 
to become impossible to manage. Therefore, I revamped the architecture to leverage docker compose. At 
first it was complex, but it became easier to manage on the long run. In this way I also achieved separation 
of concerns and isolation, two crucial factors of any scalable architecture. 

The input data formats supported in this project (i.e., JSON and CSV) proved to be quite inefficient, as 
the benchmark with Spark showcased only a small portion of the real file sizes is being scanned when 
consuming the tables. Furthermore, if files were in parquet format, they read would have been much faster. 
However, I purposefully avoided using parquet as no company out there—unless it is considerably data 
mature—has data in parquet format, but rather JSON or CSV. 

Several hundred—if not thousand—big data projects are available over the internet. Those on the spotlight 
are the ones that allegedly have had more adoption by the community and had been commonly incubated 
by the Apache foundation. With that many options at hand, most tools gradually died out over the years. 



81 
 

I noticed that the main reason was the poor adaptability to cloud environments and non-Hadoop-compliant 
tools; to name a few: Apache Oozie, Apache Atlas, Apache Falcon and Apache Pig. 

To my surprise, there were a few highly interesting projects that, despite being under the radar, may be 
extremely useful for real-world scenarios. Such is the case for Spline, a tool I found two weeks before 
presenting the initial demo to my tutor. I learned that tools that seamlessly integrates with other tools is 
crucial to get attention from the community. 

By working with Apache Airflow, I learned how quickly open-source projects are developing. In a matter 
of two years, many things changed, including the variety of operators available. As briefly mentioned in 
the future work section, I started knowing that Bash and Python operators existed. Six months ago I 
discovered that the amount of operators is ever-increasing and are suitable for more specific use cases: 
MySQL, Redshift, BigQuery, EMR, to name a few. 

Data is the crux of this project. As such, I decided to include as much of the logic as possible within private 
subnets inside AWS. This becomes complicated to manage at first, as you have to incorporate additional 
components to make those instances have access to internet securely, including a NAT gateway and an 
internet gateway, as well as the appropriate routing tables.  

Finally, I realized that data migration to the cloud may be a slow process if you do not have the right 
network infrastructure. I noticed that my network connection was causing all sorts of problems when 
migrating files and since no failover mechanism was implemented, upon a failure I would have to start the 
migration all over again. Hence, when data volumes exceed 1 TB, AWS recommends using Snowball, 
which is a special appliance to transfer large volumes of data to S3 physically. 

 

7.2. Future work 
 

In virtue of this project primary focus on big data, the web UI—or more precisely, the web form—was 
considered a means to only enter pipeline information, and easily access both the lineage and scheduling. 
Therefore, the UI lacks some basic functionality, among which I consider the following as the most 
important ones: 

• Multiple user log in. 
• A way to keep track of the process of pipeline creation and execution. 
• A screen to inspect, edit and remove existing pipelines. 
• A textbox area to issue queries to AWS Athena. 
• A panel to keep track of the health of underlying services. 
• An option to tear down infrastructure modules—super server and foundation—on demand. 

For simplicity, this project assumed a single server instance—called super server—in order to host all 
remote microservices. Splitting this into multiple instances, using either ECS or EKS (managed 
Kubernetes service) can circumvent the single point of failure.  



82 
 

Another restriction of this project is the IAM policies. For ease of testing, we provided coarse permission 
boundaries (e.g., full access to S3, IAM, EC2). This is far from ideal for production environments. 
Therefore, further investigation is necessary to narrow down those policies to what is truly required by 
every service—restricting all the way down to the resources. 

Another important feature to incorporate is VPN integration with the security groups, so that all remote 
services, including scheduling and lineage, can be accessed from the VPN no matter where the employee 
is working, as long as it has access to the VPN. Currently, the only whitelisted public IP is the one the 
from where the infrastructure is built. 

During the investigation and implementation of this project, a rather new feature of Airflow gained 
momentum, and remained under my radar: EMR operators. Such operators facilitate the EMR cluster 
creation and monitoring, instead of having custom boto3 code to perform such actions on your behalf. 

