
 

Instituto Tecnológico  

y de Estudios Superiores de Occidente 
Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018, 

publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976. 
 

Departamento de Electrónica, Sistemas e Informática  
ESPECIALIDAD EN SISTEMAS EMBEBIDOS 

 
 

 
 

 
 

Montgomery Algorithm Implementation on an  

Embedded System for a 256-bit input size 

 
TRABAJO RECEPCIONAL que para obtener el GRADO de 

Especialista en Sistemas Embebidos 

 
Presenta: ADRIANA ARIZAGA JASSO  

 
Asesor LUIS JULIÁN DOMÍNGUEZ PÉREZ  

 
 

Tlaquepaque, Jalisco. Julio 2021.  



Montgomery Algorithm Implementation on an 

Embedded System for a 256-bit input size 

Arizaga Jasso, Adriana                                     Domínguez Pérez, Luis Julián 

Embedded Systems                                         Department of Electronics, 

      Specialization ITESO                                    Systems and Informatics  ITESO 

                                              Tlaquepaque, Jal. México                                     Tlaquepaque, Jal. México  

                                                aajasso@iteso.mx                                                luisjdominguezp@iteso.mx 

 

 

 

 

 

 
 

 
 

Abstract— The Montgomery multiplication is a leading method to 

compute modular multiplications faster over large prime fields.  

Numerous algorithms in number theory use Montgomery 

multiplication computations. This fast data processing makes it 

appealing to cryptosystem analysis. The objective of this work is to 

implement the Montgomery algorithm on an embedded system. For 

this application, the following 256-bit arithmetic functions were 

executed in the MCUXpresso IDE software: adder, subtraction, 

multiplication, and Barret reduction. The obtained results in the 

FRDM-K64F board show the Montgomery form values, and the 

product out of the Montgomery domain.  The operations computed in 

the embedded board also demonstrate that the applied algorithms are 

congruent with the values obtained in C programming, Python, and the 

FRDM-K64F board.  

 

Keywords— Montgomery, Barret Reduction, Modular Arithmetic 

I. INTRODUCTION  

Electronic transactions and Internet security have become an 

essential part of daily life. To secure digital communications, 

cryptographic algorithms convert a plaintext message into an 

encrypted ciphertext. Since quantum computers and some 

mathematical algorithms can also solve encrypted data sent 

across the internet, encrypted data and public keys could be 

cracked, and cryptosystem keys revealed [4]. For this reason, 

algorithms that provide either quantum or classical security are 

needed, like the SIKE (Supersingular Isogeny Key-

Encapsulation) algorithm. SIKE employs the Montgomery 

multiplier since it is the most efficient method for performing 

multiplications with large numbers. We have implemented the 

Montgomery Algorithm for 256-bit inputs in an embedded 

board (FRDM-K64F) from NXP. This implementation can be 

used in an embedded device for cryptosecurity applications. To 

be able to work with larger numbers than the standard library 

allows, groups of four arrays are used in every module of the 

program. The selected board FRDM-K64F has an ARM 

Cortex-M4 Core running up to 120MHz. It handles 16-bit 

ADCs, a DAC, and a variety of peripherical and interfaces, also 

hardware encryption, supporting CRC, DES, 3DES, AES, 

MD5, SHA-1 and SHA-256 algorithms. It works on a voltage 

range from 1.71 to 3.6V 

 

II. MATHEMATICAL BACKGROUND 

A. Modular Arithmetic  

 

The finite field ( ₚ) arithmetic for a prime number (𝑝) is the 

modular arithmetic Mod 𝑝. Let 𝑎, 𝑏 ϵ ₚ, the addition in the ₚ 

is defined as (𝑎 + 𝑏) 𝑚𝑜𝑑 𝑝. The output carry of the previous 

addition needs to be added, then 𝑐𝑖 = (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑎𝑟𝑟𝑦)  is 

calculated while the operation in the subtraction implements 

borrows as inputs. The integer multiplication 𝑡 = (𝑎 · 𝑏) is 

carried out word by word according to the school-book method 

referred in the “Fig.1” at a computational cost of 𝑛2   and  

(𝑛 − 1)2 [5].   

 

 

                          𝑎3        𝑎2              𝑎1             𝑎0 

                          𝑏3        𝑏2              𝑏1             𝑏0 

                                         -------------------------------- 

                             𝑝𝑝03    𝑝𝑝02    𝑝𝑝01      𝑝𝑝00 

                                    𝑝𝑝13    𝑝𝑝12    𝑝𝑝11    𝑝𝑝10 

                        𝑝𝑝23    𝑝𝑝22   𝑝𝑝21    𝑝𝑝20 

            𝑝𝑝33    𝑝𝑝32   𝑝𝑝31   𝑝𝑝30 

𝑟7         𝑟6         𝑟5        𝑟4          𝑟3         𝑟2           𝑟1          𝑟0 
 

Fig. 1. School book method. 

