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Quantifying the effects of biomarkers and comorbidities in predicting
SARS Cov-2 associated mortality in hospitalized patients in Mexico

Claudia Soto Alvarez

Abstract
In this retrospective quasi-experimental, cohort study, the biomarkers, demographics, and clinical

characteristics of the adult inpatients with laboratory-confirmed COVID-19 from Hospital Regional 110

(Guadalajara, Mexico) were analyzed who were hospitalized over the year 2020, between April 15 (i.e. when
the first patient was admitted) to December 31 and had a definite outcome (discharged or dead), to establish
the most important variables for the models.

In this study, 5 different Classifiers were used: Random Forest, Support Vector Machine, XGBoost, Naïves
Bayes, and Symbolic Classifier to classify the outcome of the patients and also to quantify the effect of
biomarkers and comorbidities in predicting SARS-CoV-2 positive associated mortality in hospitalized patients.
Also, the Symbolic Transofmer was implemented to try to improve the performance of our model. As the
dataset includes a big percentage of missing values, we proposed two models, one excluding the missing
values and the other including all the missing values.

The Random Forest was implemented to obtain the variable importance, and also to the capacity of the
model to handle the missing values.

The metrics ROC AUC and Accuracy were used to train the models, along with the Bayesian Optimization
to tune the hyperparameters and to measure the performance.

Keywords- Biomarkers, Random Forest, Covid-19
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In late December 2019, a new coronavirus was identified in Wuhan
(China), causing severe respiratory disease, including pneumonia.
It was initially named Novel Coronavirus, and The World Health
Organization (WHO) advised the following language associated with
the virus. The virus causing the infection has been named - severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

The disease caused as a result of infection is named - coronavirus
disease (COVID-19). COVID-19 has been categorized as an airborne
High Consequence of Infections Disease. SARS-CoV-2 has been
spreading among people globally, causing a pandemic all over the
world. As a viral infection, antibiotics are not an effective treatment.
Nowadays there are vaccinations available.

At the end of 2020, after one year when the coronavirus pandemic
began, in Mexico has been reported 104,00

1 deaths and in Jalisco state 1 WHO | World Health Organization, c.
URL https://www.who.int/

4,732 deaths2. Studies about the Covid 19 in Mexican population
2 COVID-19 Tablero México, d. URL
https://datos.covid-19.conacyt.mx/

index.php

during 2020 in the healthcare are few, as well the application of machine
learning models.

Therefore, the implementation of a machine learning model could
help to understand the behavior of the disease.

1.1 Background

COVID-19 is caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). Both, the new virus and the disease

https://www.who.int/
https://datos.covid-19.conacyt.mx/index.php
https://datos.covid-19.conacyt.mx/index.php
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were unknown before the outbreak in Wuhan in December 2019. It
produces flu-like symptoms, including fever, cough, dyspnea, myalgia,
and fatigue. Sudden loss of smell and taste (without mucus being the
cause) has also been observed. In severe cases, it is characterized by
pneumonia, acute respiratory distress syndrome, sepsis, and septic
shock, leading to death.3 3 Manuel Ramón Pérez Abreu, Jairo Jesús

Gómez Tejeda, and Ronny Alejan-
dro Dieguez Guach. Característi-
cas clínico-epidemiológicas de la
COVID-19. 19(2). ISSN 1729-519X.
URL http://scielo.sld.cu/scielo.

php?script=sci_abstract&pid=

S1729-519X2020000200005&lng=es&nrm=

iso&tlng=es

Numerous laboratory findings have been linked to COVID-19 disease
to date. Hematological variables were the first findings reported
in patients with SARS-CoV-2 who presented biochemical alterations.
Leukocytosis with neutrophilia and lymphopenia were the most
frequent findings in patients with the severe form of the infection.
In addition, patients who manifest this stage of the disease present
a dysregulation of the immune response that is responsible for the
outcome of a systemic inflammatory response of great magnitude that
will be harmful to the host.4 4 M. Salazar, J. Barochiner, W. Espeche,

and I. Ennis. Covid-19, hipertensión
y enfermedad cardiovascular. 37

(4):176–180. ISSN 18891837. doi:
10.1016/j.hipert.2020.06.003. URL
https://linkinghub.elsevier.com/

retrieve/pii/S1889183720300659

Platelets, also known as thrombocytes, are blood cells. They form in
the bone marrow, sponge-like tissue in your bones. Platelets play an
important role in blood clotting. In patients with COVID-19 what is
commonly observed is the alteration of the coagulation mechanisms, a
relatively moderate decrease in the platelet count is observed.5 5 Luis Edgardo López and María Daniela

Mazzucco. Alteraciones de parámetros
de laboratorio en pacientes con sars-cov-
2. page 15

Lymphocytes is a type of immune cell made in the bone marrow;
it is found in blood and lymphatic tissue. Lymphocytes play an
important role in maintaining the immune system. In SARS-CoV-
2 infection, studies show marked lymphopenia. Lymphopenias, a
higher neutrophil/lymphocyte ratio, fewer monocytes, eosinophils, and
basophils have been observed compared to patients without symptoms
of the disease.6 6 Luis Edgardo López and María Daniela

Mazzucco. Alteraciones de parámetros
de laboratorio en pacientes con sars-cov-
2. page 15

D-Dimer is the end product of fibrin degradation that occurs through
plasmin and helps the formation and production of thrombi. Different
studies have found significantly elevated D-Dimer levels in patients
with severe COVID-19, compared with those whose symptoms were
milder and with healthy subjects.7 7 Erika Fabiola Saquinga Jame. Título:

Dímero d, tiempo de protrombina y
plaquetas en la valoración del paciente
con covid-19. page 57

The presence of acute kidney damage has been reported in up to
15% of positive COVID-19 patients, with a mortality rate that varies
from 60-90% depending on the author and population studied, of this
group of patients 35% had disease chronicle.8 8 Sreedhar Adapa, Avantika Chenna,

Mamtha Balla, Ganesh Prasad Merugu,
Narayana Murty Koduri, Subba Rao
Daggubati, Vijay Gayam, Srikanth
Naramala, and Venu Madhav Konala.
COVID-19 Pandemic Causing Acute
Kidney Injury and Impact on Patients
With Chronic Kidney Disease and Renal
Transplantation. 12(6):352–361. ISSN
1918-3003. doi: 10.14740/jocmr4200.
URL https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC7295554/

In a study carried out in New York, United States in positive COVID-
19 patients, it was identified that those with Chronic Kidney Disease as
well as atrial fibrillation or heart failure had higher mortality.9

9 Samira S. Farouk, Enrico Fiaccadori,
Paolo Cravedi, and Kirk N. Campbell.
COVID-19 and the kidney: What we
think we know so far and what we don’t.
33(6):1213–1218. ISSN 1121-8428, 1724-
6059. doi: 10.1007/s40620-020-00789-
y. URL https://link.springer.com/10.

1007/s40620-020-00789-y

As a result of muscle metabolic processes and through creatine
and creatine phosphate, creatinine is produced endogenously. Serum
creatinine serves as a marker to estimate renal glomerular filtration since
it is eliminated through the kidney. It serves as an estimator of chronic

http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1729-519X2020000200005&lng=es&nrm=iso&tlng=es
http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1729-519X2020000200005&lng=es&nrm=iso&tlng=es
http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1729-519X2020000200005&lng=es&nrm=iso&tlng=es
http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1729-519X2020000200005&lng=es&nrm=iso&tlng=es
https://linkinghub.elsevier.com/retrieve/pii/S1889183720300659
https://linkinghub.elsevier.com/retrieve/pii/S1889183720300659
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295554/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295554/
https://link.springer.com/10.1007/s40620-020-00789-y
https://link.springer.com/10.1007/s40620-020-00789-y
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kidney disease or acute kidney injury. Elevated serum creatinine has
been associated as an independent risk factor for mortality in patients
with COVID-19. 10 10 Yichun Cheng, Ran Luo, Kun Wang,

Meng Zhang, Zhixiang Wang, Lei Dong,
Junhua Li, Ying Yao, Shuwang Ge, and
Gang Xu. Kidney disease is associated
with in-hospital death of patients with
COVID-19. 97(5):829–838. ISSN 0085-
2538. doi: 10.1016/j.kint.2020.03.005.
URL https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC7110296/

Symptomatic infection can range from mild to severe clinical picture.
The mild clinical picture presents a clinical evolution of two weeks to
three weeks from the onset of symptoms to recovery, this being the most
common presentation reported in around 81% of COVID-19 patients.
11

11 Pieter A. Cohen, Lara E. Hall, Janice N.
John, and Alison B. Rapoport. The Early
Natural History of SARS-CoV-2 Infection.
95(6):1124–1126. ISSN 00256196. doi:
10.1016/j.mayocp.2020.04.010. URL
https://linkinghub.elsevier.com/

retrieve/pii/S0025619620303797;
and Zunyou Wu and Jennifer M.
McGoogan. Characteristics of and
Important Lessons From the Coronavirus
Disease 2019 (COVID-19) Outbreak in
China: Summary of a Report of 72 314

Cases From the Chinese Center for
Disease Control and Prevention. 323

(13):1239–1242. ISSN 0098-7484. doi:
10.1001/jama.2020.2648. URL https:

