

Instituto Tecnológico

y de Estudios Superiores de Occidente
Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018,

publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática
ESPECIALIDAD EN SISTEMAS EMBEBIDOS

Montgomery Algorithm Implementation on an

Embedded System for a 256-bit input size

TRABAJO RECEPCIONAL que para obtener el GRADO de

Especialista en Sistemas Embebidos

Presenta: ADRIANA ARIZAGA JASSO

Asesor LUIS JULIÁN DOMÍNGUEZ PÉREZ

Tlaquepaque, Jalisco. Julio 2021.

Montgomery Algorithm Implementation on an

Embedded System for a 256-bit input size

Arizaga Jasso, Adriana Domínguez Pérez, Luis Julián

Embedded Systems Department of Electronics,

 Specialization ITESO Systems and Informatics ITESO

 Tlaquepaque, Jal. México Tlaquepaque, Jal. México

 aajasso@iteso.mx luisjdominguezp@iteso.mx

Abstract— The Montgomery multiplication is a leading method to

compute modular multiplications faster over large prime fields.

Numerous algorithms in number theory use Montgomery

multiplication computations. This fast data processing makes it

appealing to cryptosystem analysis. The objective of this work is to

implement the Montgomery algorithm on an embedded system. For

this application, the following 256-bit arithmetic functions were

executed in the MCUXpresso IDE software: adder, subtraction,

multiplication, and Barret reduction. The obtained results in the

FRDM-K64F board show the Montgomery form values, and the

product out of the Montgomery domain. The operations computed in

the embedded board also demonstrate that the applied algorithms are

congruent with the values obtained in C programming, Python, and the

FRDM-K64F board.

Keywords— Montgomery, Barret Reduction, Modular Arithmetic

I. INTRODUCTION

Electronic transactions and Internet security have become an

essential part of daily life. To secure digital communications,

cryptographic algorithms convert a plaintext message into an

encrypted ciphertext. Since quantum computers and some

mathematical algorithms can also solve encrypted data sent

across the internet, encrypted data and public keys could be

cracked, and cryptosystem keys revealed [4]. For this reason,

algorithms that provide either quantum or classical security are

needed, like the SIKE (Supersingular Isogeny Key-

Encapsulation) algorithm. SIKE employs the Montgomery

multiplier since it is the most efficient method for performing

multiplications with large numbers. We have implemented the

Montgomery Algorithm for 256-bit inputs in an embedded

board (FRDM-K64F) from NXP. This implementation can be

used in an embedded device for cryptosecurity applications. To

be able to work with larger numbers than the standard library

allows, groups of four arrays are used in every module of the

program. The selected board FRDM-K64F has an ARM

Cortex-M4 Core running up to 120MHz. It handles 16-bit

ADCs, a DAC, and a variety of peripherical and interfaces, also

hardware encryption, supporting CRC, DES, 3DES, AES,

MD5, SHA-1 and SHA-256 algorithms. It works on a voltage

range from 1.71 to 3.6V

II. MATHEMATICAL BACKGROUND

A. Modular Arithmetic

The finite field (ₚ) arithmetic for a prime number (𝑝) is the

modular arithmetic Mod 𝑝. Let 𝑎, 𝑏 ϵ ₚ, the addition in the ₚ

is defined as (𝑎 + 𝑏) 𝑚𝑜𝑑 𝑝. The output carry of the previous

addition needs to be added, then 𝑐𝑖 = (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑎𝑟𝑟𝑦) is

calculated while the operation in the subtraction implements

borrows as inputs. The integer multiplication 𝑡 = (𝑎 · 𝑏) is

carried out word by word according to the school-book method

referred in the “Fig.1” at a computational cost of 𝑛2 and

(𝑛 − 1)2 [5].

 𝑎3 𝑎2 𝑎1 𝑎0

 𝑏3 𝑏2 𝑏1 𝑏0

 𝑝𝑝03 𝑝𝑝02 𝑝𝑝01 𝑝𝑝00

 𝑝𝑝13 𝑝𝑝12 𝑝𝑝11 𝑝𝑝10

 𝑝𝑝23 𝑝𝑝22 𝑝𝑝21 𝑝𝑝20

 𝑝𝑝33 𝑝𝑝32 𝑝𝑝31 𝑝𝑝30

𝑟7 𝑟6 𝑟5 𝑟4 𝑟3 𝑟2 𝑟1 𝑟0

Fig. 1. School book method.

The Barret reduction algorithm is defined by formula (1).

 𝑄 = ⌊(𝑡/𝑏𝑘−1) · µ · (1/𝑏𝑘+1)⌋ ()

The Barret Reduction algorithm resolves 𝑡 𝑚𝑜𝑑 𝑝 (for a

positive integer 𝑡 and a modulus 𝑝) where 𝑝 is a prime number

such that |𝑡|≈2|𝑝| [5].