 

 

The Barret reduction algorithm is defined by formula (1).  

 

                        𝑄 =  ⌊(𝑡/𝑏𝑘−1) · µ · (1/𝑏𝑘+1)⌋             () 

 

The Barret Reduction algorithm resolves 𝑡 𝑚𝑜𝑑 𝑝 (for a 

positive integer 𝑡 and a modulus 𝑝) where 𝑝 is a prime number 

such that |𝑡|≈2|𝑝| [5]. 

 

Where: 

                                              µ = 𝑏2𝑘/𝑝                                      () 

 

                                            𝑘 = ⌈𝑙𝑜𝑔𝑏𝑝⌉ + 1                              () 

 

                                         𝑡 = 𝑄𝑝 + 𝑅                                   () 
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Where 0≤R<p, the quotient Q= ⌊
𝑡

𝑃
⌋ can be written as, 

 

    𝑄 = [
𝑡

𝑏𝑘−1] · (
𝑏2𝑘

𝑝
) · (

1

𝑏𝑘+1) =  [
𝑡

𝑏𝑘−1 ∙ µ · (
1

𝑏𝑘+1)]               ()                   

 

The remainder is obtained as: 

 

                               𝑟 = (𝑡 − 𝑞 · 𝑝)𝑚𝑜𝑑 𝑏𝑘+1                           () 

 

The Montgomery multiplication is executed using ₚ elements 

in the Montgomery representation which requires the modular 

reduction. Cryptographic implementations require at least 112 

bits of security level, though a 128-bit security level is 

preferred. This leads to use prime numbers that are larger than 

256 bits. The Barret, and Montgomery algorithms employ the 

modular reduction. The Montgomery multiplier is one of the 

most efficient methods for large number multiplication as it 

reduces the number of calculations [5].  

 

The Montgomery product is defined by the equation (7), which 

can be used to compute the field multiplication equation (8).  

 

 

                        𝑀𝑜𝑛𝑡𝑃𝑟(ã, ƀ) =  ã · ƀ · 𝑟−1 𝑚𝑜𝑑 𝑝                 () 

 

                                    𝑐 = 𝑎 ∙ 𝑏 𝑚𝑜𝑑 𝑝                                    () 

 

 

III. METHODOLOGY 

 

In this work, every implemented module was tested separately, 

and the result was compared with a Python implementation.  

After verifying that the independent modules worked 

accordingly, they were placed together inside the main code and 

tested as a whole. The code execution time was measured using 

the Debug Watch and Trace module included in the Cortex-M 

ARM processor.  The original programming was performed in 

a C X86_64 architecture Linux compiler, then it was converted 

to the embedded software board and finally downloaded to the 

NXP FRDM-K64 board. Considering the prime number in the 

Montgomery multiplication is 256-bit size, groups of four 

arrays unsigned integer 64-bits were employed. For the adder 

section from “Fig. 2”, both 𝑡 and 𝑢0 inputs are compared with 

the maximum possible array input value 

0XFFFFFFFFFFFFFFFF. If either input has the maximum 

value, a carry is generated and this carry is added to the result 

from adding 𝑡 + 𝑢0. 

 

 
Fig. 2. 256-bits adder. If any input has the maximum value, a carry is generated. 
 

 

The subtractor implementation stated in the “Fig. 3” performs 

a comparison if the second operator is higher than the first 

operator, the carry represented as 0xFFFFFFFFFFFFFFFF is 

added to the adjacent more significant array number value. 

 

 

 
Fig. 3. Subtraction 256-bits. If the second term is larger than the first term, a 
carry is generated. 
 

 

The one-digit multiplication code defined in “Fig. 4” is used in 

the multiplication code, as the School Book Method states. A 

carry that initializes with cero is added to this partial 

multiplication in the variable 𝑥.  The variable 𝑁  is equal to 16 

due every array size is equal to 4, for this reason the 

multiplication product doubles to 𝑁2 . Where 𝑁 = 16 for the 

leftShifting and Addition codes described below. The variable 

𝑡𝑒𝑚𝑝 is equal to 𝑥 AND 0XFFFFFFFF. This takes the 64-bits 

lowest part half for the 𝑡𝑒𝑚𝑝 variable.  The carry is 32-bits 

shifted right. If carry is different to zero, the 𝑡𝑒𝑚𝑝  highest 

significant bit becomes equal to carry.  

 

 

 
 



 

 
Fig. 4. Onedigitmultiplication represents the operation of the multiplication 

between the two terms digit by digit. 
 