//doi.org/10.1001/jama.2020.2648

The severe picture of COVID-19 develops in the first 12 days of the
disease with a 20% prevalence. During the evolution of the condition, a
percentage of around 12 to 24% require invasive mechanical ventilation,
which is a procedure that consists of securing the patient’s airway
through endotracheal intubation or tracheostomy, and partially or
totally supplying the effort Ventilation, as well as gas exchange in
patients with acute respiratory failure, this last complication can occur
in patients with severe symptoms on day 15 of the event and 88% of
these patients die around day 18.12(Figure 1.1)

12 Safiya Richardson, Jamie S. Hirsch,
Mangala Narasimhan, James M. Craw-
ford, Thomas McGinn, Karina W.
Davidson, and and the Northwell
COVID-19 Research Consortium.
Presenting Characteristics, Comor-
bidities, and Outcomes Among 5700

Patients Hospitalized With COVID-19

in the New York City Area. 323(20):
2052–2059. ISSN 0098-7484. doi:
10.1001/jama.2020.6775. URL https:

//doi.org/10.1001/jama.2020.6775; ;
and Fei Zhou, Ting Yu, Ronghui Du, Guo-
hui Fan, Ying Liu, Zhibo Liu, Jie Xiang,
Yeming Wang, Bin Song, Xiaoying Gu,
Lulu Guan, Yuan Wei, Hui Li, Xudong
Wu, Jiuyang Xu, Shengjin Tu, Yi Zhang,
Hua Chen, and Bin Cao. Clinical course
and risk factors for mortality of adult
inpatients with COVID-19 in Wuhan,
China: A retrospective cohort study. 395

(10229):1054–1062. ISSN 01406736. doi:
10.1016/S0140-6736(20)30566-3. URL
https://linkinghub.elsevier.com/

retrieve/pii/S0140673620305663

Figure 1.1: Clinical courses
of major symptoms in pa-
tients hospitalised with COVID-
19 Reprinted and adapted from
Clinical course and risk factors for
mortality of adult inpatients with
COVID-19 in Wuhan, China Zhou
et al.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110296/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110296/
https://linkinghub.elsevier.com/retrieve/pii/S0025619620303797
https://linkinghub.elsevier.com/retrieve/pii/S0025619620303797
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.1001/jama.2020.6775
https://linkinghub.elsevier.com/retrieve/pii/S0140673620305663
https://linkinghub.elsevier.com/retrieve/pii/S0140673620305663
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The reason why some patients with severe COVID-19 persist and
present a torpid evolution may be due to the elevated and increasing
severe inflammatory response since they continue to increase markers
of inflammation and pro-inflammatory cytokines compared to patients
with a mild condition.13 13 Changsong Wang, Kai Kang, Yan

Gao, Ming Ye, Xiuwen Lan, Xuet-
ing Li, Mingyan Zhao, and Kaijiang
Yu. Cytokine Levels in the Body
Fluids of a Patient With COVID-19

and Acute Respiratory Distress Syn-
drome: A Case Report. 173(6):499–
501. ISSN 0003-4819. doi: 10.7326/L20-
0354. URL https://www.acpjournals.

org/doi/full/10.7326/L20-0354

COVID-19 is highly contagious, therefore, has sparse quickly; as
of November 2021, Mexico has 3,867,976 cumulative confirmed cases
and 292,850 deaths caused by COVID-19. In the case of Jalisco, there
are more than 163,000 cumulative confirmed cases and 17,500 deaths,
Figure 1.2.

Jalisco has had two main steps in the pandemic (October 2020-
January 2021 and April 2021-July 2021). In these two phases of the
pandemic, some hospitals have been saturated, as they have a limited
number of beds assigned to patients with COVID-19. In addition, the
number of deaths caused by COVIDs increased drastically.

Some patients required intubation and intensive care those arriving
at the hospital. During their stay in the hospital, different clinical
analyses were performed to determine, according to medical tests, the
patient’s state of health and their evolution during their stay in the
hospital.

1.2 Related work

Several machine learning algorithms have been applied successfully in
the context of medicine, to be able to make a medical diagnostics (i.e.
medical imaging),such system can be seen as a classification task.

In recent times, the application of computational or machine
intelligence in medical diagnostics has become quite common.
While various statistical techniques may be applied in medical data
classification, the major drawback of these approaches is that they
depend on some assumptions (e.g., related to the properties of the
relevant data) for their successful application. To know the properties
of the dataset is a difficult task and sometimes it is not feasible. On the
other hand, soft computing based approaches are less dependent on
such knowledge. 14 14 Olivier Pauly. Random Forests for

Medical Applications. page 204With the design of algorithms that are able to generalize from
observed evidences, and to make predictions about unseen data,
machine learning can be applied in many fields such as computer
aided diagnosis, detection and segmentation15. In the last decade, 15 Md. Zahangir Alam, M. Saifur Rahman,

and M. Sohel Rahman. A Random
Forest based predictor for medical data
classification using feature ranking.
15:100180. ISSN 2352-9148. doi:
10.1016/j.imu.2019.100180. URL https:

//www.sciencedirect.com/science/

article/pii/S235291481930019X

random forests became a popular ensemble learning algorithm, as
they achieve state-of-the-art performance in numerous computer vision
tasks.

Table 1.1 shows a summary of related work using machine learning
applied in medicine and some of them using biomarkers.

https://www.acpjournals.org/doi/full/10.7326/L20-0354
https://www.acpjournals.org/doi/full/10.7326/L20-0354
https://www.sciencedirect.com/science/article/pii/S235291481930019X
https://www.sciencedirect.com/science/article/pii/S235291481930019X
https://www.sciencedirect.com/science/article/pii/S235291481930019X
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Figure 1.2: Jalisco Covid-19

trend Official data from Jalisco
government

1.3 Justification

Since COVID-19 was considered a pandemic by the World Health
Organization, world governments have coordinated information flows
and issued guidelines to contain the overwhelming effects of this
disease. At the same time, the scientific community is continually
seeking information about transmission mechanisms, the clinical
spectrum of the disease, new diagnoses, and strategies for prevention
and treatment. One of the challenges is understanding the behavior of
the laboratory tests results of biomarkers in hospitalized patients with
COVID-19. Whose technique adopted for detecting the genetic material
of COVID-19 requires equipment and specialized human resources,
making it an expensive procedure.

We hypothesize that machine learning techniques can be used to
determine the propensity to survive (or not) of hospitalized patients
for COVID-19 through the joint analysis of popular laboratory tests
clinical parameters. Machine learning techniques, such as Random
Forest, and Support Vector Machines, enable the creation of disease
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Techniques Objective Author

Dynamic Bayesian Detect probabilistic relationships among Zandonà et al.[2019]
Network clinical variables (demographic variables,

hematic biometry biomarkers, etc.)
and identify risk factors related to survival
and loss of vital functions.

Random Forest General methodology to Alam et al.[2019]
classified diseases. Ranked and
select the features to construct
the predictor (applied in 10 diseases).

XGBoost The predictive power of biomarkers data Sharma and Verbeke[2020]
to enhance the diagnosis of depression cases.

KNN, SVM, Predict the early lung tumor Xie et al.[2021]
Random Forest, based on the metabolomic
Neural Network, biomarkers features.
Naïves Bayes
AdaBoost

Random Forest Organ localization, segmentation, Pauly[2012]
lesion detection and image categorization
in medical imaging.

Table 1.1: Related Work sum-
mary.

prediction models and artificial intelligence techniques to analyze
clinical parameters. Thus, we evaluated the existing correlations
between laboratory parameters and the hospitalization days and
developed classification models.

Studies during 2020, when the pandemic started, in the Mexican
population are few, and the applications of mathematical models and
machine learning in the health area are scarce in our country.

The implementation of a Machine Learning model could help to
understand the behavior of the disease through a joint vision between
the doctor and the use of technological tools, in a practical way and
being able to serve for the taking of decisions, to focus them from
the beginning to the people with greater risk, and therefore, less
consumption of economic resources both for the country and for the
Institute.

1.4 Problem statement

Covid-19 represents one of the greatest challenges in the recent history
of public health, it has spread throughout the world, affecting more
than 200 countries. So far it has not been possible to describe the
behavior and evolution of the disease in the Mexican population.

Therefore, the implementation of a Machine Learning model could
provide a better understanding of the behavior of this disease in the
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body and speed up the response of medical personnel, since Machine
Learning models in the health area in Mexico scarce.

Which has led us to generate the following research question: Can
a Machine Learning Model quantify the effect of biomarkers and
comorbidities in predicting SARS-CoV-2 positive associated mortality
in hospitalized patients?

1.5 Objectives

1.5.1 General objective

To quantify with a Machine Learning model the effects of biomarkers
and comorbidities in predicting SAR Cov-2 associated mortality in
hospitalized patients in Mexico.

1.5.2 Specific objectives

• To explore the data and identify the effects of COVID-19 in the
biomarkers and comorbidities.

• To obtain the best model to predict the discharge of the patient using
multiple classifiers and optimize the hyperparameters.

• To apply a model using all the datasets including the missing values
and optimize the hyperparameters.
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In this work, we consider five types of classification algorithms:
Random Forest, XGBoost, Support Vector Machine, Naïves Bayes and
the Symbolic Classifier. The Bayesian Optimization approach was
used to tune the hyperparameters for each model. Also, the Symbolic
Transformer was implemented to try to improve the results. Three of
the Classifiers used are described below.