Furthermore, early experiments on Airflow seemed to indicate that a fully automated Airflow DAG (i.e., 
a Python script) was not entirely feasible. The problem is the way Airflow reads the files and fills the DAG 
bag, as it needs to locate a DAG object within the main script. In consequence, I had to leave most 
configurations as hardcoded variables that are automatically replaced once the DAG is created based on 
the template. A configuration-based approach would be preferable in this case, to allow for future 
modifications. 

Another fixed element of this architecture is the amount of partitions that Spark calculates for the ongoing 
data ingestion. Partition count should be recalculated once new data comes in to preserve the pipeline 
efficiency. 

This project only accounts for one-time only data migrations. Since the scheduling service is meant to 
process historical data commonly on a daily basis, a mechanism would need to be implemented to 
constantly and intelligently migrate any data generated in the data center to the data lake. 

I recently stumbled upon AWS KMS, a service to manage encryption keys. This feature may be included 
in the infrastructure microservice in order to enable server-side at-rest encryption and secure data even 
further, to consider highly sensitive data. 

Another interesting feature to include is a way to turn on and off independent services when they are not 
in use, hence avoiding unnecessary expenses. Alternatively, the use of serverless options such as Lambda 
could be considered. 

From professional experience, I learned that when working with high volumes of data in private subnets, 
costs may dramatically increase. The current implementation uses a NAT gateway to route traffic to the 
internet. However, most of the traffic the EMR cluster would require is both to S3 and Glue. VPC 
endpoints could be used and associated to the routing table in order to force local traffic through them. 
This would not only reduce costs, as the VPC endpoints traffic costs is a fraction compared to the NAT 
gateway ones, but it also ensures that privately handled data only flows to those specific services without 
leaving AWS’ infrastructure. This would be extremely beneficial for highly sensitive data or PII. 

 

 



83 
 

REFERENCES 
[1] S. Ghemawat, et. al., “The Google File System”, 2003 
[2] J. Dean, S. Ghemawat; “MapReduce: Simplified Data Processing on Large Clusters”, 2004 
[3] S. Melnik, et al., “Dremel: Interactive Analysis of Web-Scale Datasets”, 2010 
[4] S. Bappalige, An introduction to Apache Hadoop for big data, August 2014. Accessed on: March 

2020. [Online]. Available: https://opensource.com/life/14/8/intro-apache-hadoop-big-data  
[5] Apache Software Foundation, Apache Hadoop. Accessed on: February 2020. [Online]. Available: 

https://hadoop.apache.org/ 
[6] H. Karambelkar, Apache Hadoop 3 Quick Start Guide, Packt, 2018 
[7] K. Shvachko, et al., "The Hadoop Distributed File System", 2010 
[8] K. Goel, Introduction to Hadoop, December 2019. Accessed on: April 2020. [Online]. Available: 

https://intellipaat.com/blog/tutorial/hadoop-tutorial/introduction-hadoop/ 
[9] Apache Software Foundation, Apache Hive. Accessed on: January 2020. [Online]. Available: 

https://hive.apache.org 
[10] A. Thusoo, et al., "Hive - a petabyte scale data warehouse using Hadoop", 2010 IEEE 26th 

International Conference on Data Engineering (ICDE 2010), Long Beach, CA, 2010, pp. 996-
1005. 

[11] Dataflair team, Hive Metastore – Different Ways to Configure Hive Metastore, March 2020. 
Accessed on: April 2020. [Online]. Available: https://data-flair.training/blogs/apache-hive-
metastore/ 

[12] B. Black, EC2 origins, January 2019. Accessed on: March 2020. [Online]. Available: 
http://blog.b3k.us/2009/01/25/ec2-origins.html 

[13] K. Stalcup, AWS vs Azure vs Google Cloud Market Share 2020: What the Latest Data Shows, 
February 2020. Accessed on: March 2020. [Online]. Available: 
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/ 

[14] AWS, What is AWS, 2020. Accessed on: February 2020. [Online]. Available: 
https://aws.amazon.com/what-is-aws/ 