In the leftShifting code from the “Fig. 5”, the multiplication 

intermediate results are left shifted as part of the School Book 

Method multiplication process. The numbers are shifted to 

represent the units, the tens, and so on. 

 

 
Fig. 5. The purpose of the LeftShifting multiplication algorithm is to shift the 

partial result for place it, according to units, tens, or hundreds. 
 

In the addition code declared in “Fig. 6”, 𝑠𝑢𝑚 is equal to the 

partial result addition plus the generated carry. If sum is higher 

than the maximum number an overflow is generated.  

 

 
Fig. 6. The Addition 256-bits adds the multiplication partial results to obtain 

the final product. 
 

 

“Fig. 7” refers to the 256-bits multiplier code, where every 

input array goes thru the previously codes 3,4, and 5 

(onedigitmultiplication, leftShifting and addition). 

 

  

 
Fig. 7. Multiplier 256-bits. This part of code calls the previous functions that 

are needed by the entire multiplication process. 
 

The Barret reduction code from “Fig. 8” employs the positive 

integers inputs: 𝑡,𝑝 and 𝑏. Where 𝑡 ≈ 2|𝑝| , µ is calculated by 

(2), and 𝑏 is selected as a power of two. [5].  Then formulas (4) 

and (5) are computed. While the Barret result is higher or equal 

to the prime number array, the result is then equal to this 

computed result minus the prime number 𝑝. For this study, the 

prime number 𝑝 , the  𝑡  value, and 𝑏  values were defined as 

shown in the Fig. 8 code.  

 

 
Fig. 8. This code represents the execution of the Barret Reduction algorithm. 
 

 

 

 



“Fig. 9” [5] page 5-8, shows the pseudocode to compute the 

Montgomey domain result. In step 1 where 𝑡 =  ã ∙ ƀ ,   ƀ =
𝐷 𝑚𝑜𝑑 𝑝, and  𝐷 = 𝐵 ∙ 𝑟𝑟.  Also, ã = C mod p, and 𝐶 = 𝐴 ∙
𝑟𝑟.  To avoid an expensive operation, the precomputation of p 

between rr was done. Since this algorithm works only in the 

Montgomery space, a transformation of the numbers into that 

space is needed before the multiplication process begins. 

 

Fig. 9. The application of the Montgomery code obtains the Montgomery 
domain result. 

 

 
 

 

IV. RESULTS 

 

“Fig. 10” represents the adding operation with maximum input 

values. 

 

 
Fig. 10.  256-b Adder test in C compiler. 

 
 

 

 
 

 

 
 

 
 

“Fig.11” displays the adder operation in Python. 

 

 
Fig. 11.   Adder tested in Python. 

 

 

“Fig. 12” shows the adder result in the FRDM-K64F board with 

an execution time of 512 CPU clock cycles. 

  

 
Fig. 12. Adder computation result on embedded board. 
 

 

“Fig. 13” displays the subtraction operation result in C 

compiler.  
  

 
Fig. 13. Subtractor computation in C compiler. 

 
 

“Fig. 14” shows the subtractor operation in Python.  
  

 
Fig. 14. Subtractor test in Python. 

 

 

“Fig. 15” represents the subtraction result in the FRDM-K64F 

board, with an execution time of 127 clock cycles. 

  

 
Fig. 15. Subtractor in embedded board. 

 
 

 

 
 

 

 



 
 

“Fig. 16” shows the multiplication operation in C compiler. 

 
Fig. 16. Multiplication test in C compiler. 

 

 

“Fig. 17”, corresponds to the multiplication operation in 

Python. 
   

 
Fig. 17. Multiplication test in Python. 

 
 

“Fig. 18” represents the Montgomery result on the FRDM-

K64F board. The program contains the previous presented 

modules: adder, subtraction, and Barret.  

 

 
Fig. 18 Montgomery result in the embedded board. 

 
 

 

 

V. CONCLUSIONS 

 

In this work, the 256-bits Montgomery algorithm was 

implemented on the NXP FRDM-K64F board using the NXP 

software MCUXpresso IDE v11.3.0. For this purpose, the 256-

bits arithmetic functions were executed in a C compiler: adder, 

subtract, multiplication and Barret reduction. Since the C 

compiler does not include the libraries for larger numbers that 

64 bits, the input number was split in arrays, without the need 

of using external libraries. For the 256-bits adder 

implementation, a comparation to check if the inputs had the 

maximum value number was performed, thus a carry was 

assigned to the operation. Montgomery devices offers a 

competent performance when used in complex cryptography 

for Internet of Things systems and can be implemented in 

present-day cryptography. As a further work we would like to 

test this Montgomery algorithm in the SIKE algorithm. 
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