2.1 Random Forest

First introduced in 1960’s, the decision trees have been widely used in
several disciplines given that they are a very powerful algorithm, simple
and also efficient for extracting knowledge from data.The extracted
knowledge can be easily understood, interpreted in the form of a
readable decision trees. They are excellent tools for choosing between
several course of action.1 1 Wolfgang Ertel. Introduction to Artificial

Intelligence. Undergraduate Topics in
Computer Science. Springer International
Publishing. ISBN 978-3-319-58486-7 978-
3-319-58487-4. doi: 10.1007/978-3-319-
58487-4. URL http://link.springer.

com/10.1007/978-3-319-58487-4

Decision trees are represented as acyclic graphs (Figure 2.1) with a
root node and successive child nodes connected by directional branches
(edges). Each node of the tree is associated with a decision and the
leaf nodes are generally associated with an outcome or class label.In
the case of a binary decision tree, each node gives the statement of
the decision to be taken or the comparison to be made. There are two
outgoing edges from the nodes.2 2 M. Narasimha Murty and V. Susheela

Devi. Pattern Recognition, volume 0

of Undergraduate Topics in Computer
Science. Springer London. ISBN
978-0-85729-494-4 978-0-85729-495-1.
doi: 10.1007/978-0-85729-495-1. URL
http://link.springer.com/10.1007/

978-0-85729-495-1

Common usages of decision tree models include the following:

http://link.springer.com/10.1007/978-3-319-58487-4
http://link.springer.com/10.1007/978-3-319-58487-4
http://link.springer.com/10.1007/978-0-85729-495-1
http://link.springer.com/10.1007/978-0-85729-495-1
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Figure 2.1: Simple decision tree
model based on binary classifica-
tion Reprinted and adapted from De-
cision tree methods: applications for
classification and prediction SONG
and LU

• Variable selection: Decision tree methods can be used to select the
most relevant input variables that should be used form decision tree
models.

• Assessing the relative importance of variables: Variable
importance is computed based on the reduction of model accuracy
when the variable is removed.

• Handling of missing values: Decision tree analysis can deal with
missing data without needing to resort to imputation, it can classify
missing values as a separate category that can be analyzed with the
other categories.

Some of the limitations of the decision tree is that it can be subject
to over-fitting and under-fitting, the strong correlation between input
variables and the design time could be large. 3 3 Yan-yan SONG and Ying LU. De-

cision tree methods: Applications
for classification and prediction. 27

(2):130–135. ISSN 1002-0829. doi:
10.11919/j.issn.1002-0829.215044. URL
https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC4466856/

Random forest are an ensemble learning algorithm proposed by
Breiman (2001), that constructs ntrees number of randomized decision
trees during the training phase that are used to obtain ntrees predictions,
these predictions are average to give the forest’s prediction.

The random forest approach is a bagging method where deep trees,
fitted on bootstrap samples, are combined to produce an output with
lower variance. Generating bootstrap samples introduces a random
component into the tree building process and reduce the variance of
the prediction.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/
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Despite taking bootstrap samples, also it sample over the predictors
and keep only a random subset of them to build the tree. The idea
behind randomly sampling predictors during training is to decorrelate
the tree in the forest. Since the algorithm randomly selects predictors
at each split, tree correlation will necessarily be lessened. 4 Figure 2.2 4 Max Kuhn and Kjell Johnson. Applied

Predictive Modeling. Springer New
York. ISBN 978-1-4614-6848-6 978-1-4614-
6849-3. doi: 10.1007/978-1-4614-6849-
3. URL http://link.springer.com/10.

1007/978-1-4614-6849-3

shows the random fores flowchart from ensemble methods: bagging,
boosting and stacking.

Figure 2.2: Random forest
method Reprinted and adapted
from ensemble methods Rocca

Aside from being simple to use, the method is generally recognized
for its accuracy and its ability to deal with small sample sizes, high-
dimensional feature spaces and complex data structures.5 5 Erwan Scornet, Gérard Biau, and

Jean-Philippe Vert. Consistency of
random forests. 43(4). ISSN 0090-
5364. doi: 10.1214/15-AOS1321.
URL https://projecteuclid.org/

journals/annals-of-statistics/

volume-43/issue-4/

Consistency-of-random-forests/

10.1214/15-AOS1321.full

One of the main advantages of random forest is that it is that has
just a few parameters to tune, the hyperparameters tuned in this study
were:

• The number of trees to grow for the forest (ntrees): Random
forest is protected from over-fitting, therefore, the model will not be
adversely affected if a large number of trees are built for the forest.
But, the cost is primarily computational time and only if the number
of predictors and number of samples are large, do computational
burdens become an issue.

• Number of predictors (mtries): Chooses the number of predictors
in each partition of the tree would seem to be a key tuning

http://link.springer.com/10.1007/978-1-4614-6849-3
http://link.springer.com/10.1007/978-1-4614-6849-3
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Consistency-of-random-forests/10.1214/15-AOS1321.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Consistency-of-random-forests/10.1214/15-AOS1321.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Consistency-of-random-forests/10.1214/15-AOS1321.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Consistency-of-random-forests/10.1214/15-AOS1321.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Consistency-of-random-forests/10.1214/15-AOS1321.full
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parameter that should affect how well random forests performs.
For classification problems, the recommendation is starting to set
mtries to the square root of the number of P (number of predictors):
mtries ≈

√
P. Then, trying a few more or a few less as well can

be instructive. But a lot depends on the number of predictors and
how strongly they are related. If the correlations are substantial, it
can be useful to reduce the number of predictors sampled for each
partitioning decision.

• Maximum tree depth (max_depth): In random forests, all trees are
created independently, each tree is created to have maximum depth,
and each tree contributes equally to the final model. Higher values
will make the model more complex.

• Minimum number of observations for a leaf (min_rows): The
minimum number of samples in each tree’s leaf. The splitting process
of the tree continues within each newly created partition until the
stopping criteria is met, the minimum number of samples in a node
or the maximum tree depth.6 7 6 Max Kuhn and Kjell Johnson. Applied

Predictive Modeling. Springer New
York. ISBN 978-1-4614-6848-6 978-1-4614-
6849-3. doi: 10.1007/978-1-4614-6849-
3. URL http://link.springer.com/10.

1007/978-1-4614-6849-3
7 Richard A. Berk. Statistical Learning
from a Regression Perspective. Springer
Texts in Statistics. Springer International
Publishing. ISBN 978-3-319-44047-7 978-
3-319-44048-4. doi: 10.1007/978-3-319-
44048-4. URL http://link.springer.

com/10.1007/978-3-319-44048-4

Random Forest also can measure variable importance. If we
change a single predictor’s input value and reclassify the record, we
can determine that the predictor’s importance is based on the new
classification. This is done using OOB (Ouf of Bag) data.8

8 Barrett E Lowe. The Random
Forest Algorithm with Application to
Multispectral Image Analysis. page 79

In this study, the Random Forest of the library H2O9 was used.

9 Distributed Random Forest
(DRF) — H2O 3.34.0.3 doc-
umentation, a. URL https:

//docs.h2o.ai/h2o/latest-stable/

h2o-docs/data-science/drf.html

2.2 Support Vector Machine

Many real-world problems involve prediction over two classes. An
Support Vector Machine (SVM) is an abstract learning machine that
will learn from a training data set and attempt to generalize and make
correct predictions on new data.

In training a classifier, usually, we try to maximize classification
performance for the training data. However, if the classifier is too fit
for the training data, leas to overfitting.

For a binary problem, a SVM is trained so that the direct
decision function maximizes the generalization ability, namely, the
m-dimensional input space x is mapped into the l-dimensional l ≥ m
feature space z. Then in z, the quadratic programming problem is
solved to separate two classes by the optimal separating hyperplane,
the points closest to this separation hyperplane are the vectors of
support10 (Figure 2.3). 10 Shigeo Abe. Support Vector Machines

for Pattern Classification. Advances
in Pattern Recognition. Springer Lon-
don. ISBN 978-1-84996-097-7 978-1-84996-
098-4. doi: 10.1007/978-1-84996-098-
4. URL http://link.springer.com/10.

1007/978-1-84996-098-4

Let us define a linear model of the form:

y(x) = wT ϕ(x) + b

http://link.springer.com/10.1007/978-1-4614-6849-3
http://link.springer.com/10.1007/978-1-4614-6849-3
http://link.springer.com/10.1007/978-3-319-44048-4
http://link.springer.com/10.1007/978-3-319-44048-4
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
http://link.springer.com/10.1007/978-1-84996-098-4
http://link.springer.com/10.1007/978-1-84996-098-4
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Figure 2.3: Support Vector
Machine Reprinted and adapted
from Analytics Vidhya: The A-Z
guide to Support Vector Machine
202

Where ϕ(x) denotes a fixed feature-space transformation, b is
the bias or ofsset of the hyperplane from the origin in input space.
The training data set comprises N input vectors x1, ..., xN with
corresponding target values y1, ..., yN where yk ∈ {−1, 1} and new
data points x are classified according to the sign of y(x).

Most real-life datasets contain noise, and an SVM can fit this noise
leading to poor generalization. The effects of outliers and noise can be
reduced by introducing a soft margin.

