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On the Security of Embedded Systems Against Side-channel Attacks

Alberto Arjona Cabrera

Abstract
Side-Channel Analysis (SCA) represents a serious threat to the security of millions of smart devices

that form part of the so-called Internet of Things (IoT). On the other hand, perform the "right- fitting"
cryptographic code for the IoT is a highly challenging task due to the reduced resource constraints of must of
the IoT devices and the variety of cryptographic algorithms on disposal. An important criterion to assess the
suitability of a light-weight cipher implementation, with respect to the SCA point of view, is the amount of
energy leakage available to an adversary.

In this thesis, the efficiency of a selected function that is commonly used in AES implementations in the
perspective of Correlation Power Analysis (CPA) attacks are analyzed, leading to focus on the very common
situation where the exact time of the sensitive processing is drowned in a large number of leakage points.

In the particular case of statistical attacks, much of the existing literature essentially develop the theory
under the assumption that the exact sensitive time is known and cannot be directly applied when the latter
assumption is relaxed, being such a particular aspect for the simple Differential Power Analysis (DPA) in
contrast with the CPA.

To deal with this issue, an improvement that makes the statistical attack a real alternative compared with
the simple DPA has been proposed. For the power consumption model (Hamming Weight model), and by
rewriting the simple DPA attacks in terms of correlation coefficients between Boolean functions. Exhibiting
properties of S-boxes relied on CPA attacks and showing that these properties are opposite to the non-linearity
criterion and to the propagation criterion assumed for the former DPA.

In order to achieve this goal, the study has been illustrated by various attack experiments performed on
several copies implementations of the light-weight AES chipper in a well-known micro-controller educative
platform within an 8-bit processor architecture deployed on a 350 nanometers CMOS technology.

The Side-channel attacks presented in this work have been set in ideal conditions to capture the full
complexity of an attack performed in real-world conditions, showing that certain implementation aspects can
influence the leakage levels. On the other side, practical improvements are proposed for specific contexts
by exploring the relationship between the non-linearity of the studied selection function and the measured
leakages, with the only pretension to bridge the gap between the theory and the practice. The results
point to new enlightenment on the resilience of basic operations executed by common light-weight ciphers
implementations against CPA attacks.





Contents

Page
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Power Analysis and Algorithmic Security . . . . . . . 16

1.2 Why do those attacks exist? . . . . . . . . . . . . . . . 16

2 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Modeling Power Consumption . . . . . . . . . . . . . 23

3.3 The Hamming Distance Consumption Model . . . . . 23

3.4 Pearson’s Correlation Coefficient . . . . . . . . . . . . 24

3.5 The Linear Correlation Factor . . . . . . . . . . . . . . 25

3.6 Secret Inference Based on Correlation Power Analysis 25

3.7 The Estimation . . . . . . . . . . . . . . . . . . . . . . . 26

4 Hypothesis Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Comparison of Different Selection Functions . . . . . 29

4.2 Correlation Power Analysis (CPA) Evaluation . . . . . 31

4.2.1 Attack Description . . . . . . . . . . . . . . . 31

4.2.2 CPA Pseudo-code and Algorithm Description 32

4.2.3 CPA Efficiency . . . . . . . . . . . . . . . . . . 33

4.2.4 Detailed Complexities of the CPA attack . . . 33

4.3 Linear Regression Analysis (LRA) Evaluation . . . . . 33

4.3.1 Attack Description . . . . . . . . . . . . . . . 33

4.3.2 LRA Efficiency . . . . . . . . . . . . . . . . . . 34

4.3.3 LRA Pseudo-code . . . . . . . . . . . . . . . . 36

4.3.4 Detailed Complexities of the LRA attack . . . 37

4.4 Comparison with Simple DPA . . . . . . . . . . . . . . 37

5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Experimental Setup and Results . . . . . . . . . . . . . 39

5.2 Correlational Power Analysis - Key Recovery . . . . . 39

5.2.1 Schedule . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Methods . . . . . . . . . . . . . . . . . . . . . 40

5.2.3 AES Weakness . . . . . . . . . . . . . . . . . . 40

5.2.4 Correlation for Attack Performing . . . . . . 43

5.2.5 Picking a Subkey . . . . . . . . . . . . . . . . 43

5.3 Laboratory Results . . . . . . . . . . . . . . . . . . . . 44



8

5.3.1 Real World Implementation . . . . . . . . . . 44

5.3.2 Breaking AES using CPA . . . . . . . . . . . . 46

6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



List of Figures

Page

5.1 Block Diagram illustrating steps 3 to 5 of the CPA attack.
It also outlines the architecture of a framework that could
be carried out to classify various estimators (pink hexagon). 41

5.2 Block diagram for the AES algorithm, for a general
overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 A small loop antenna can be used to pick up
electromagnetic (EM) signals. . . . . . . . . . . . . . . . . 44

5.4 Spectrogram captured at 3.5MHz. A repeating pattern
occurs that is caused by the individual rounds of the AES
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Demodulated time series signal. There are some good
signals around the clock frequency of 16 MHz (141 MHz
in the graph). The second harmonics are also very strong
(157 MHz in the graph) . . . . . . . . . . . . . . . . . . . 45

5.6 Resulting signal, by selecting a carrier close to the clock
frequency at 16.253 MHz, and with a 233 kHz bandwidth
low pass filter. The signal has a lot of high-frequency
components, it is actually caused by the CPU and could
contain side-channel information. . . . . . . . . . . . . . 45

5.7 Correlation for the correct subkey of the first S-Box
(black) and the mean trace (gray) after 6022 traces. The
spike (high correlation) at the beginning of the AES
routine is caused by the XOR operation with the S-Box
output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 Graphic comparing the maximum correlation over time
for all possible subkeys, the correct subkey had the
highest correlation after 1500 traces. . . . . . . . . . . . . 47