[15] AWS, Cloud Products, 2020. Accessed on: February 2020. [Online]. Available: 
https://aws.amazon.com/products/ 

[16] AWS, Benefits at a Glance, 2020. Accessed on: March 2020. [Online]. Available: 
https://aws.amazon.com/application-hosting/benefits/ 

[17] AWS, Amazon EC2, 2020. Accessed on: July 2020. [Online]. Available: 
https://aws.amazon.com/ec2/ 

[18] AWS, Amazon S3, 2020. Accessed on: July 2020. [Online]. Available: 
https://aws.amazon.com/s3/ 

[19] AWS, AWS Identity and Access Management, 2020. Accessed on: July 2020. [Online]. Available: 
https://aws.amazon.com/iam/ 

[20] AWS, Amazon Virtual Private Cloud, 2020. Accessed on: July 2020. [Online]. Available: 
https://aws.amazon.com/vpc/ 

[21] AWS, Amazon EMR, 2020. Accessed on: July 2020. [Online]. Available: 
https://aws.amazon.com/emr/ 



84 
 

[22] AWS, AWS Glue, 2020. Accessed on: July 2020. [Online]. Available: 
https://aws.amazon.com/glue 

[23] AWS, Using the AWS Glue Data Catalog as the Metastore for Spark SQL, 2020. Accessed on: 
July 2020. [Online]. Available: https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-
glue.html 

[24] AWS, Amazon Athena, 2020. Accessed on: July 2020. [Online]. Available: 
https://aws.amazon.com/athena 

[25] “Apache Airflow Documentation”, Accessed on: April 2020. [Online]. Available: 
https://airflow.apache.org/docs/stable/ 

[26] “Concepts”, Accessed on: April 2020. [Online]. Available: 
https://airflow.apache.org/docs/stable/concepts.html#operators 

[27] M. Zaharia, et al., “Spark: Cluster Computing with Working Sets”, University of California, 
Berkeley, 2009 

[28] Apache Software Foundation, Apache Spark, 2020. Accessed on: January 2020. [Online]. 
Available: https://spark.apache.org/ 

[29] H. Karau, et al., Learning Spark, lightning-fast data analysis, 2015, O’Reilly Media, Inc. 
[30] J. Damji, A Tale of Three Apache Spark APIs: RDDs vs DataFrames and Datasets, July 2016. 

Accessed on: February 2020. [Online]. Available: https://databricks.com/blog/2016/07/14/a-tale-
of-three-apache-spark-apis-rdds-dataframes-and-datasets.html 

[31] Apache Software Foundation, Apache Arrow, 2020. Accessed on: March 2020. [Online]. 
Available: https://arrow.apache.org/ 

[32] B. Cutler, Speed up PySpark with Apache Arrow, July 2017. Accessed on: March 2020. [Online]. 
Available: https://arrow.apache.org/blog/2017/07/26/spark-arrow/ 

[33] Apache Software Foundation, Parquet Documentation, 2018. Accessed on: March 2020. 
[Online]. Available: https://parquet.apache.org/documentation/latest/ 

[34] “Big Data file formats”, April 2020. Accessed on: April 2020. [Online]. Available: 
https://luminousmen.com/post/big-data-file-formats 

[35] AWS, Introduction to Presto (PrestoDB). Accessed on: April 2020. [Online]. Available: 
https://aws.amazon.com/big-data/what-is-presto/ 

[36] R. Sethi et al., "Presto: SQL on Everything," 2019 IEEE 35th International Conference on Data 
Engineering (ICDE), Macao, Macao, 2019, pp. 1802-1813. 

[37] “Apache Atlas – Overview”. Accessed on: February 2020. [Online]. Available: 
https://atlas.apache.org/#/ 

[38] “Apache Atlas – High Level Architecture”, June 2019. Accessed on: February 2020. [Online]. 
Available: https://atlas.apache.org/2.0.0/Architecture.html 

[39] S. Gopalani and R. Arora, “Comparing apache spark and map reduce with performance analysis 
using k-means,” International Journal of Computer Applications, vol. 113, no. 1, 2015. 