Optimization Problem (Lagrangian):

L(w, b, ξ; α, λ) =
1
2

wTw+ c
N

∑
k=1

ξk−
N

∑
k=1

αk{yk[wT ϕ(x)+ b]− 1+ ξk}−
N

∑
k=1

λkξk

where αk, λk ≥ 0 since the inequality contraints.
The dual problem is stated as:

max D(α) = −1
2

N

∑
k,l=1

ykylk(xk, xl)αkαl +
N

∑
k,l=1

αk

s.t.
N

∑
k=1

αkyk = 0

0 ≤ αk ≤ c, k = 1, ..., N

The SVM methodology can be summarized as follows: If it is
required to classify a set of data (represented in an m-dimensional
plane) no linearly separable, said data set is mapped to a larger space
where linear separation is possible (this is done using functions called
Kernel).
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In this new plane, we are looking for a hyperplane that is capable of
separate the input data into two classes; the plane must have the most
considerable possible distance to the points of both classes. 11 11 Colin Campbell and Yiming

Ying. Learning with Support
Vector Machines. 5(1):1–95.
ISSN 1939-4608, 1939-4616. doi:
10.2200/S00324ED1V01Y201102AIM010.
URL http://www.morganclaypool.

com/doi/abs/10.2200/

S00324ED1V01Y201102AIM010; and
Johan A. K. Suykens, editor. Least Squares
Support Vector Machines. World Scientific.
ISBN 978-981-238-151-4

2.3 Genetic Programming

The generational Genetic Programming algorithm gives us a method to
evolve candidate programs using the principles of natural selection.

There are 3 main steps involved in the algorithm.12

12 Vimarsh Sathia, Venkataramana
Ganesh, and Shankara Rao Thejaswi
Nanditale. Accelerating Genetic
Programming using GPUs. URL
http://arxiv.org/abs/2110.11226

• Selection: It is the step where individual candidates from a given
population are chosen for evolution into, We decide on a set of
programs to evolve into the next generation, using a selection
criterion. One of the selection schemes it the Tournament selection,
winning programs are determined by selecting the best programs
from a subset of the whole population. Multiple tournaments are
held until we have enough programs selected for the next generation.

• Mutation: Before promoting the programs selected in the previous
step to the next generation, we perform some genetic operations on
them. The winning programs after selection are not directly carried
forward into the next generation. Rather, mutations or genetic
operations are applied on the selected programs, in order to produce
new offspring.

• Evaluation: Once the population for the next generation is decided
after selection and mutation, the fitness of all programs in the new
generation is recomputed.

In this document we applied two Genetic Programming, The
Symbolic Classifier and the Symbolic Transformer from the gplearn13 13 API reference — gplearn 0.4.1

documentation, b. URL https:

//gplearn.readthedocs.io/en/stable/

reference.html#symbolic-classifier

library, the two of them are described below.

2.3.1 Symbolic Classifier

The goal in symbolic classification is to find a model that estimates the
target class value (discrete) from the value of input variables (discrete,
continuous).

This algorithm begins by building a population of naive random
formulas to represent a relationship. The formulas are represented
as tree-like structures with mathematical functions being recursively
applied to variables and constants. Each successive generation of
programs is then evolved from the one that came before it by
selecting the fittest individuals from the population to undergo genetic
operations such as crossover, mutation or reproduction.

http://www.morganclaypool.com/doi/abs/10.2200/S00324ED1V01Y201102AIM010
http://www.morganclaypool.com/doi/abs/10.2200/S00324ED1V01Y201102AIM010
http://www.morganclaypool.com/doi/abs/10.2200/S00324ED1V01Y201102AIM010
http://arxiv.org/abs/2110.11226
https://gplearn.readthedocs.io/en/stable/reference.html##symbolic-classifier
https://gplearn.readthedocs.io/en/stable/reference.html##symbolic-classifier
https://gplearn.readthedocs.io/en/stable/reference.html##symbolic-classifier
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The output of the program is transformed through a sigmoid
function in order to transform the numeric output into probabilities of
each class. In essence this means that a negative output of a function
means that the program is predicting one class, and a positive output
predicts the other.14 14 Trevor Stephens. Gplearn Documenta-

tion. page 57

2.3.2 Symbolic Transformer

The Symbolic Transformer works slightly differently to Symbolic
Classifier. The Symbolic Transformer is a supervised transformer that
begins by building a population of naive random formulas to represent
a relationship. The formulas are represented as tree-like structures
with mathematical functions being recursively applied to variables and
constants. Each successive generation of programs is then evolved
from the one that came before it by selecting the fittest individuals
from the population to undergo genetic operations such as crossover,
mutation or reproduction. The final population is searched for the
fittest individuals with the least correlation to one another.

The transformer seeks an indirect relationship that can then be
exploited by a second estimator. Essentially, this is automated feature
engineering and can create powerful non-linear interactions that may
be difficult to discover in conventional methods. The transformer looks
to maximize the correlation between the predicted value and the target.
This is done through either the Pearson product-moment correlation
coefficient or the Spearman rank-order correlation coefficient. In both
cases the absolute value of the correlation is maximized in order to
accept strongly negatively correlated programs.

The Spearman correlation is appropriate if your next estimator is
going to be tree-based, such as a Random Forest or Gradient Boosting
Machine. If you plan to send the new transformed variables into a
linear model, it is probably better to stick with the default Pearson
correlation. The Symbolic Transformer looks at the final generation of
the evolution and picks the best programs to evaluate. The number of
programs it will look at is controlled by the hall_of_fame parameter.
From the hall of fame, it will then whittle down the best programs to
the least correlated amongst them as controlled by the n_components
parameter. The correlation between individuals within the hall of fame
uses the same correlation method, Pearson or Spearman, as used by
the evolution process.15 15 Trevor Stephens. Gplearn Documenta-

tion. page 57

2.4 Bayesian Optimization

Bayesian optimization is an approach to optimizing objective
functions that take a long time to evaluate. The ability to
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optimize expensive black-box derivative-free functions makes Bayes
Optimization extremely versatile.

The algorithm works by constructing a statistical model for modeling
the objective function, this model is Gaussian Process, provides a
posterior probability distribution that best describes the function ( f (x))
that we want to optimize. Each time we observe f at a new point,
this posterior distribution is updated. After evaluating the objective
according to an initial space-filling experimental design, this points are
used iteratively to allocate the remainder of a budget of N function
evaluations, as shown in Algorithm 1. 16 16 Peter I. Frazier. A Tutorial on Bayesian

Optimization. URL http://arxiv.org/

abs/1807.02811Algorithm 1 Basic pseudo-code for Bayesian optimization

Place a Gaussina process prior on f
Observe f at n0 points according to an initial space-filling experimental design. Set
n = n0
while n ≤ N do

Update the posterior probability distribution on f using all available data
Let xn be a maximizer of the acquistion function over x, where the acquisition

function is computed using the current posterior distribution
Observe yn = f (xn)
Increment n

end while
Return a solution: either the point evaluated with the largest f (x) or the point with
the largest posterior mean.

As the number of observations grows, the posterior distribution
improves, and the algorithm becomes more certain of which regions in
parameter space are worth exploring and which are not, as seen in the
Figure 2.4 below.

This process is designed to minimize the number of steps required
to find a combination of parameters that are close to the optimal
combination. To do so, this method uses a proxy optimization problem
(finding the maximum of the acquisition function) that, albeit still a
hard problem, is cheaper (in the computational sense) and common
tools can be employed.

There are many parameters you can pass to maximize, nonetheless,
the most important ones are:

• n_inter: How many steps of bayesian optimization you want to
perform. The more steps the more likely to find a good maximum
you are.

• init_points: How many steps of random exploration you want
to perform. Random exploration can help by diversifying the
exploration space.

The library that was used in this paper is bayesian-optimization.17 17 fernando. Bayesian Optimization.
URL https://github.com/fmfn/

BayesianOptimization

http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
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Figure 2.4: An example of using
Bayesina otpimization. Reprinted
and adapted from A tutorial on
Bayesian Optimization of Expen-
sive Cost Function, with Applica-
tion to Active User Modeling and
Hierarchical Reinforcement Learn-
ing Brochu et al.

2.5 Metrics

In a binary classification problem, evaluation metrics are calculated
from True Positives (TP), False Positives (FP), True Negatives (TN),
and False Negatives (FN). The evaluation of the models designed to
solve classification problems is normally based on the confusion matrix
(Table 2.1).

Actual Values
Positive Negative

Predicted Values Positive TP FP
Negative FN TN

Table 2.1: Confusion Matrix

For the purposes of the present study, two main metrics were used
to evaluate the models and to tune the hyperparameters.

Accuracy is the most common and simplest evaluation metric in
classification modeling. This metric measures the percentage of the
correct predictions made by the model, considering both classes.

Accuracy =
TP + TN

TP + TN + FP + FN

It’s recommended to use this metric when the data are balanced.
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ROC AUC Before defining this metric, first, we need to define the
other two metrics:

• Sensitivity: This metric is used to measure the fraction of positive
classes that are correctly classified.

Sensitivity =
TP

TP + FN

• Specificity: Contrary to sensitivity, this metric is used to measure
the fraction of negative classes that are correctly classified.

Speci f icity =
TN

TN + FP

In a binary classification, it is generally considered the decision
threshold at the probability of 0.5, which means,elements with
probability 0.51 to 1 will be classified in the same class, while elements
with probabilities between 0 to 0.49 will be in the same class.

Setting different thresholds for classifying positive class for data
points will inadvertently change the Sensitivity and Specificity of the
model. And one of these thresholds will probably give a better result
than the others. The metrics change with the changing threshold values.