List of Tables

Page

4.1 Leakages of different selection functions (n and m are
the input and output size of the selection function in bits,
NL is the non-linearity of the selection function, δ̄ is the
mean correlation coefficient difference, and SEδ̄ is the
standard error for a 95% confidence interval). . . . . . . 30

4.2 Detailed Complexities of the CPA attack. Number of
operations with respect to the number of traces N and
the dimension d of the traces. . . . . . . . . . . . . . . . . 33

4.3 Operations complexity of the LRA attack. The number
of operations with respect to the number of traces N, the
dimension d of the traces and the size s of the regression
basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Memory complexity of the LRA attack. The number of
operations with respect to the number of traces N, the
dimension d of the traces and the size s of the regression
basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 List of correlation ratios, using 5000 traces as reference.
The column named SBox K1 shows the set of keybytes
which gave the highest correlation value. The correlation
coefficients for those keys are quite high in comparison
with the next highest correlations . . . . . . . . . . . . . . 48

5.2 List of LRA ratios, using 5000 traces as reference. The
column named SBox K1 shows the set of correct key-
bytes which not always gives the highest LRA values,
leading in false positive detections (ghost peaks). . . . . 49





13

Mad Science. High Voltage

Vacuum Plasma. Dedicated to Purpose

Beyond Reason. Liquid Laser Prototyping.

Inventions Wrapped in Art. Yttrium

Argon Laser Surface Etching Point. Cloud

Mapping, Aimed Directly to The Head,

Pulsating Power In Between the Eyes, You

Decide, With No Remorse, and Absolutely

No Adult Supervision Allowed...

9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091,

1111111111111111111, 11111111111111111111111, 900900900900990990990991, ...



14



1 Introduction

Contents
1.1 Power Analysis and Algorithmic Security . . . 16

1.2 Why do those attacks exist? . . . . . . . . . . . 16

\Side-channel attacks use observations made during the
execution of an implementation of a \cryptographic algorithm to
recover secret information. From the multitude of side-channel attacks,
\correlation power analysis (CPA) stands out as a very efficient and
reliable technique. Its success is augmented by the minimally invasive
methods employed for the acquisition of the side-channel information.
Some of the most frequently used sources of side-channel \leakage are
the \power consumption or the \electromagnetic emissions (EM) of
a device under attack.

Nowadays, the \Advanced Encryption Standard(AES)1 is the most 1 NIST. Advanced Encryption Standard
(AES). Federal Information Processing
Standards Publication (FIPS), 197 edition,
2001

popular \symmetric cryptographic algorithm in use. It is widely
deployed to \secure data in transit or at rest. Various \network

protocols rely on AES in different modes of operation to provide
security services such as confidentiality and authenticity. The usage
spectrum of the AES stretches from powerful servers and personal
computers to resource constrained devices such as wireless sensor
nodes. 2 2 C. O’Flynn and Z. Chen. Power

analysis attacks against IEEE 802.15.4
nodes. Lecture Notes in Computer Science,
volume 9689. Springer, constructive side-
channel analysis and secure design - 7th
international workshop edition, April
2016

The assumption usually done about the attacker has full control of
the \AES input is not the case in a real-world communication protocol3

3 E. Prouff. DPA Attacks and S-boxes. InFast
Software Encryption. Springer, 4th edition,
2005

4, when often a major part of the input is fixed, and only a few

4 R. Verdult L. Batina J. Balasch, B. Gier-
lichs and I. Verbauwhede. Power Analysis
of Atmel CryptoMemory - Recovering Keys
from Secure EEPROMs. Lecture Notes in
Computer Science, volume 7178. Springer,
in o. dunkelman, editor, ct-rsa edition,
2012

bytes are variable. Moreover, sometimes the \attacker cannot control
these variable bytes and it has to passively observe executions of the
\targeted algorithm without being able to trigger encryptions of her
own free will. Part of the present analysis relay on how much control of
the AES input does an attacker need to recover the \secret key of the
cipher by performing a side-channel attack against a communication5

5 J. G. Proakis and D. K. Manolakis.
Digital Signal Processing. Prentice-Hall,
4th edition, May 2006

protocol.
In the present work, the focus is made on \CPA attacks thanks

to their efficiency and reliability. By opting for a non-invasive
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measurement setup and hence selecting the \EM emissions of the target
\processor as a source of side-channel leakage.

1.1 Power Analysis and Algorithmic Security

In \computer security, a side-channel attack is any attack based on
information gained from the implementation of a computer system,
rather than weaknesses in the implemented algorithm itself6. \Timing 6 for example, \crypto-analysis and

software bugsinformation, \power consumption, \electromagnetic leaks or even
sound can provide an extra source of information, which can be
exploited7 8. 7 E. Prouff. DPA Attacks and S-boxes. InFast

Software Encryption. Springer, 4th edition,
2005

8 C. O’Flynn and Z. Chen. Power
analysis attacks against IEEE 802.15.4
nodes. Lecture Notes in Computer Science,
volume 9689. Springer, constructive side-
channel analysis and secure design - 7th
international workshop edition, April
2016

1.2 Why do those attacks exist?

Computer security is a deep layered domain. \Predicting and
\modeling those attacks is very difficult. Each \layer of security

impacts the assumptions made by others. The \software developer

assumes that the hardware designer did his job well. As a result,
\security faults often involve unanticipated interactions between
components. Components which are made by different people.