Where:

 µ = 𝑏2𝑘/𝑝 ()

 𝑘 = ⌈𝑙𝑜𝑔𝑏𝑝⌉ + 1 ()

 𝑡 = 𝑄𝑝 + 𝑅 ()

mailto:aajasso@iteso.mx
mailto:luisjdominguezp@iteso.mx

Where 0≤R<p, the quotient Q= ⌊
𝑡

𝑃
⌋ can be written as,

 𝑄 = [
𝑡

𝑏𝑘−1] · (
𝑏2𝑘

𝑝
) · (

1

𝑏𝑘+1) = [
𝑡

𝑏𝑘−1 ∙ µ · (
1

𝑏𝑘+1)] ()

The remainder is obtained as:

 𝑟 = (𝑡 − 𝑞 · 𝑝)𝑚𝑜𝑑 𝑏𝑘+1 ()

The Montgomery multiplication is executed using ₚ elements

in the Montgomery representation which requires the modular

reduction. Cryptographic implementations require at least 112

bits of security level, though a 128-bit security level is

preferred. This leads to use prime numbers that are larger than

256 bits. The Barret, and Montgomery algorithms employ the

modular reduction. The Montgomery multiplier is one of the

most efficient methods for large number multiplication as it

reduces the number of calculations [5].

The Montgomery product is defined by the equation (7), which

can be used to compute the field multiplication equation (8).

 𝑀𝑜𝑛𝑡𝑃𝑟(ã, ƀ) = ã · ƀ · 𝑟−1 𝑚𝑜𝑑 𝑝 ()

 𝑐 = 𝑎 ∙ 𝑏 𝑚𝑜𝑑 𝑝 ()

III. METHODOLOGY

In this work, every implemented module was tested separately,

and the result was compared with a Python implementation.

After verifying that the independent modules worked

accordingly, they were placed together inside the main code and

tested as a whole. The code execution time was measured using

the Debug Watch and Trace module included in the Cortex-M

ARM processor. The original programming was performed in

a C X86_64 architecture Linux compiler, then it was converted

to the embedded software board and finally downloaded to the

NXP FRDM-K64 board. Considering the prime number in the

Montgomery multiplication is 256-bit size, groups of four

arrays unsigned integer 64-bits were employed. For the adder

section from “Fig. 2”, both 𝑡 and 𝑢0 inputs are compared with

the maximum possible array input value

0XFFFFFFFFFFFFFFFF. If either input has the maximum

value, a carry is generated and this carry is added to the result

from adding 𝑡 + 𝑢0.

Fig. 2. 256-bits adder. If any input has the maximum value, a carry is generated.

The subtractor implementation stated in the “Fig. 3” performs

a comparison if the second operator is higher than the first

operator, the carry represented as 0xFFFFFFFFFFFFFFFF is

added to the adjacent more significant array number value.

Fig. 3. Subtraction 256-bits. If the second term is larger than the first term, a
carry is generated.

The one-digit multiplication code defined in “Fig. 4” is used in

the multiplication code, as the School Book Method states. A

carry that initializes with cero is added to this partial

multiplication in the variable 𝑥. The variable 𝑁 is equal to 16

due every array size is equal to 4, for this reason the

multiplication product doubles to 𝑁2 . Where 𝑁 = 16 for the

leftShifting and Addition codes described below. The variable

𝑡𝑒𝑚𝑝 is equal to 𝑥 AND 0XFFFFFFFF. This takes the 64-bits

lowest part half for the 𝑡𝑒𝑚𝑝 variable. The carry is 32-bits

shifted right. If carry is different to zero, the 𝑡𝑒𝑚𝑝 highest

significant bit becomes equal to carry.

Fig. 4. Onedigitmultiplication represents the operation of the multiplication

between the two terms digit by digit.

In the leftShifting code from the “Fig. 5”, the multiplication

intermediate results are left shifted as part of the School Book

Method multiplication process. The numbers are shifted to

represent the units, the tens, and so on.

Fig. 5. The purpose of the LeftShifting multiplication algorithm is to shift the

partial result for place it, according to units, tens, or hundreds.

In the addition code declared in “Fig. 6”, 𝑠𝑢𝑚 is equal to the

partial result addition plus the generated carry. If sum is higher

than the maximum number an overflow is generated.

Fig. 6. The Addition 256-bits adds the multiplication partial results to obtain

the final product.

“Fig. 7” refers to the 256-bits multiplier code, where every

input array goes thru the previously codes 3,4, and 5

(onedigitmultiplication, leftShifting and addition).

Fig. 7. Multiplier 256-bits. This part of code calls the previous functions that

are needed by the entire multiplication process.