The Receiver Operator Characteristic (ROC) curve plots Sensitivity
against the complement of the Specificity at various threshold
values. The ROC is useful in determining the appropriate threshold
to maximize the relationship between sensitivity and specificity
(Figure 2.5).

In a ROC curve, a higher X-axis value indicates a higher number
of False positives than True negatives. While a higher Y-axis value
indicates a higher number of True positives than False negatives. So,
the choice of the threshold depends on the ability to balance between
False positives and False negatives. Therefore ROC AUC represents
the degree or measure of separability. It tells how much the model is
capable of distinguishing between classes. Higher the AUC, the better
the model is at predicting negative classes as negative and positive
classes as positive.18 18 Max Kuhn and Kjell Johnson. Applied

Predictive Modeling. Springer New
York. ISBN 978-1-4614-6848-6 978-1-4614-
6849-3. doi: 10.1007/978-1-4614-6849-
3. URL http://link.springer.com/10.

1007/978-1-4614-6849-3

Also, three other metrics were used for reference in this study.

• Precision: This metric is the percentage of positive classes that are
correctly estimated.

Precision =
TP

TP + FP

• Recall: This metric is the proportion or real positive classes that
were correctly estimated by the model.

Recall =
TP

TP + FN

http://link.springer.com/10.1007/978-1-4614-6849-3
http://link.springer.com/10.1007/978-1-4614-6849-3
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Figure 2.5: ROC curve for
predicting the classes using the
evaluation set. Reprinted and
adapted from Applied Predictive
Modeling Kuhn and Johnson

• F1: This metric is a weighting of the metrics precision and the recall.
The F1 value assumes that precision and recall are equally important
to us.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
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In this retrospective quasi-experimental, cohort study, we include the
adult inpatients with laboratory-confirmed COVID-19 from Hospital
Regional 110 (Guadalajara, Mexico) (Institutional registration Number
R-2021-1303-016), who were hospitalized over the year 2020, between
April 15 (i.e. when the first patient was admitted) to December 31

and had a definite outcome (discharged or dead). Since some of the
patients were discharged and a few days later were admitted again to
the hospital for COVID-19, the database only includes the data for the
last hospitalization. All the data is confidential and anonymous.

The methodology that was followed in this study was taken from
Azure Architecture Center: 1 1 Kent Sharkey. What is the Team Data

Science Process? - Azure Architecture
Center. URL https://docs.microsoft.

com/en-us/azure/architecture/

data-science-process/overview

• Understand the problem.

• Data Acquisition and Understanding (exploring).

• Modeling.

• Deployment.

For a better understanding, Figure 3.1 shows the methodology that
was implemented.

3.1 Dataset

The database includes records of more than 1,400 patients. Each record
contains at least one hematic biometry and an arterial blood gases

https://docs.microsoft.com/en-us/azure/architecture/data-science-process/overview
https://docs.microsoft.com/en-us/azure/architecture/data-science-process/overview
https://docs.microsoft.com/en-us/azure/architecture/data-science-process/overview
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Figure 3.1: Visual representation
of the Team Data Science Process
lifecycle. Reprinted from Azure
Architecture Center by Sharkey

test, the frequency of examinations was determined by the treating
physician. Totaling more than 11,300 records.

The data contains 47 hematic biometry biomarkers, 7 arterial
blood gases biomarkers, 15 variables of demographics and clinical
characteristics of the patient (e. g. age, sex, comorbidities), 3

time-dependent variables (first and last day hospitalized, day of the
examination), a variable that indicates if the patient was intubated and
a definite outcome (death or discharge).

3.2 Preprocessing

3.2.1 Data Cleaning

For the data preprocessing, firstly, as hematic biometry test and arterial
blood gases test, are two different examinations, they have distinct
variables, each patient could have two exams ID with the same date,
these tests were merged to only have one examination by day for each
patient, also, if the patient had the same test on the same day, we only
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kept the last test that was taken for that day.
The patients under the age of 40 were filtered due to not have enough

records and we excluded biomarkers that were missing for more than
45% on the records, and those that from a medical point of view were
irrelevant to this illness. With the arterial blood gases and D-dimer,
we decided to keep the biomarkers even though of the missing values,
between 45% and 34%, owing to their relevance in the illness.

Therefore, 33 hematic biometry biomarkers were excluded. The
remained number of biomarkers reduces to 14 hematic biometry
biomarkers and 7 arterial blood gases, in total 21 biomarkers.

Despite all the preprocessing, the missing data in all the biomarkers
was still high. Since a change in a biomarker from one day to another is
minimum, we decided to fill the missing data, which means that if the
patient had a few biomarkers on one day and the next or the previous
day those biomarkers were missing, the biomarkers were passed to the
following or the previous day. However, if the row could not be filled
and the missing data was more than 33%, this is, the row had more
than 7 empty biomarkers, that row was deleted.

Table 3.1 shows the percentage of missing values after the data
cleaning. Only the biomarkers with missing values are shown.

Variable Missing values (%)

Lymphocytes 0.08
Monocytes 0.08
Neutrophils 0.08
Creatinine 2.09
Urea 2.16
Glucose 2.27
Sodium 5.3
Potassium 5.3
D-dimer 21.14
PH 21.76
Base excess 22.04
PO2 22.17
PCO2 22.22
HCO3 22.32
CO2 22.37
O2 Saturation 22.37

Table 3.1: Percentage of missing
values.

In the case of the time-dependent variables, we have the first day
and last day of the hospitalization in a date format, so the date was
changed to the total day of hospitalization (the difference between the
first day and the last day), but this variable is only for data exploration,
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and it was excluded from the models. Then, the examination day was
converted to day number that is the difference between the first day
and the day of the examination.

On average, the total days hospitalized is 10 days, moreover, they
are just a few patients that were hospitalized more than 25 days (less
than 5%). Thus we are considering the last 25 days of examination for
each patient.

Total Survivor Non-survivor
(n=1,298) (n=386) (n=912)

Age, years (avg) 65 61 66

Sex
Male 65.25% 67.10% 64.47%
Female 34.75% 32.90% 35.53%

Comorbidity 58.94% 49.74% 62.83%
Cancer 1.77% 0.78% 2.19%
Heart Disease 5.62% 5.70% 5.59%
Diabetes 31.97% 28.24% 33.55%
Hypertension 22.88% 22.54% 23.03%
Hypothyroidism 2.47% 2.07% 2.63%
Pneumopathy 4.01% 2.59% 4.61%
Chronic Kidney 24.19% 16.84% 27.30%

Kidney Acute 31.36% 24.09% 34.43%
AKI 1 20.42% 21.76% 19.85%
AKI 2 3.24% 1.04% 4.17%
AKI 3 7.70% 1.30% 10.42%

Intubation 45.22% 11.66% 59.43%

Total of days 10 13 9

hospitalized (avg)

Table 3.2: Demographics and
clinical characteristics.

All the categorical data were converted into numeric features.In
summary, the dimension of the final dataset is 1,298 patients, 3,884

records, and totaling 39 variables. In Table 3.3 are described all the
variables.

3.2.2 Data Exploration

Following the data cleaning, we have 1,298 patients, each record
represents a test in a different day, with different values in the
biomarkers, therefore in this study each record represents a patient,
thus we have 3,884 patients.

Figure 3.2 shows the age distribution, as we have mentioned before,
the minimum age was set on 40 years, on average the survivors are
younger (61 years old) than the non-survivors (66 years old).
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Variable Description

ID* Patient Identification.
Day Number Day of the laboratory test after the hospitalization.
Total Days* Total days hospitalized (excluded).
Sex Gender (Male = 0, Female = 1).
Age Age at hospitalized onset (age ≥ 40).
Class Clinical outcomes (Dead = 0, Live = 1).
Erythrocytes Red blood cell Hemoglobin-carrying.
Hemoglobin Amount of oxygen-carrying protein in the erythrocytes.
Hematocrit The percentage of red blood cells in a given volume of whole blood.
Platelets Blood cells that play an important role in blood clotting.
Leukocytes White blood cell responsible for maintaining the immune system.
Lymphocytes Leukocyte family.
Monocytes Leukocyte family.
Neutrophils Leukocyte family.
Glucose Blood sugar.
Urea Waste products filtered out of the blood by the kidneys.
Creatinine Waste products filtered out of the blood by the kidneys.
Sodium Electrolyte.
Potassium Electrolyte.
D-dimer Protein fragment from the break-down of a blood clot.
PH Measure of acid-base.
PCO2 Blood gas (carbon dioxide).
PO2 Blood gas (oxygen).
CO2 Carbon dioxide in blood.
HCO3 Electrolyte, associated also with acid-base (pH) imbalance.
Base Excess Amount of acid required to normalize pH.
O2 Sat Oxygen saturation in blood.
Cancer Comorbidities (No = 0, Yes = 1).
Heart Disease Comorbidities (No = 0, Yes = 1).
Diabetes Comorbidities (No = 0, Yes = 1).
Hypertension Comorbidities (No = 0, Yes = 1).
Hypothyroidism Comorbidities (No = 0, Yes = 1).
Pneumopathy Comorbidities (No = 0, Yes = 1).
Chronic Kidney Comorbidities (No = 0, Yes = 1).
Kidney Acute Disease (No = 0, Yes = 1).
AKI 1 Grade of acute kidney injury (No = 0, Yes = 1).
AKI 2 Grade of acute kidney injury (No = 0, Yes = 1).
AKI 3 Grade of acute kidney injury (No = 0, Yes = 1).
Intubation Intubation (No = 0, Yes = 1).
* These variables were only used for exploration, therefore, there were excluded from the models

Table 3.3: Variables description.
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Figure 3.2: The age distribution
of the patients.