Power analysis provides a way to "take a look inside" what it is
supposed to be \tamper-proof hardware. For example, \Advanced

Encryption Standard (AES) key schedule involves rotating 128-bit key
\registers 9. The \device where the implementation runs, typically 9 NIST. Advanced Encryption Standard

(AES). Federal Information Processing
Standards Publication (FIPS), 197 edition,
2001

shifts the register in order to handle \high order multiplications,
but other \processor demanding operations are executed too. The
\power analysis can distinguish between these events, enabling an
adversary to determine the bits of the \secret key.

Implementations of algorithms such as AES and \Triple Data

Encryption Standard (DES) that are believed to be mathematically
10 may be trivially breakable using power analysis attacks. As 10 J. Daemen and V. Rijmen. The design

of Rijndael: AES the Advanced Encryption
Standard. Springer-verlag edition, 2002

a result, power analysis attacks combine elements of algorithmic
\crypto-analysis and implementation security in \microelectronic

devices.
The equipment necessary for performing \power analysis attacks

is widely available. For example, most digital storage \oscilloscopes

provide the necessary \data collection functionality, and the \data

analysis is typically performed using conventional PCs. Products
designed for \lab testing purposes, equipped with high-resolution
and high-speed \digital analog converters (DAC´s), are also
available in the commercial market.

Specifically, the \correlation power analysis (CPA) is an \attack

that allows to find a \secret encryption key that is stored on a
\victim device 11. 11 R. Verdult L. Batina J. Balasch, B. Gier-

lichs and I. Verbauwhede. Power Analysis
of Atmel CryptoMemory - Recovering Keys
from Secure EEPROMs. Lecture Notes in
Computer Science, volume 7178. Springer,
in o. dunkelman, editor, ct-rsa edition,
2012
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There are four steps to a CPA attack:

1. Write down a model for the victim’s \power consumption. This
model will look at one specific point in the \encryption algorithm.
That is, after step 2 of the \encryption process 12, the intermediate 12 For a better vision, take a look in the

figure 5.2result is x, so the power consumption is f (x).

2. Get the victim to encrypt several different plain-texts. Record
a trace of the victim’s \power consumption during each of these
encryptions.

3. Attack small parts (subkeys)13 of the secret key14: 13 R. Verdult L. Batina J. Balasch, B. Gier-
lichs and I. Verbauwhede. Power Analysis
of Atmel CryptoMemory - Recovering Keys
from Secure EEPROMs. Lecture Notes in
Computer Science, volume 7178. Springer,
in o. dunkelman, editor, ct-rsa edition,
2012

14 For a better vision, take a look in the
figure 5.1

• Consider every possible option for the \subkey. For each guess
and each \trace, use the known \plain-text and the guessed
subkey to calculate the power consumption according to our
model.

• Calculate the \Pearson correlation coefficient between the
modeled and actual power consumption. Do this for every data
point in the traces.

• Decide which subkey guess correlates best to the \measured

traces.

4. Put together the best subkey guesses to obtain the full \secret key.





2 General Objective

Different side-channel estimators may have different efficiencies.
However, their fair comparison is a difficult task since many factors
come into play. Particularly, their intrinsic statistical properties and the
quality of their estimation are significant factors, by performing several
tries concentrated on the evaluation of the efficiency of certain attacks.
First attempts were focused on finding a link between the Signal-to-
noise ratio (SNR) of the power measurements and the effectiveness of
the attack, by presenting a statistical model for CPA and finding in this
way an approximation of the success rate.

While these preliminaries are only focused on the correct key
guess1, a new approach is proposed, determining the exact success 1 Finding the secret key, being such the

principal goal of the performed attack, by
exploiting the public knowledge of the
encryption algorithms.

rate of CPA in assuming a uniform setting in terms of the leakage
model, particularly providing an estimation of the success rate
depending on the relationship between the correct and incorrect key
hypothesis2, the number of measurements and the SNR. Providing also, 2 Confusion Rate

a methodology to evaluate side-channel estimators giving the example
of the application with DPA. The approach consists of estimating
the success rate of DPA due to the characterization of the physical
implementation as well as the cryptographic algorithm. Finally, come
up with the generalized estimation results of the former idea, which
has been restricted to the application of one-bit DPA, to any additive
estimators and show a feasible application to CPA.

In addition to the above, it is formulated a framework that can be
carried out to classify various estimators, which could, perhaps, close
the gap between purely practical and purely theoretical evaluations
and to gain awareness in the current hardware weakness to serve in the
sake of cybersecurity improvement.





3 Theoretical Framework

Contents
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Analysis . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 The Estimation . . . . . . . . . . . . . . . . . . . 26

When \statistical power analysis is used against \cryptographic
devices, the principal trends considered are \differential power

analysis (DPA), \linear regression \power analysis (LRPA) and
\correlation power analysis (CPA).

A classical model is used for the \power consumption of
\cryptographic devices 1 2. It is based on the \Hamming distance 1 R. Verdult L. Batina J. Balasch, B. Gier-

lichs and I. Verbauwhede. Power Analysis
of Atmel CryptoMemory - Recovering Keys
from Secure EEPROMs. Lecture Notes in
Computer Science, volume 7178. Springer,
in o. dunkelman, editor, ct-rsa edition,
2012

2 C. O’Flynn and Z. Chen. Power
analysis attacks against IEEE 802.15.4
nodes. Lecture Notes in Computer Science,
volume 9689. Springer, constructive side-
channel analysis and secure design - 7th
international workshop edition, April
2016

of the data handled with regard to an unknown but constant reference
state. Once validated experimentally, it allows an \optimal attack

to be derived that is called correlation power analysis(CPA). CPA has
been proposed to use the \correlation factor between the \power

samples and the \Hamming weight of the handled data. In this section
are also explained the defects of former approaches such as differential
power analysis.