[40] “Spline – Data Lineage Tracking and Visualization Solution”, 2020. Accessed on: February 2020. 
[Online]. Available: https://absaoss.github.io/spline/ 

[41] Terraform, Introduction to Terraform. Accessed on: February 2020. [Online]. Available: 
https://www.terraform.io/intro/index.html#what-is-terraform- 



85 
 

[42] S. Madurapperuma, The Essential Git Handbook, April 2019. Accessed on: March 2020. 
[Online]. Available: https://www.freecodecamp.org/news/the-essential-git-handbook-
a1cf77ed11b5/ 

[43] Bitbull, Git Flow: how it works, November 2016. Accessed on: February 2020. [Online]. 
Available: https://www.bitbull.it/en/blog/how-git-flow-works/ 

[44] Preeth E N, F. J. P. Mulerickal, B. Paul and Y. Sastri, "Evaluation of Docker containers based on 
hardware utilization," 2015 International Conference on Control Communication & Computing 
India (ICCC), Trivandrum, 2015, pp. 697-700. 

[45] J. Nickoloff and S. Kuenzli, Docker in Action, Second Edition, October 2019, Manning 
[46] B. Burns, et al., Kubernetes: Up and Running, 2nd edition, 2020, O’Reilly Media, Inc. 
[47] J. Ellingwood, An Introduction to Kubernetes, May 2018. Accessed on: May 2020. [Online]. 

Available: https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes 
[48] C. Brooks, What is SQL?, January 2014. Accessed on: February 2020. [Online]. Available: 

https://www.businessnewsdaily.com/5804-what-is-sql.html, “What is SQL?” 
[49] E. Codd, “A Relational Model of Data for Large Shared Data Banks”, 1970 
[50] P. Xavier, An Absolute Beginners Guide to SQL, January 2019. Accessed on: February 2020. 

[Online]. Available: https://medium.com/better-programming/absolute-beginners-guide-to-sql-
601aad53f6c9 

[51] IBM, ACID properties of transactions, April 2020. Accessed April 2020. [Online]. Available: 
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/product-overview/acid.html 

[52] Guru99, What is Data Warehouses? Types, Definition & Example. Accessed on: March 2020. 
[Online]. Avaliable: https://www.guru99.com/data-warehousing.html 

[53] N. A. Farooqui and R. Mehra, "Design of A Data Warehouse for Medical Information System 
Using Data Mining Techniques," 2018 Fifth International Conference on Parallel, Distributed and 
Grid Computing (PDGC), Solan Himachal Pradesh, India, 2018, pp. 199-203. 

[54] I. Sutedja, P. Yudha, N. Khotimah and C. Vasthi, "Building a Data Warehouse to Support Active 
Student Management: Analysis and Design," 2018 International Conference on Information 
Management and Technology (ICIMTech), Jakarta, 2018, pp. 460-465. 

[55] Diouf P., Boly A., et. al.; Variety of data in the ETL processes in the cloud: State of the art; 2018 
IEEE International Conference on Innovative Research and Development (ICIRD); May 2018 

[56] R. Kimball, J. Caserta, The Data Warehourse ETL Toolkit, 2011, Wiley 
[57] B. Zhu, et al., “Electromagnetic radiation study of Intel Dual Die CPU with heatsink,” 2008 8th 

International Symposium on Antennas, Propagation and EM Theory, Kunming, 2008, pp. 949-
952 

[58] A. Thompson, Scientists Have Made Transistors Smaller Than We Thought Possible, October 
2016. Accessed on: March 2020. [Online]. Available: 
https://www.popularmechanics.com/technology/a23353/1nm-transistor-gate 

[59] C. Roy, M. Pandey and S. SwarupRautaray, "A Proposal for Optimization of Data Node by 
Horizontal Scaling of Name Node Using Big Data Tools," 2018 3rd International Conference for 
Convergence in Technology (I2CT), Pune, 2018, pp. 1-6. 