On the other hand, Figure 3.3 shows the total number of days that a
patient was hospitalized. As we have already pointed out, less than 5%
patients were hospitalized more than 25 days, therefore only the last
25 days of examination for each patient are considered. The average
hospitalization days for the survivors were longer (13 days) due to their
recovery.
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Figure 3.3: Hospitalized total
days distribution by patients.

Taking the day 25 as the last day hospitalized, we can easy see in
Figure 3.4 that 50% of the records are between the day 19 and the last
day hospitalized.

There is big difference between Survivors and Non-survivors, more
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than 59% of patients that died were intubated, whereas only 11.66%
of the survivors were intubated (Figure 3.5). Intubation has been one
of the most important variables but also can add noise into our model
due to this variable being affected by some others factors.

59.43%

40.57%

11.66%

88.34%

Non−survivor

Survivor

0% 25% 50% 75% 100%

Intubated

Non−intubated

Figure 3.5: Percentage of patient
intubated by Class.

Figure 3.6 displays the temporal changes in some of the most
important biometry biomarkers that have shown significant differences
between Non-survivors and survivors over time. On the left side,
values are presented as median, error bars indicate the interquartile
range, and, on the right error bars indicate ±1 SE of the mean and
in the background the scatter plot of all the records. As Figure 3.4
indicates, there are more records from the 15th onwards, owing to the
average number of days hospitalized being 10 days, which means that
more patients were admitted to the hospital around day 15. In Urea
(A,B) (Figure 3.6) the patients Non-survivors were hospitalized with
extremely higher levels, which indicates that the kidney is failing, in
the last days the levels of the survivors tend to down, that is to say, the
kidney starts to normalize, on the contrary of the Non-survivors that
suggest an acute kidney injury (AKI1, AK2 or AKI3).
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Figure 3.6: Temporal changes
in hematic biometry biomarkers
since the first hospitalization day
until the last day hospitalized.
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D-dimer (C,D) (Figure 3.6) in Non-survivor patients were increasing,
which demonstrates hypercoagulability moreover an increased
inflammation, their immune system response was higher, in other
words, out of control. On the other hand, the Lymphocyte (E,F) and
Platelets(G,H) decreased over time, while the levels of the Survivor
patients increased and started being on more normal parameters.
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Figure 3.7: Temporal changes in
arterial blood gases biomarkers
since the first hospitalization day
until the last day hospitalized.

Arterial blood gases biomarkers also expose variation between
Survivor and Non-survivor patient. In Figure 3.7, PCO2 (A, B) shows
that the Non-survivors started accumulate carbon dioxide due to the
lung failure, since PH (C,D) is also related to PCO2, the blood started
being more acid (i.e. acidosi).

3.2.3 Data Balancing

As shown in Table 3.2, the data is very imbalanced with only 30% of
survivors, this can influence the algorithms, ignoring the minority class,
therefore, the dataset needs to be balanced.

Two common techniques, to adjust the class distribution, are
oversampling and undersampling. The first one generates new samples
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to the minority class (the survivors), but it can cause overfitting and
it may result in additional noise as well. Whereas undersampling,
removes some random observation of the majority class (non-survivors)
until the dataset is balanced, the drawback of it is that may discard
potentially useful information.

In this study, we are going to use the second one, undersampling,
due to the lack of information and missing values, besides to not add
noise to the dataset.

3.3 Modeling and Optimization

The experiment was run in Intel (R) Core TM i7 2.80 GHz PC with 16

GB RAM, Windows 10 operating system and the coding environment is
Python 3.8.5. The packages that were used are: H2O (version 3.32.1.7),
scikit-learn (version 0.24.2), xgboost (version 1.4.1), gplearn (0.4.1) and
bayesian-optimization (1.2.0) (Table 3.4).

Classifier Library

Random Forest h2o.estimators.H2ORandomForestEstimator

SVM sklearn.svm.SVC

XGBoost xgboost.XGBClassifier

Naïves Bayes h2o.estimators.H2ONaiveBayesEstimator

Symbolic Classifier gplearn.genetic.SymbolicClassifier

Symbolic Transformer gplearn.genetic.SymbolicTransformer

Bayesian Optimization bayes_opt.BayesianOptimization

Table 3.4: Classifier utilized
in the present work and their
corresponding implementations
using H2O, scikit-learn, xg-
boost, gplearn and bayesian-
optimization Python Libraries.

The dataset still contains variables with a strong percentage of
missing values, for this reason we decided to create two models, the first
one, Model 1 (without missing values), a dataset that all the variables
with more than 5.3% of missing values were excluded (Table 3.1) (i.e. all
the arterial blood gases biomarkers, D-dimer, Sodium and Potassium
were excluded), for the remaining variables, all the records that have a
missing value were dropped, hence in the first dataset there were 3,765

records left. For the second, Model 2 (with missing values), we keep
all the variables and records (3,884).

For the Model 1 (without missing values) the classifiers that were
implemented and compared were Random Forest, SVM, XGBoost,
Naïves Bayes and Symbolic Classifier, to get the best model for each
one the Table 3.5 shows the hyperparameters that were optimized with
Bayesian Optimization and the bounded region. All the optimization
process was conducted using 2-fold cross-validations, 5 steps of random
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explorations (init_points), and with a maximum of 30 iterations (n_iter),
except with Symbolic Classifier due computational cost. For Symbolic
Classifier was set 2 init_points and only 5 iterations.

Hyperparameter Default value Bounded region

Random Forest
ntrees 50 5 to 200

max_depth 10 0 to 20
*

min_rows 1 1 to 50

mtries -1 -2 to 25
**

SVM
C 1 0.1 to 100

sigma*** scale**** 10−4 to 10

XGBoost
n_estimators 100 50 to 200

max_depth 6 1 to 20

min_child_weight 1 1 to 50

learning_rate 0.3 0.001 to 0.1
gamma 0 10−10 to 10−3

Naïves Bayes
eps_sdev 0 0.1 to 1

Symbolic Classifier
population_size 500 500 to 550

generations 10 2000 to 4000

tournament_size 20 10 to 20

* Setting this value to 0 specifies no limit.
** If -2 is specified, all the predictors of the Random Forest are used, when the value is -1, for

classification, the number of variables is
√

P, where P is the number of predictors.
*** Sigma is also know as gamma (1/2sigma2)
**** scale = n_features X.var()/2

Table 3.5: Model 1 Hyperpa-
rameter Tuning: Default values
and bounded region of hyperpa-
rameter space for the bayesian
optimization for Random For-
est, SVM, XGBoost, Naïves Bayes
and Symbolic Classifier.

On the other hand, for the Model 2 (with missing values), because
of Random Forest can deal with missing values, as mentioned
previously. To find the best model Table 3.6 shows the hyperameters
and the bounded region, and as with Model 1, the bayesian
optimization process was conducted using 2-fold cross-validations,
5 init_points and 30 iterations.

Hyperparameter Default value Bounded region

Random Forest
ntrees 50 5 to 200

max_depth 10 0 to 20
*

min_rows 1 1 to 50

mtries -1 -2 to 36
**

* Setting this value to 0 specifies no limit.
** If -2 is specified, all the predictors of the Random Forest are used, when the value

is -1, for classification, the number of variables is
√

P, where P is the number of
predictors.

Table 3.6: Model 2 Hyperparam-
eter Tuning: Default values and
bounded region of hyperparam-
eter space for the bayesian opti-
mization for Random Forest.

The Symbolic Transformer has been used to improve the performance
of some models so that it could help us to improve the model. It only
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can be applied in data without missing values, in this case, is the Model
1. We followed the same methodology as the Symbolic Classifier, due to
computational cost the hyperparameter tuning was with 2 init_points
and 5 iterations (Table 3.7).

Hyperparameter Default value Bounded region

Symbolic Transformer
population_size 1000 500 to 550

generations 20 2000 to 4000

tournament_size 20 10 to 20

Table 3.7: Hyperparameter Tun-
ing: Default values and bounded
region of hyperparameter space
for the bayesian optimization for
Symbolic Transformer .

The flowchart that was followed for each model is shown in
Figure 3.8: After transforming all the categorical variables to factor
we balance data, we split the data into train and test, if the model
is the SVM we applied a data transformation (Normalization or
Standarization), the model fitting is performed using the training
dataset and the best hyperparameter values of each model were obtain
using the Bayesian Optimization Algorithm, the best model is evaluated
on the test dataset.
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As we mentioned in Section 3.2.2 and Section 3.3 we have two models,
Model 1 (without missing values) and Model 2 (with missing values).
For each Classifier we followed Fig 3.8. Below, all the results are shown.

4.1 Model 1 (without missing values)

For Model 1 the Table 3.5 shows the hyperparameters tuning applying
Bayesian Optimization. The SVM is the only classfier that needs a data
transformation, for the rest of the Classifiers that were used, none of
them need a data transformation.

Therefore, for the SVM, first, we need to apply a transformation
before tuning the hyperparameters, some of the variables follow a
Gaussian distribution, therefore we decided to Standardized the data,
and also to use the Min-Max transformation, due to this transformation
doesn’t affect the distribution of the data.