The Barret reduction code from “Fig. 8” employs the positive

integers inputs: 𝑡,𝑝 and 𝑏. Where 𝑡 ≈ 2|𝑝| , µ is calculated by

(2), and 𝑏 is selected as a power of two. [5]. Then formulas (4)

and (5) are computed. While the Barret result is higher or equal

to the prime number array, the result is then equal to this

computed result minus the prime number 𝑝. For this study, the

prime number 𝑝 , the 𝑡 value, and 𝑏 values were defined as

shown in the Fig. 8 code.

Fig. 8. This code represents the execution of the Barret Reduction algorithm.

“Fig. 9” [5] page 5-8, shows the pseudocode to compute the

Montgomey domain result. In step 1 where 𝑡 = ã ∙ ƀ , ƀ =
𝐷 𝑚𝑜𝑑 𝑝, and 𝐷 = 𝐵 ∙ 𝑟𝑟. Also, ã = C mod p, and 𝐶 = 𝐴 ∙
𝑟𝑟. To avoid an expensive operation, the precomputation of p

between rr was done. Since this algorithm works only in the

Montgomery space, a transformation of the numbers into that

space is needed before the multiplication process begins.

Fig. 9. The application of the Montgomery code obtains the Montgomery
domain result.

IV. RESULTS

“Fig. 10” represents the adding operation with maximum input

values.

Fig. 10. 256-b Adder test in C compiler.

“Fig.11” displays the adder operation in Python.

Fig. 11. Adder tested in Python.

“Fig. 12” shows the adder result in the FRDM-K64F board with

an execution time of 512 CPU clock cycles.

Fig. 12. Adder computation result on embedded board.

“Fig. 13” displays the subtraction operation result in C

compiler.

Fig. 13. Subtractor computation in C compiler.

“Fig. 14” shows the subtractor operation in Python.

Fig. 14. Subtractor test in Python.

“Fig. 15” represents the subtraction result in the FRDM-K64F

board, with an execution time of 127 clock cycles.

Fig. 15. Subtractor in embedded board.

“Fig. 16” shows the multiplication operation in C compiler.

Fig. 16. Multiplication test in C compiler.

“Fig. 17”, corresponds to the multiplication operation in

Python.

Fig. 17. Multiplication test in Python.

“Fig. 18” represents the Montgomery result on the FRDM-

K64F board. The program contains the previous presented

modules: adder, subtraction, and Barret.

Fig. 18 Montgomery result in the embedded board.

V. CONCLUSIONS

In this work, the 256-bits Montgomery algorithm was

implemented on the NXP FRDM-K64F board using the NXP

software MCUXpresso IDE v11.3.0. For this purpose, the 256-

bits arithmetic functions were executed in a C compiler: adder,

subtract, multiplication and Barret reduction. Since the C

compiler does not include the libraries for larger numbers that

64 bits, the input number was split in arrays, without the need

of using external libraries. For the 256-bits adder

implementation, a comparation to check if the inputs had the

maximum value number was performed, thus a carry was

assigned to the operation. Montgomery devices offers a

competent performance when used in complex cryptography

for Internet of Things systems and can be implemented in

present-day cryptography. As a further work we would like to

test this Montgomery algorithm in the SIKE algorithm.

REFERENCES

[1] D. Jao, "Supersingular Isogeny Key Encapsulation", Sike.org, 2021.

[Online]. Available: https://sike.org/files/SIDH-spec.pdf. [Accessed: 08-
Jul- 2021].

[2] W. Diffie and M. Hellman, "New directions in cryptography," in IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644-654,
November 1976, doi: 10.1109/TIT.1976.1055638.

[3] K. Ruohonen “Mathematical Cryptology”, September 2014

[4] D. B. Roy, T. Fritzmann and G. Sigl, "Efficient Hardware/Software Co-
Design for Post-Quantum Crypto Algorithm SIKE on ARM and RISC-V
based Microcontrollers," 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2020, pp. 1-9

[5] Marc Joye., Nadia El Mrabet. and El Mrabet., Guide to Pairing-Based
Cryptography.

[6] L. Washington, Elliptic curves. Boca Raton: Chapman and Hall/CRC,
2008.

[7] S. Nagaich and Y. C. Goswami, "Shor's Algorithm for Quantum Numbers
Using MATLAB Simulator," 2015 Fifth International Conference on
Advanced Computing & Communication Technologies, 2015, pp. 165-
168, doi: 10.1109/ACCT.2015.16.

[8] M. Mihailescu and S. Nita, Pro Cryptography and Cryptanalysis.

[9] "FRDM-K64F Platform|Freedom Development Board|Kinetis MCUs |
NXP Semiconductors", Nxp.com, 2021. [Online]. Available:
https://www.nxp.com/design/development-boards/freedom-
development-boards/mcu-boards/freedom-development-platform-for-
kinetis-k64-k63-and-k24-mcus:FRDM-K64F. [Accessed: 14- Jul- 2021].

[10] M. Scott, On the Deployment of curve based cryptography for the Internet
of Things. 2020.