[60] S. Singh, Understanding The Difference Between Horizontal & Vertical Scaling, December 2019. 
Accessed on: March 2020. [Online]. Available: https://www.redswitches.com/blog/difference-
between-horizontal-vertical-scaling 



86 
 

[61] B. Burns, Designing Distributed Systems: Patterns and Paradigms for Scalable Reliable Services, 
February 2018, O’Reilly Media, Inc. 

[62] M. Kleppman, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, 
and Maintainable Systems, 2017, O’Reilly Media, Inc. 

[63] M. Turck, et al., DATA & AI LANDSCAPE 2019, 2019. Accessed on May 2020. [Online]. 
Available: http://mattturck.com/wp-
content/uploads/2019/07/2019_Matt_Turck_Big_Data_Landscape_Final_Fullsize.png, “A 
Turbulent Year: The 2019 Data & AI Landscape” 

[64] Kumar J., Garg V., “Security analysis of unstructured data in NOSQL MongoDB database”, 2017 
International Conference on Computing and Communication Technologies for Smart Nation 
(IC3TSN), 2017 

[65] “SQL WORLD”. Accessed on: April 2020. [Online]. Available: 
https://www.complexsql.com/difference-between-sql-and-nosql/ 

[66] AWS, What is a data lake?, 2020. Accessed on: March 2020. [Online]. Available: 
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/ 

[67] V. Ranjan, “A Comparative Study between ETL (Extract-Transform-Load) and E-LT 
(ExtractLoad-Transform) approach for loading data into a Data Warehouse”, 2019 

[68] M. Smallcombe, ETL vs ELT: 5 Critical Differences, February 2020. Accessed on: March 2020. 
[Online]. Available: https://www.xplenty.com/blog/etl-vs-elt/ 

[69] H. Cao, M. Brown, L. Chen, R. Smith and M. Wachowicz, "Lessons Learned from Integrating 
Batch and Stream Processing using IoT Data," 2019 Sixth International Conference on Internet of 
Things: Systems, Management and Security (IOTSMS), Granada, Spain, 2019, pp. 32-34. 

[70] Kim H., Cho J., “Data Governance Framework for Big Data Implementation with a Case of 
Korea”, 2017 IEEE International Congress on Big Data (BigData Congress), 2017 

[71] I. Sacolick, What is Data Governance? Data practices that address risk and drive opportunities, 
2018. Accessed on: April 2020. [Online]. Available: https://blogs.starcio.com/2018/07/what-is-
data-governance.html 

[72] Tang M., Shao S., et. al.; “SAC: A System for Big Data Lineage Tracking”, 2019 IEEE 35th 
International Conference on Data Engineering (ICDE), 2019 

[73] AWS, What is cloud computing?. Accessed on: May 2020. [Online]. Available: 
https://aws.amazon.com/what-is-cloud-computing/ 

[74] B. Abbasov, “Cloud Computing: State Of The Art Research Issues”, Conference on Application 
of Information and Communication Technologies (AICT), 2014 

[75] Microsoft, Cloud Service Models (IaaS, PaaS, SaaS) Diagram, September 2018. Accessed on: 
March 2020. [Online]. Available: https://blogs.msdn.microsoft.com/dachou/2018/09/28/cloud-
service-models-iaas-paas-saas-diagram/ 

[76] J. Sandobalín, E. Insfran and S. Abrahão, "On the Effectiveness of Tools to Support Infrastructure 
as Code: Model-Driven Versus Code-Centric," in IEEE Access, vol. 8, pp. 17734-17761, 2020. 

[77] Y. Brikman, Terraform: Up & Running, 2nd Edition, September 2019, O’Reilly Media, Inc. 
[78] C. Richardson, Microservices Patterns: With Examples in Java, November 2018, Manning 
[79] M. M. Rahman and M. Hasibul Hasan, "Serverless Architecture for Big Data Analytics," 2019 

Global Conference for Advancement in Technology (GCAT), BANGALURU, India, 2019, pp. 1-
5. 



