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Introduction

Nanostructured sensors are a promising high-sensitive alternative for H2O2detection [2, 1]. However, nanostructuring increases the number of variablesinfluencing the sensor’s behavior, which raises the problem of choosing thebest combination of variables and their levels to increase the sensor’s sensi-tivity.The Response Surface Methodology (RSM) is a principled approach that hasproved to be efficient in terms of the necessary steps to find the best subset ofvariable levels while considering possible interaction between factor levels.Here we applied the RSM to optimize a Nickel (Ni) sensor response to H2O2 ,fabricated using electrodeposition in nanoporous membranes of Polycarbon-ate (PCTE). As design variables, we used the length of the nanowire, themeasuring potential, and H2O2 concentrations.Our self-supported nanowire array sensor achieved better results comparedto a planar and other nanostructured sensors.
RSM

The RSM is a process (Fig. 1b). The first step in this process is to start witha simple design, like a 2k augmented with nc center points (Fig. 1a illustratethe a 22), to fit a first order model (FOM) of the form y = β0 + ∑k
i βixi + ε,for k factors, and normally-distributed error ε. The x ∈ [−1, 1] are coded

variables centered at 0.The next step is to move in the direction of improvement by using the partialregression coefficients βi. New values of xk factors are found with the relation∆xi = βi
βj∆xj , by choosing as βj the largest effect [4].When quadratic effects are detected (e.g., with a lack-of-fit and a curvaturetest), the 2k design is augmented with 2 axial points by factor choosing levelsat α distance of the center. The new design is now called CircumscribedCentral Composite (CCC) design [4]. This design is suitable to fit a second-order model (SOM).
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Fig. 1: RSM process
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With a SOM we can approximate concave functions to surfaces and optimizefor factor levels at which the system response is maximum (Fig. 1b).
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Method

We started with a 23 design (Fig. 1b),with H2O2 concentrations of 1.27 and3.81 mM (low and high), lengths of 1.3and 3 µm, and potential of -0.05 and0.05 V. Four center points runs wereadded with 2.54 mM, 2.15 µm and 0V. For the CCC design, que added ax-ial points at α = √3 = ±1.73. Innatural variables, for length 0.68 and3.62 µm; H2O2 concentration of 0.34and 4.74 mM, and for potential -0.0867and 0.0867 V.
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Fig. 2: Electrode fabrication and experimental setup
The desired nanowire length was achieved by monitoring the time of electrodepositionof Ni ions using PCTE restrictive nanoporous membranes with a pore size of 0.1 µmand 0.6 µ thickness. Lengths were measured using scanning electron microscope (SEM;see Figure 2 a-c).Sensor responses were measured using Cyclic voltammetry (CV) with a scan rate of100 mVps, with a range of -0.6, 0.6 V.

Results

2k and FOM. All the coefficients were non-significant in the FOM, but the lack-of-fit(F (5, 3) = 18.27, p < 0.05) and curvature (F (1, 3) = 66.71, p < 0.01) both weresignificant, suggesting quadratic effects (see Fig. 3).

Fig. 3: Quadratic response. The line shows a fitted LOESS.

Estimate t(14)Main β1 0.22 0.50effects β2 0.83 1.92
β3 2.10 6.60*Interaction β12 1.36 2.38*terms β13 1.32 2.31*
β23 -0.70 -1.23Quadratic β11 -1.24 -3.15*terms β22 -1.23 -3.11*
β33 -3.61 -10.29*Tab. 1: Statistics of the second-order model.*: p < 0.05

CCC and SOM. The main effects Length and H2O2 Concentration were non-significant,Potential was significant. The interactions Length × Concentration and Length ×Potential also were non-significant, but Concentration×Potential was significant. Allthe quadratic terms were significant.Linear effects were jointly significant (F (3, 16) = 15.83, p < 0.001), two-way interac-tions (F (3, 16) = 4.16, p < 0.05 and quadratic effecs (F (3, 16) = 35.31, p < 0.001).Overall, the model was significant (F (10, 16) = 17.87, p < 0.001). Contour and per-spective plots (Fig. 4) suggest we achieved the region of the optimal response near thestationary point, which was 2.64 µm length, 3.25 mM of H2O2 and 0.02 V. Canonicalanalysis confirmed that the stationary point was indeed a maximum.
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Fig.4. Contour and perspectiveplots of the fitted second-ordermodel.

Characterization of the optimal design. We electrodeposited Ni between2.6 and 3.5 min, and selected the sensor by computing the 95% CI of thenanowires in SEM images. We used a sensor with 2.6 µm (see Fig. 5), witha 95% CI of [2.48, 2.76]. The sensor response was measured width CV usingH2O2 concentration of 0, 0.5, 1, 1.5, 2.54, 3.25 and 6.5 mM.

Fig. 5: SEM image of the sensor with the optimal length.
We analized the CV data as in [2, 3], interpolating the sensor responseat different potentials, and then applying linear regression relating the re-sponse with concentrations, as Responsei = αi + βi ×H2O2 mM.Fig. 6a shows the results of this analysis. We computed the V ∗ at which
β, the sensor sensitivity, was maximized. The response is almost linear forfive concentrations (at 3.25 mM; see Fig. 6b).
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Fig. 6: Sensitivity β and linear regression at V ∗. Inset in a: CV data.
The sensitivity, LOD and LOQ were, respectively, 3.55 mA/mMcm2, 0.78 mMand 2.6 mM. We also measured a two more sensors for comparison: with0µm, 0.1 mA/mMcm2, 0.95 mM and 3.17 mM; with 0.68 µm, 1.55 mA/mMcm2,0.81 mM and 2.71 mM.

Conclusions

We achieved an optimal sensor design with 2.62 µm, and best-measuringconditions at 3.25 mM H2O2 and 0.02 V. This sensor improved the sensitivitywith respect to a planar Ni sensor by a factor of 35.5, and with respect toa 0.62 µm by a factor of 3.3. The LOD and LOQ of this sensor are lowerthan those of the planar and 0.68 µm sensor, meaning that our optimalsensor can detect lower concentrations of H2O2 with higher reliability. Ourresults showed that RSM is a suitable and efficient approach for sensoroptimization.
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