3.1 Notations

• \Random variables are denoted by large letters X, Y, Z.

• A realization of a random variable, said X, is denoted by the
corresponding lowercase letter, said x.

• A sample of several \observations of X is denoted by (xi)i. It will
sometimes be viewed as a vector defined over the definition set of X.

• The notation (xi)i ← X denotes the instantiating of the set of
observations (xi)i from X.



22

• The \mean of X is denoted E[X], its \standard deviation by σ[X]

and its \variance by var[X]. The latter equals E
[
(X−E[X])2].

• The \co-variance of two random variables X and Y is denoted by
cov(X, Y) and satisfies cov(X, Y) = E[(X−E[X])(Y−E[Y])].

• When needed to specify the variable on which \statistics are
computed, the variable will be wrote in subscript (for example
EX [Y] instead of E[Y] ).

• The notation ~X will be used to denote column vectors and ~X[u] will
denote its uth coordinate.

• Calligraphic letters will be used to denote a matrix.

• The elements of a matrixM will be denoted byM[i][j].

• Classical additions and multiplications (over real values, vectors or
matrices) are denoted by + and × respectively.

• Scalar-vector operations are denoted by · and / (all the coordinates
of the vector are multiplied, and respectively divided, by the scalar).

• When applied to vectors or matrices, the symbols (.)2 and √. denote
the operation consisting in computing the square and the square
root of all the vector/matrix coordinates, respectively.

• A function from Fn
2 to Fm

2 will be called a (n, m)-function3. 3 F2 represents the Galois field of two
elements.
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3.2 Modeling Power Consumption

\Electronic computers (micro-controllers, FPGA’s, GPU’s, DSP’s,
among others) have two components to their power consumption.
First, static power consumption which is the power required to keep
the device running 4. This \static power depends on things like 4 R. Verdult L. Batina J. Balasch, B. Gier-

lichs and I. Verbauwhede. Power Analysis
of Atmel CryptoMemory - Recovering Keys
from Secure EEPROMs. Lecture Notes in
Computer Science, volume 7178. Springer,
in o. dunkelman, editor, ct-rsa edition,
2012

the number of transistors inside the device. Secondly, and more
importantly, dynamic power consumption, it depends on the data
moving around inside the device. Every time a bit is changed from a 0

to a 1 (or vice versa), some current is required to charge and discharge
the data lines. The \dynamic power is the part to get interested in,
because it can tell what’s happening inside.

One of the simplest models for power consumption is the \Hamming

distance 5. The Hamming Distance between two binary numbers is 5 C. O’Flynn and Z. Chen. Power
analysis attacks against IEEE 802.15.4
nodes. Lecture Notes in Computer Science,
volume 9689. Springer, constructive side-
channel analysis and secure design - 7th
international workshop edition, April
2016

the number of different bits in the numbers.
Then Hamming Distance model in CPA attacks could be used.

Finding a point in the \encryption algorithm where the victim
changes a variable from x to y, then it could be estimated that the
\power consumption is proportional to \Hamming distance.

3.3 The Hamming Distance Consumption Model

In a m-bit microprocessor, binary data is codedD = ∑m−1
j=0 dj2j, with

the bit values dj = 0 or 1. Its \Hamming weight is simply the number
of bits set to 1, H(D) = ∑m−1

j=0 dj . Its integer values stand between 0
and m. If D contains m independent and uniformly distributed \bits,
the whole word has an average Hamming weight µH = m/2 and a
variance σ2

H = m/4.
It is generally assumed that the data \leakage through the power

side-channel depends on the number of bits switching from one state
to the other at a given time. A \microprocessor is modeled as a
\state-machine where transitions from state to state are triggered by
events such as the edges of a \clock signal. This seems relevant
when looking at a logical \elementary gate as implemented in \CMOS

technology. The current consumed is related to the \energy required
to flip the bits from one state to the next. It is composed of two main
contributions: the capacitor’s charge and the short circuit induced by
the gate transition. 6 6 Curiously, this elementary behavior

is commonly admitted but has never
given rise to any satisfactory model
that is widely applicable. Only
hardware designers are familiar with
simulation tools to \forensic the current
consumption of microelectronic devices.

By adopting the \transition model, basic questions arises; what is
the reference state from which the bits suppose to switch? Does this
reference is variable depending on different \hardware architectures?
Assuming here that this reference state is a \constant machine word,
R, which is unknown, but not necessarily zero. It will always be the
same if the same \data manipulation always occurs at the same time,
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although this assumes the absence of any \desynchronizing effect.
Moreover, it is assumed that switching a bit from 0 to 1 or from 1 to
0 requires the same amount of energy and that all the machine bits
handled at a given time are perfectly balanced and consume the same.

These restrictive assumptions are quite realistic and affordable
without any thorough knowledge of \microelectronic devices. They
lead to a convenient expression for the \leakage model. Indeed the
number of \flipping bits to go from R to D is described by H(D⊕ R)
also called the \Hamming distance between D and R. This statement
encloses the \Hamming weight model which assumes that R = 0. If D
is a uniform random variable, so is D⊕ R, and H(D⊕ R) has the same
mean m/2 and variance m/4 as H(D)

Assuming that we have a \linear relationship between the
\current consumption and H(D⊕ R), which could be interpreted as
a tacit limitation but considering a chip as a large set of elementary
\electrical components, this linear model fits reality quite well. It
does not represent the entire consumption of a \chip but only the
data dependent part. This does not seem unrealistic because the
bus lines are usually considered as the most consuming elements
within a \micro-controller. All the remaining things in the \power

consumption of a chip are assigned to a term denoted b which is
assumed independent 7 from the other variables: b encloses offsets, 7 Cheng Soon Ong Marc Peter Deisenroth,

A. Aldo Faisal. Mathematics for Machine
Learning. Cambridge University Press, 1st
edition, April 2020. ISBN 978-1108455145

time dependent components and noise. Therefore the basic model for
the data dependency can be written as equation 3.1 shows:

W = aH(D⊕ R) + b (3.1)

where a is a scalar gain between the Hamming distance and W the
power consumed.