87 
 

[80] A. Parres-Peredo, I. Piza-Davila and F. Cervantes, "Building and Evaluating User Network 
Profiles for Cybersecurity Using Serverless Architecture," 2019 42nd International Conference on 
Telecommunications and Signal Processing (TSP), Budapest, Hungary, 2019, pp. 164-167. 

[81] “What is REST”. Accessed on: May 2020. [Online]. Available: https://restfulapi.net/ 
[82] S. Ben, What is REST – A Simple Explanation for Beginners, Part 1: Introduction, September 

2017. Accessed on: May 2020. [Online]. Available: https://medium.com/extend/what-is-rest-a-
simple-explanation-for-beginners-part-1-introduction-b4a072f8740f 

[83] “HTTP Status Codes”. Accessed on: March 2020. [Online]. Available: https://restfulapi.net/http-
status-codes/ 

[84] B. Rogojan, What Is The Difference Between A Data Engineer And A Data Scientist, February 
2019. Accessed on: January 2020. [Online]. Available: https://towardsdatascience.com/what-is-
the-difference-between-a-data-engineer-and-a-data-scientist-a25a10b91d66 

[85] Sharma, Sheetal & Sarkar, Darothi & Gupta, Divya. (2012). Agile Processes and Methodologies: 
A Conceptual Study. International Journal on Computer Science and Engineering. 4. 

[86] C. C. Silva and A. Goldman, "Agile Methods Adoption on Software Development: A Pilot 
Review," 2014 Agile Conference, Kissimmee, FL, 2014, pp. 64-65. 

[87] Mountain Goat Sofware, Scrum, 2020. Accessed on: July 2020. [Online]. Available: 
https://www.mountaingoatsoftware.com/agile/scrum#:~:text=The%20Scrum%20model%20sugge
sts%20that%20projects%20progress%20via%20a%20series%20of%20sprints.&text=Scrum%20
methodology%20advocates%20for%20a,to%20perform%20during%20the%20sprint. 

[88] Atlasian, User Stories with Examples and Template, 2020. Accessed on: July 2020. [Online]. 
Available: https://www.atlassian.com/agile/project-management/user-
stories#:~:text=A%20user%20story%20is%20the,work%20in%20an%20agile%20framework.&te
xt=software%20user's%20perspective.-
,A%20user%20story%20is%20an%20informal%2C%20general%20explanation%20of%20a,valu
e%20back%20to%20the%20customer. 

[89] A. Orozco, “Adaptive Big Data Pipelines – Github Repository”, January 2020. Accessed on: May 
2020. [Online]. Available: https://github.com/aldoorozco/adaptive_data_pipelines 

[90] T. Yiu, Understanding the Normal Distribution (with Python), November 2019. Accessed on: 
May 2020. [Online]. Available: https://towardsdatascience.com/understanding-the-normal-
distribution-with-python-e70bb855b027 

[91] Datamx, Muestra de Nombres y Apellidos Comunes en México. Accessed on: May 2020. 
[Online]. Available: http://datamx.io/dataset/muestra-de-nombres-y-apellidos-comunes-en-
mexico 

[92] Glassdoor, Sueldos Para Data Analyst en Mexico. July 2020. Accessed on: July 2020. Available: 
https://www.glassdoor.com.mx/Sueldos/mexico-data-analyst-sueldo-
SRCH_IL.0,6_IN169_KO7,19.htm?countryRedirect=true 

[93] Glassdoor, Sueldos Para Data Engineer en Mexico. July 2020. Accessed on: July 2020. 
Available: https://www.glassdoor.com.mx/Sueldos/m%C3%A9xico-data-engineer-sueldo-
SRCH_IL.0,6_IN169_KO7,20.htm 

[94] Glassdoor, Sueldos Para DevOps Engineer en Mexico. July 2020. Accessed on: July 2020. 
Available: https://www.glassdoor.com.mx/Sueldos/devops-engineer-sueldo-SRCH_KO0,15.htm 