We tried all the Kernels with each data transformation (Standardized
and Min-Max) and we kept the Kernel with the best performance for
each one. Using the RBF Kernel we notices that the Standardized data
performance better, and for the Min-Max data, we use the Polynomial
Kernel.

Table 4.1 shows the results tuning the hyperparameters using the
accuracy metric to evaluate the model. In our experience we have
seen that using ROC AUC could improve the model, for this reason,
we decided to use also the ROC AUC to tune the hyperparameters,
Table 4.2 show the results using this metric.
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Using both tuning metrics, XGBoost obtain 100% in all the training
metrics, denoting that the classifier was overfitting, and then, drop on
the testing dataset.

ROC AUC Accuracy Precision Recall F1

SVM RBF
train 0.929 0.9288 0.9176 0.9386 0.928

test 0.8938 0.8933 0.9113 0.8863 0.8986

SVM Polynomial
train 0.9404 0.9399 0.9217 0.9586 0.9398

test 0.8986 0.8996 0.8996 0.9137 0.9066

Random Forest
train 0.9416 0.8813 0.846 0.9257 0.884

test 0.8868 0.887 0.8972 0.8902 0.8937

XGBoost
train 1 1 1 1 1

test 0.8728 0.8724 0.8911 0.8667 0.8787

Naïves Bayes
train 0.8628 0.7926 0.758 0.8457 0.7995

test 0.8055 0.8054 0.8266 0.8039 0.8151

Symbolic Classifier
train 0.8078 0.8073 0.7873 0.83 0.8081

test 0.7935 0.7929 0.8197 0.7843 0.8016

Table 4.1: Model 1 Results
hyperparameter tuning metric
Accuracy.

ROC AUC Accuracy Precision Recall F1

SVM RBF
train 0.9903 0.9902 0.9845 0.9957 0.9901

test 0.8829 0.8828 0.8964 0.8824 0.8893

SVM Polynomial
train 0.9278 0.9274 0.9071 0.9486 0.9274

test 0.8624 0.864 0.8626 0.8863 0.8743

Random Forest
train 0.946 0.8834 0.8686 0.8971 0.8826

test 0.8599 0.8598 0.876 0.8588 0.8673

XGBoost
train 1 1 1 1 1

test 0.8669 0.8682 0.8692 0.8863 0.8777

Naïves Bayes
train 0.8699 0.7933 0.7722 0.8186 0.7947

test 0.7694 0.7699 0.7888 0.7765 0.7826

Symbolic Classifier
train 0.8123 0.8128 0.8224 0.7871 0.8044

test 0.7865 0.7824 0.8447 0.7255 0.7806

Table 4.2: Model 1 Results
hyperparameter tuning metric
ROC AUC.

Figure 4.1 shows the Classifiers comparison. For all the Classifiers
that were optimized, in this case, the best tuning metric was the
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Accuracy. Evaluation metrics suggest that in both cases, using accuracy
or ROC AUC as a tuning metric, the SVM, (SVM Polynomial and SVM
RBF respectively), outperforms all other classifiers.
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Figure 4.1: Classifiers compari-
son

Since the intubation variable is not reliable, due to diverse external
factors, we decided to exclude this variable and see the performance
for each Classifier excluding this variable.

We followed the same steps above, we use the accuracy and ROC
AUC as tuning metrics. Table4.3 and Table4.4 show the corresponding
results. We notice that when Intubation is excluded, the performance
of the Classifiers decrease, but in both cases, the best Classifiers is a
SVM, but now the best Classifier to the tuning Accuracy metric is the
SVM RBF, and SVM Polynomial is the best using the ROC AUC as a
tuning metric.

In Figure 4.2 we can easily see that all the classifiers have a better
performance using the tuning accuracy metric except for the SVM
Polynomial.

The best model including intubation and excluding intubation is
shown in Table 4.5. But even though the SVM is the best model in
both cases, we are not able to have the variable importance, we take the
Random Forest to be able to have the variable importance, Table 4.6
displays the Random Forest obtained.
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ROC AUC Accuracy Precision Recall F1

SVM RBF
train 0.973 0.9728 0.9635 0.9814 0.9724

test 0.8647 0.864 0.8862 0.8549 0.8703

SVM Polynomial
train 0.9487 0.9483 0.9323 0.9643 0.948

test 0.7731 0.7678 0.8429 0.6941 0.7613

Random Forest
train 0.9179 0.845 0.8018 0.9071 0.8512

test 0.8179 0.817 0.8036 0.8721 0.8364

XGBoost
train 0.9379 0.9378 0.9321 0.9414 0.9367

test 0.8302 0.8264 0.8874 0.7725 0.826

Naïves Bayes
train 0.8289 0.757 0.712 0.8443 0.7725

test 0.7554 0.7573 0.7663 0.7843 0.7752

Symbolic Classifier
train 0.7542 0.7979 0.6657 0.7259 0.7523

test 0.7113 0.8128 0.5961 0.6878 0.7196

Table 4.3: Model 1 Results
hyperparameter tuning metric
Accuracy excluding intubation.

ROC AUC Accuracy Precision Recall F1

SVM RBF
train 0.8955 0.8953 0.883 0.9057 0.8942

test 0.8142 0.8138 0.8374 0.8078 0.8224

SVM Polynomial
train 0.895 0.8946 0.8765 0.9129 0.8943

test 0.8159 0.8138 0.8547 0.7843 0.818

Random Forest
train 0.8998 0.8303 0.7971 0.8757 0.8346

test 0.803 0.8033 0.8207 0.8078 0.8142

XGBoost
train 1 1 1 1 1

test 0.8058 0.8054 0.8293 0.8 0.8144

Naïves Bayes
train 0.8428 0.7723 0.7404 0.8229 0.7794

test 0.7282 0.7301 0.7423 0.7569 0.7495

Symbolic Classifier
train 0.7731 0.7723 0.7474 0.8071 0.7761

test 0.7047 0.7071 0.7186 0.7412 0.7297

Table 4.4: Model 1 Results
hyperparameter tuning metric
ROC AUC excluding intubation.

Hyperparameter Value

SVM Polynomial including intubation
C 35.8210

Sigma 1.5645

SVM RBF excluding intubation
C 13.9808

Sigma 3.1268

Table 4.5: Best Model 1 hyperpa-
rameters.
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Figure 4.2: Classifiers excluding
intubation comparison

Hyperparameter Value

Random Forest including intubation
ntrees 192

max_depth 19

min_rows 2

mtries -1*

Random Forest excluding intubation
ntrees 139

max_depth 0
**

min_rows 1

mtries 4

* When the value is -1, for classification, the number of variables is
√

P,
where P is the number of predictors.

** Setting this value to 0 specifies no limit.

Table 4.6: Random Forest best
Model 1 hyperparameters.

4.1.1 Symbolic Transformer

Symbolic Transformer can help us to improve the model, despite that
the it increase the number of variables, we tried to improve the best
Model 1 that was obtained, the SVM Polynomial with the tuning
Accuracy metric.

Due to the computational cost, the model was not able to iterate
more times, it took more than 5 hours to tune the hyperparameter just
for 7 iteration. We can see in Table 4.7 and Table 4.8 the results and
the model.

ROC AUC Accuracy Precision Recall F1

SVM Polynomial
train 0.9453 0.9448 0.9248 0.9657 0.9448

test 0.8649 0.8682 0.8504 0.9137 0.8809

Table 4.7: Model 1 SVM
Symbolic Transformer.
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Hyperparameter Value

SVM Polynomial
C 35.8210

Sigma 1.5645

Symbolic Transformer
population_size 525

generations 3,098

tournament_size 10

Table 4.8: Symbolic Transformer
hyperparmeters.

In the heuristics models, increasing the generation and letting the
model explore could improve the models, but for our problem, the
model did not make any improvement (Fig 4.3).
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Figure 4.3: SVM Polynomial
with Symbolic Transformer com-
parison.

4.2 Model 2 (with missing values)

For Model 2 we took all the variable and kept the missing values. The
models that can handle missing values are the Random Forest by H2O
library, and like we did in Sec 4.1 we use the Accuracy and ROC AUC
to tune the hyperparameters and we did a model including intubation
and another model excluding intubation.

Table 4.13 and Table 4.10 show the results. We notice like with
the model 1, when intubation is excluded the Classifiers performances
decrease, but contrary to model 1, now the tuning ROC AUC Classifiers
are better (Fig 4.4).

Despite that Model 2 includes missing values, we are able to obtain
good models with similar metrics as we obtained with the Random
Forest Model 1. Table 4.11 present the best Models 2.
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ROC AUC Accuracy Precision Recall F1

RF including Intubation
train 0.941 0.8876 0.8507 0.9422 0.8941

test 0.8779 0.8763 0.8242 0.9494 0.8824

RF excluding Intubation
train 0.9114 0.847 0.8136 0.9032 0.8561

test 0.8139 0.8124 0.7684 0.8819 0.8212

Table 4.9: Model 2 Random
Forest hyperparameter tuning
metric Accuracy

ROC AUC Accuracy Precision Recall F1

RF including Intubation
train 0.9418 0.8842 0.8515 0.9328 0.8903

test 0.8821 0.8804 0.8255 0.9578 0.8867

RF excluding Intubation
train 0.9156 0.8389 0.7942 0.918 0.8516

test 0.8266 0.8247 0.7734 0.9072 0.835

Table 4.10: Model 2 Random
Forest hyperparameter tuning
metric ROC AUC
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Figure 4.4: Model 2 Classifiers
comparison

4.2.1 Model 2 by days

Keeping the missing values we are able to split the dataset and see how
the variable importance change over the days. Days 1 to 19 represents
50% and the remaining days the other 50% of the data as Figure 3.4 has
shown. We follow the same methodology.