3.4 Pearson’s Correlation Coefficient

Once a way to model the \power consumption is on disposal, it is
needed a way to compare the \power estimation to the measured
traces. A helpful tool for finding this relationship is through \Pearson

correlation coefficient 8, which is shown in equation 3.2 as follows: 8 Kjell Johnson Max Kuhn. Applied
Predictive Modeling. Springer, 1st edition,
2013. ISBN 978-1461468486

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]√
E[(X− µX)2]E[(Y− µY)2]

(3.2)

This \correlation coefficient will always be in the range [-1, 1].
It describes how closely the random variables X and Y are related 9: 9 Christopher M. Bishop. Pattern Recog-

nition and Machine Learning. Springer,
Agosto 2006. ISBN 978-0387310732• If Y always increases when X increases, it will be 1;

• If Y always decreases when X increases, it will be -1;
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• If Y is totally independent of X, it will be 0.

These equations are referred as \normalized cross-correlation 10. 10 Cheng Soon Ong Marc Peter Deisen-
roth, A. Aldo Faisal. Mathematics for Ma-
chine Learning. Cambridge University
Press, 1st edition, April 2020. ISBN 978-
1108455145

There are typically used to pick out patterns in noisy signals. For
example, in \digital imaging, correlation can be used to find where
an object is in a room. In the side-channel attack, algorithm will
be looking for a pre-calculated \power consumption pattern, in the
\noisy measured \power traces signals.

3.5 The Linear Correlation Factor

A linear model implies some relationships between the variances of
the different terms considered as random variables: σ2

W = a2σ2
H + σ2

b .
Classical statistics introduce the correlation factor ρWH between the
\Hamming distance and the measured power to assess the \linear

model fitting rate. It is the \co-variance between both random variables
normalized by the product of their standard deviations. Under the
\uncorrelated noise assumption, this definition leads to equation 3.3

ρWH =
cov(W, H)

σWσH
=

aσH
σW

=
aσH√

a2σ2
H + σ2

b

=
a
√

m√
ma2 + 4σ2

b

(3.3)

This equation complies with the well known property: −1 ≤ ρwH ≤
+1 : 11 for a perfect model the \correlation factor tends to ±1 if the 11 Kjell Johnson Max Kuhn. Applied

Predictive Modeling. Springer, 1st edition,
2013. ISBN 978-1461468486

\variance of noise tends to 0, the sign depending on the sign of the
linear gain a. If the model applies only to l independent bits amongst
m, a \partial correlation still exist as shown in the to equation 3.4.

ρWHl/m =
a
√

l√
ma2 + 4σ2

b

= ρWH

√
l
m

(3.4)

3.6 Secret Inference Based on Correlation Power Analysis

The relationships written above show that if the model is valid the
correlation factor is maximized when the \noise variance is minimum.
This means that ρWH can help to determine the reference state R.
Assume, just like in DPA, that a set of known but randomly varying
data D and a set of related \power consumption W are available. If the
2m possible values of R are scanned exhaustively they can be ranked
by the \correlation factor they produce when combined with the
observation W. This is not that expensive when considering an 8-bit
micro-controller, the case with many of today’s smart cards 12 (jut for 12 R. Verdult L. Batina J. Balasch, B. Gier-

lichs and I. Verbauwhede. Power Analysis
of Atmel CryptoMemory - Recovering Keys
from Secure EEPROMs. Lecture Notes in
Computer Science, volume 7178. Springer,
in o. dunkelman, editor, ct-rsa edition,
2012

example), as only 256 values are to be tested13.

13 On 32 -bit architectures this exhaustive
search cannot be applied as such.
But it is still possible to work with
partial correlation or to introduce prior
knowledge.
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Let R be the true reference and H = H(D⊕ R) the right prediction
on the \Hamming distance. Let R′ represent a candidate value and
H′ the related model H′ = H (D⊕ R′) . Assume a value of R′ that
has k bits that differ from those of R, then: H (R⊕ R′) = k. since b
is independent from other variables, the \correlation test leads to
equation 3.5:

ρWH′ =
cov (aH + b, H′)

σWσ′H
=

a
σW

cov (H, H′)
σ′H

=

= ρWHρHH′ = ρWH
m− 2k

m
(3.5)

This formula shows how the \correlation factor is capable of
rejecting wrong candidates for R. For instance, if a single bit is wrong
amongst an 8-bit word, the correlation is reduced by 1/4. If all the bits
are wrong, this is R′ = ¬R, then an anti-correlation should be observed
with ρWH′ = −ρWH . In absolute value or if the linear gain is assumed
positive ( a > 0 ), there cannot be any R′ leading to a higher correlation
rate than R. This proves the uniqueness of the solution and therefore
how the reference state can be determined.

This analysis can be performed on the \power trace assigned to a
piece of \code while manipulating known and varying \data. If we
assume that the handled data is the result of a \XOR operation between
a \secret key word K and a known message word M, D = K ⊕ M,
the procedure described above, that is an \exhaustive search on R
and correlation test, should lead to K⊕ R associated with max (ρWH).
Indeed if a \correlation occurs when M is handled with respect
to R1, another has to occur later on, when M ⊕ K is manipulated
in turn, possibly with a different reference state R2 (in fact with
K ⊕ R2 since only M is known). For instance, when considering the
first \AddRoundKey function at the beginning of the \AES algorithm
\embedded on an 8-bit processor, it is obvious that such a method leads
to the whole \key masked by the constant reference byte R2. If R2 is
the same for all the \key bytes, which is highly plausible, only 28

possibilities remain to be tested by exhaustive search to infer the entire
key material. This complementary brute force may be avoided if R2 is
determined by other means or known to be always equal to 0 14. 15 14 E. Prouff. DPA Attacks and S-boxes.

InFast Software Encryption. Springer, 4th
edition, 2005

15 Valid just, for certain low EMI chips3.7 The Estimation

In a \real case with a set of N \power curves Wi and N associated
\random data words Mi, for a given reference state R the known
\data words produce a set of N predicted Hamming distances Hi,R =

H (Mi ⊕ R) . An estimate ρ̂WH of the \correlation factor ρWH is
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given by the equation 3.6:

ρ̂WH(R) =
N ∑ Wi Hi,R −∑ Wi ∑ Hi,R√

N ∑ W2
i − (∑ Wi)

2
√

N ∑ H2
i,R − (∑ Hi,R)

2
(3.6)

where the summations are taken over the N samples (i = 1, N) at
each time step within the power traces Wi(t).

It is theoretically difficult to compute the \variance of the
\estimator 16 ρ̂WH with respect to the number of available samples N. 16 Cheng Soon Ong Marc Peter Deisen-

roth, A. Aldo Faisal. Mathematics for Ma-
chine Learning. Cambridge University
Press, 1st edition, April 2020. ISBN 978-
1108455145

In practice a few hundred experiments suffice to provide a workable
estimate of the \correlation factor. N has to be increased with the
\model variance m/4 17 and in presence of measurement noise level 18.

17 Being higher on a 32 -bit architecture
18 Next results will show that this is more
than necessary for conducting reliable
tests

It is shown that this approach can be seen as a \maximum likelihood

model fitting procedure 19 when R is exhausted to maximize ρ̂WH .

19 Kjell Johnson Max Kuhn. Applied
Predictive Modeling. Springer, 1st edition,
2013. ISBN 978-1461468486
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4.1 Comparison of Different Selection Functions

The next notation will be used, unless specified otherwise. The
following operators for the corresponding (\bitwise) logical operations
is used: “." for AND, "+" for OR, " ⊕ " for \XOR. The operators � and
� denote a modular addition and a modular subtraction, respectively.
The two functions MSB(x) and LSB(x) are used to extract the most
and the least significant byte from a \stream of bits x, respectively.
The \S-Box layer of a \block cipher α is represented by Sα, which may
involve the application of one or more S-boxes in parallel, depending
on the input size and the specifications of the cipher. The symbol
L−1

i,Fant stands for the result of the inverse linear layer of Fantomas (Fant)
computed with \L-box i, where i ∈ {0, 1}. Finally, HW(x) denotes the
\Hamming weight of x, whereas HD(x, y) = HW(x⊕ y) is the \Hamming

distance between x and y
The \attack is not restricted to the ⊕ operation only. It also

applies to many other operators often encountered in \secret key

cryptography. For instance, other arithmetic, \logical operations or
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\look-up tables (LUT) can be treated in the same manner by using
H(LUT(M ? K) ⊕ R), where ? represents the involved function i.e.
⊕,+,−, OR, AND, or whatever operation.

Let’s notice that the ambiguity between K and K⊕ R is completely
removed by the \substitution boxes encountered in \secret key

algorithms thanks to the \non-linearity of the corresponding LUT:
this may require to exhaust both K and R, but only once for R in most
cases. To conduct an analysis in the best conditions, emphasizing the
benefit of correctly \modeling the whole \machine word that is actually
handled and its transition with respect to the reference state R which is
to be determined as an unknown of the problem.

Table 4.1 summarizes the non-linearity NL and the mean correlation
coefficient difference δ̄ for a total of 16 different selection functions,
which are divided into four groups.

Selection function n m NL δ̄ SEδ̄

ϕ1(x, k) = x · k = x ∨ k 16 8 16384 -0.005 0.074
ϕ2(x, k) = x + k = x ∧ k 16 8 16384 -0.018 0.060
ϕ3(x, k) = x⊕ k 16 8 0 -0.153 0.168
ϕ4(x, k) = x�k 16 8 0 0.127 0.011
ϕ5(x, k, c) = x� k� c 17 8 0 0.121 0.010
ϕ6(x⊕ k) = SAES(x⊕ k) 8 8 112 0.586 0.008
ϕ7(x⊕ k) = SLBlk (x⊕ k) 4 4 4 0.342 0.008
ϕ8(x⊕ k) = SLBlk (x⊕ k) 8 8 64 0.235 0.006
ϕ9(x⊕ k) = SPicc(x⊕ k) 4 4 4 0.339 0.019
ϕ10(x⊕ k) = SPicc(x⊕ k) 8 8 64 0.259 0.006
ϕ11(x⊕ k) = SPRIN(x⊕ k) 4 4 4 0.269 0.010
ϕ12(x⊕ k) = SPRIN(x⊕ k) 8 8 64 0.138 0.004
ϕ13(x⊕ k) = LSB (L1,Fant(x⊕ k)) 8 8 0 0.087 0.015
ϕ14(x⊕ k) = MSB (L1,Fant(x⊕ k)) 8 8 0 0.041 0.014

ϕ15(x⊕ k) = LSB
(

L−1
2,Fant(x⊕ k)

)
8 8 0 0.136 0.007

ϕ16(x⊕ k) = MSB
(

L−1
2,Fant(x⊕ k)

)
8 8 0 0.083 0.018

Table 4.1: Leakages of different selection
functions (n and m are the input and
output size of the selection function
in bits, NL is the non-linearity of
the selection function, δ̄ is the mean
correlation coefficient difference, and SEδ̄

is the standard error for a 95% confidence
interval).