The ROC AUC tuning metric in both cases outperforms accuracy
tuning metric classifiers, and we were able to obtain good evaluation
metrics doing a model splited by day (Figure 4.5). Table 4.14 show the
respective hyperparameters.
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Hyperparameter Value

Random Forest including intubation
ntrees 165

max_depth 20

min_rows 1

mtries 19

Random Forest excluding intubation
ntrees 189

max_depth 20

min_rows 1

mtries 14

Table 4.11: Random Forest best
Model 2 hyperparameters.

ROC AUC Accuracy Precision Recall F1

RF days 1 to 19

train 0.934 0.8746 0.8439 0.9419 0.8902

test 0.8611 0.8676 0.8343 0.9419 0.8848

RF days 20 to 25

train 0.9441 0.8947 0.8646 0.9291 0.8957

test 0.8274 0.827 0.8765 0.7634 0.8161

Table 4.12: Model 2 Random
Forest by days hyperparameter
tuning metric Accuracy

ROC AUC Accuracy Precision Recall F1

RF days 1 to 19

train 0.9547 0.9068 0.9038 0.929 0.9162

test 0.8709 0.8746 0.8606 0.9161 0.8875

RF days 20 to 25

train 0.9469 0.8966 0.8702 0.9254 0.8969

test 0.8543 0.8541 0.8837 0.8172 0.8492

Table 4.13: Model 2 Random
Forest by days hyperparameter
tuning metric ROC AUC
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Figure 4.5: Model 2 Classifiers
comparison



results 57

Hyperparameter Value

RF day 1 to 19

ntrees 119

max_depth 20

min_rows 1

mtries 2

RF day 20 to 25

ntrees 162

max_depth 16

min_rows 1

mtries 15

Table 4.14: Random Forest by
day best model hyperparame-
ters.

4.3 Variable Importance

Taking the Random Forest Classifiers that we obtained in the previous
section, we are able to obtain the Variable importance for each model.

Variable importance Model 1 and Model 2 including intubation
are display Figure 4.6. In both models the Intubation variable is the
most importance variable, but in the Model 2 that variable takes more
importance, advising that with missing values the variables Intubation
and Age have a higher impact on the model.

In Model 1 the urea and lymphocytes follow after intubation, as we
have seen in Figure3.6 show the differentiation between Non-survivors
and Survivor. On the other hand Model 2 PH and PCO2 that were
excluded due to the missing values in Model 1, with the urea, follow
after intubation and age, showing the variation that we have already
seen.

0.2346

0.1162

0.0802

0.0731

0.0668

0.0528

0.0457

0.045

0.044

0.038

0.0327

0.0297

0.029

0.0287

0.0158AKI3

GLUCOSE

HEMATOCRIT

MONOCYTES

HEMOGLOBIN

DAY_NUMBER

AGE

CREATININE

ERYTHROCYTES

LEUKOCYTES

PLATELETS

NEUTROPHILS

LYMPHOCYTES

UREA

INTUBATION

0.0 0.1 0.2
Model 1 including Intubation

V
ar

ia
bl

e 
Im

po
rt

an
ce

0.3071

0.1966

0.0946

0.0492

0.0416

0.0368

0.0284

0.0216

0.0206

0.0191

0.0161

0.016

0.0142

0.0129

0.0127D−DIMER

ERYTHROCYTES

POTASSIUM

CREATININE

SODIUM

GLUCOSE

DAY_NUMBER

NEUTROPHILS

PLATELETS

LYMPHOCYTES

PCO2

UREA

PH

AGE

INTUBATION

0.0 0.1 0.2 0.3
Model 2 including Intubation

V
ar

ia
bl

e 
Im

po
rt

an
ce

Figure 4.6: Model 1 and Model
2 including intubation variable
importance.

Figure 4.7 presents the variable importance of Model 1 and Model
2 but excluding intubation. We can see that in the case of Model
1 the order of the variables are extremely similar, just excluding the
intubation, but also the values are similar. Whereas Model 2 also shows
similar variable order but it could be a little bit more unstable because
of the missing values.
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Figure 4.7: Model 1 and Model
2 excluding intubation variable
importance.

On the Model 2 by days we were able to see how the variable
importance change over time. As we have seen Figure 3.6 and Figure 3.7
the biomarkes show remarkable temporal changes differences between
Non-Surivors and Survivor.

Several Covid-19 studies found that this virus strongly affects the
kidney. Figure 4.8 shows that on days 1 to 19, when several patients just
have been hospitalized, the two most important variables are Intubation
and Age, on the other model, those variables do not have the same
importance, this importance is been reduced drastically, and it seems
that the some biomarkers increased their importance.

Creatinine is more important on days 20 to 25 with the Urea,
demonstrating the kidney damage, presumably, the acute kidney injury
was not healed. PH importance increased over the time, that means that
the acid in the blood is increasing. In section 3.2.2 we have seen that
Lymphocytes decreased, (i.e. lymphopenia), due that they are trying to
attack the illness, in the Non-survivors the response is incommensurate.
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Figure 4.8: Model 2 by days
variable importance.
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4.4 Discussion

In this Chapter, we have seen all the methods that were implemented
to try to obtain the best Classifier. Figure 4.9 showsModel 1 (without
missing values) best Classfiers. SVM Polynomial including intubation
was the best of all but the Random Forest, including this variable,
obtain also a similar performance, but when Intubation was excluded
the model performance decrease and the Random Forest was more
affected than the SVM.
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Figure 4.9: Best Model 1

Classifiers comparison

Using the Genetics programming, in the case of the Symbolic
Classifier the performance was one of the worst, and due to the cost
computational, we could not iterate more times to find the best model
(only 7 times). And when we tried to increase the performance of
the SVM Polynomial using the Symbolic Transformer, the Classifier
performance did not improve, and the cost computational was high as
the Symbolic Classifier, in both cases with only 7 iterations with the
Bayesian Optimization, it could take more than 5 hours.

The main objective of this study is being able to obtain the variable
that are more important for the model, as well as a Classifier that
were able to handle the missing values. For this reason we choose
the Random Forest, due to the capacity of this Classifier. Figure 4.10

displays Model 2 (with missing values) best models, with similar
performance as the Random Forest in Model 1.

When we compared the variable importance we were able to
appreciated that including the missing values the variable importance
as the Intubation and Age increase.

Splitting the data by days, shows how the variable importance
change, as we have seen in Section 3.2.2.
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Figure 4.10: Model 2 Classifiers
comparison



5 Conclusion

In the biomakers, we were able to find several difference between
Survivors and Non-survivors. In Urea the Non-survivor showed higher
levels and never starts to normalize, suggesting a kidney injury. The
Lymphocyte decreased over time in the Non-survivors. The Non-
survivors showed inflammation and hypercoagulability according to
D-dimer. The blood gases biomarkers indicate a lung failure.

Several Classifiers have been applied in this study, creating two types
of models due to the missing values in the real data: Model 1 (without
missing values), Model 2 (with missing values), and implemented
several methods and approaches to improve the prediction and obtain
the best Classifier. Even tough that SVM Polynomial was the best of
all, the Random Forest, obtain also a similar performance, and has the
advantage that it can deal with missig values.

One approach was to exclude intubation due to the external factors
that can affect this variable, When we include this variable all the
Classifiers performance were upper than 79% of ROC AUC, and we
almost obtained the 90% in the SVM Polynomial . On the other hand,
when this variable was exclude, all the model performance decrease
and we got an ROC AUC between 71% and 86%.

With missing values, Model 2, including and excluding intubation
we got 88% and 82% ROC AUC respectively. and with the model by
days we get similar metrics.

Using the Genetics programming, in the case of the Symbolic
Classifier the performance was one of the worst and applying Symbolic
Tranformer to the SVM Polynomial to try to increase the performance
we could not improve this Classifier. The cost computational of this
algorithm is high, we could not iterate more times to find the best
model (only 7 times) and it could take more than 5 hours.

The main objective of this study is being able to obtain the variable
that are more important for the model, as well as a Classifier that
were able to handle the missing values. For this reason we choose the
Random Forest, due to the capacity of this Classifier.

In Model 1 and Model 2 the Intubation variable was the most
importance variable, but in the Model 2 that variable takes more
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importance, advising that with missing values the variables Intubation
and Age have a higher impact on the model.

Several Covid-19 studies found that this virus strongly affects the
kidney, and it can be seen in the levels of the Urea and Creatinine, also
other biomarkers are affected like Lymphocytes, Platelets and D-Dimer,
and the biomarkers related to the arterial blood gases. In our models,
we obtained, in the variable importance, that urea, lymphocytes, PH,
PCO2, platelets, etc., being reasonable with other investigations and
the data exploration.

The Roc Auc for each classifier was closed to 0.88, and with the
variable importance we were able to obtain the best Machine Learning
model that can quantify the effects of biomarkers and comorbidities in
predicting SARS Cov-2 associated mortality in Hospitalized Patients in
Mexico.

For future work we will apply the model to the patients that were
vaccinated, imputing missing values, with a deeper analysis and use
other techniques to obtain the impact of the biomarkers.
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