• δ̄ and SEδ are the mean and the \standard error for a 95%
\confidence interval, respectively.

• Block (Blk)

• Fantomas (Fant)

• Piccolo (Picc)

• PRINCE (PRIN)
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The first group of selection functions comprises the three logical
operations AND, OR, and XOR, which all have a negative value for the
mean correlation coefficient difference δ̄. This means that using one of
these logical operations as a selection function for a CPA attack is not a
very good option. As our results show, only the XOR are sometimes
able to recover the correct key k∗, but not AND and OR, whereby AND
is slightly more efficient than OR and XOR.

One can notice the contrast between the huge \non-linearity of the
AND and OR selection functions on the one side, and all other selection
functions listed in Table 4.1 on the other side. It is also interesting
to note that these high values of non-linearity are accompanied by
(relatively) poor values for the correlation coefficient difference. In the
case of the bit-wise logical operations, it seems the high non-linearity
values do not provide the useful leakage one normally would expect.
This contrasts with the conventional wisdom saying that the higher the
non-linearity of a selection function, the more information it leaks in
the \Side-channel analysis (SCA).

The \XOR function is a convenient chosen function because offer a
god statistical characterization, with zero non-linearity of the selection
function and with the largest value in the mean δ̄ correlation coefficient
difference, and also a largest value in the standard error SEδ̄ for a 95%
confidence interval for , it can be confirmed in table 4.1 where other
common function in addition, are also evaluated in a statistical fashion.

4.2 Correlation Power Analysis (CPA) Evaluation

The idea is to use \Pearson correlation coefficient as a
distinguisher instead of the \difference of means test1. CPA 1 Christopher M. Bishop. Pattern Recog-

nition and Machine Learning. Springer,
Agosto 2006. ISBN 978-0387310732

combined with classical leakage models like the \Hamming weight

and \Hamming distance, is very efficient on a majority of
\hardware architectures. Subsequent works on CPA effectiveness
essentially consisted in applying \signal filtering techniques or
\pre-processing 2 on the \leakage traces 2 J. G. Proakis and D. K. Manolakis.

Digital Signal Processing. Prentice-Hall,
4th edition, May 2006

4.2.1 Attack Description

In a \correlation power analysis attack, the adversary computes,
for each plain-text Xi and each subkey hypothesis k̂, an hypothesis
tuple ẑi such that ẑi = F

(
xi, k̂

)
. Then, a so-called model function

m(·) is chosen from Fm
2 into R and it is applied to each hypothesis

which leads to the construction of a new set of so-called \predictions
3 (hi)i6N ← ~H = m(F(X, k̂)). This latter set of hypothesis is then 3 Christopher M. Bishop. Pattern Recog-

nition and Machine Learning. Springer,
Agosto 2006. ISBN 978-0387310732

compared to the set of leakages
(
~̀ i

)
i6N

← −→
L to assess on the
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likelihood 4 of k̂ as a candidate for one of the subkeys k. The core 4 Cheng Soon Ong Marc Peter Deisenroth,
A. Aldo Faisal. Mathematics for Machine
Learning. Cambridge University Press, 1st
edition, April 2020. ISBN 978-1108455145

principle of a CPA is to make the comparison by estimating the \linear

correlation between ~H and each coordinate of
−→
L independently 5.

5 Kjell Johnson Max Kuhn. Applied
Predictive Modeling. Springer, 1st edition,
2013. ISBN 978-1461468486

Algorithm 1: Algorithm: CPA - Correlation Power Analysis

Input : a set of d -dimensional leakages
(
~̀ i

)
i6N

and the

corresponding plaintexts (xi)i6N , a model function m (·)
Output: A candidate subkey
/* Leakage mean and variance processing */
for i = 0 to N − 1 do

µ−→
L
= µ−→

L
+~̀ i

σ−→L = σ−→L +~̀ 2
i

µ
−→
L = 1/N · µ−→L

var−→
L
= 1/N · σ−→

L
− µ2−→

L
/* Hypothesis mean and variance processing */
for k̂ = 0 to 2n − 1 do

for i = 0 to N − 1 do

z← m
(

F
(

xi, k̂
))

µk̂ = µk̂ + z σk̂ = σk̂ + z2

µk̂ = µk̂/N vark̂ = σk̂/N − µ2
k̂

/* Correlations processing */
for k̂ = 0 to 2n − 1 do

/* Test hypothesis k̂ for all leakage coordinates /* for u = 0
to d− 1 do

/ * Instantaneous attack (at time u ) /* cov = 0 for i = 0
to N − 1 do

cov = cov + m
(

F
(

xi, k̂
))
×~̀ i[u]

cor[k̂][u] =(
1/N × cov− µk × µ−→L [u]

)
/
√

vark × var−→L [u]

/* Most 1 ikely candidate selections */

candidate = argmaxk̂

(
maxu cor[k̂][u]

)
return candidate

4.2.2 CPA Pseudo-code and Algorithm Description

The algorithm 1 describes the linear regression analysis, providing
a general overview on the particularities for the CPA algorithm
implementation.

Steps 1-5 in algorithm 1 process the sampling mean and the sampling
variance of each coordinates of the \leakage vectors. It results in
two vectors µ−→L and σ−→L with same dimension as

−→
L . Steps 6-12 in

algorithm 1 process the (sampling) mean and the (sampling) variance



hypothesis evaluation 33

of the hypothesis sample
(

m
(

F
(

xi, k̂
)))

i
for each \key candidate

k̂. When N grows, those latter mean and variance quickly tend
toward E[(m(F(X, k̂)))] and var[(m(F(X, k̂)))], which can be directly
deduced from m(·) and F. For example if F is an sbox and m(·)
is the \Hamming weight function, we have E[(m(F(X, k̂)))] = m/2 and
var[(m(F(X, k̂)))] = m/4 (assuming X is uniform). Eventually, Steps 13-
18 in algorithm 1 process, for each \key candidate k̂, the \correlation

between
(

m
(

F
(

xi, k̂
)))

i
and each sample

(
~̀ i[u]

)
i

where u denotes

the uth coordinate of the \leakage vectors.

4.2.3 CPA Efficiency

The law of \total expectation in equation 4.1 implies:

cov(X, Y) = E[E[(X−E[X])(Y−E[Y])|X]] (4.1)

where the conditional means are viewed as random variables that
functionally depend on X 6. Due to the linearity of the mean, the 6 Cheng Soon Ong Marc Peter Deisenroth,

A. Aldo Faisal. Mathematics for Machine
Learning. Cambridge University Press, 1st
edition, April 2020. ISBN 978-1108455145

equation 4.1 is also equivalent to cov(X, Y) = E[(X − E[X])E[(Y −
E[Y]) | X]]. When applied in the context of the correlation coefficients
computation in algorithm 1, this equation leads to a significant
efficiency improvement.

4.2.4 Detailed Complexities of the CPA attack

A detailed counting of the elementary operations for the CPA based
attack is given in the table 4.2 along with the memory budget needed
for the implementation of the elementary operations for the CPA based
attack.

Method Operations Memory

Complexity Complexity

Classical CPA d× 2n × (2N + 6) 2n+1 + 2d
CPA with Improvement 2N + 2n × (1 + d× (2n + 6)) 2n(d + 4)

Table 4.2: Detailed Complexities of the
CPA attack. Number of operations with
respect to the number of traces N and the
dimension d of the traces.

4.3 Linear Regression Analysis (LRA) Evaluation

4.3.1 Attack Description

In \LRA, the adversary chooses a so-called basis of functions
(
mp
)

16p6s
with the only condition that m1 is a constant function (usually m1 = 1).
Then, for each xi and each \subkey hypothesis k̂, the prediction
ẑi = F

(
xi, k̂

)
is calculated. The basis functions mp are then applied to
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the ẑi independently, leading to the construction of a (N × s) -matrix

Mk̂
.
=

(
mp

(
F
(

xi, k̂
))

i,p
. The comparison of this matrix with the

set of d -dimensional leakages
(
~̀ i

)
i6N
← −→L is done by processing a

\linear regression of each coordinate of ~̀ i in the basis formed by the
row elements of Mk. Namely, a real-valued (s× d) -matrix Bk with
column vectors

−→
β1 , . . . ,~βd is estimated in order to minimize the error

when approximating ~̀>i by
(

m1

(
F
(

xi, k̂
))

, · · · , ms

(
F
(

xi, k̂
)))
×Bk̂.

The \matrix Bk̂ is defined in equation 4.2 such that:

Bk̂ =
(
M>

k ×Mk̂

)−1
×M>

k︸ ︷︷ ︸
Pk

×L (4.2)

where L denotes the (N× d) -matrix with the ~̀>i as row vectors. In the
following, the uth column vector of L (composed of the uth coordinate
of all the ~̀ i ) is denoted by

−→L [u]. Moreover, the (s × N) -matrix(
M>

k̂σ
×Mk

)−1
×M>

k̂
, which does not depend on the \leakage

values, is denoted by Pk̂. To quantify the \estimation error, the
goodness of \fit model is used and the \correlation coefficient

of determination R2 is computed for each u. The latter is defined
by R2 = 1− SSR/SST, where SSR and SST respectively denote the
\residual sum of squares (deduced from Bk̂ ) and the \total sum

of squares (deduced from L ) 7. 7 Kjell Johnson Max Kuhn. Applied
Predictive Modeling. Springer, 1st edition,
2013. ISBN 978-1461468486

4.3.2 LRA Efficiency

Let us focus on the \best candidate selection step in a classical \LRA.
Each \subkey hypothesis k is first associated with a score which is
the greatest instantaneous coefficient of determination when testing
it for all temporal coordinates u. It is denoted by maxuR[k̂][u] in
algorithm 4.3. The second phase of the selection consists in the
processing of the maximum argmax k

(
maxuR[k̂][u]

)
. The purpose

of the latter step is to identify the candidate that maximises the
greatest instantaneous coefficient. Implicitly, such a classical approach
by total maximisation of the distinguisher value assumes that the
most likely candidate corresponds to the greatest value taken by the
distinguisher not only over all \subkey hypothesis but also over all
the \leakage times. This assumption relies on another one, often done
in the \embedded security community, which states that the value
of a distinguisher computed between wrong hypothesis (computed
for a wrong subkey value or a wrong time) and the leakage values
tends toward its minimum value (often 0) when the \sample size N
increases. However, as already noticed in several experiments, both
assumptions are often not verified in practice, where the adversary must
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for instance deal with the \ghost peaks phenomenon. The situation
is even worst for the \LRA attacks since the vector of coefficients β

(and thus the set of \predictions) depends not only on k̂ but also on
the attack time u (it is not the case for the \CPA as the \predictions

m(F(x, k̂)) are the same for each instantaneous \attack). The strength
of the \LRA, namely its ability to adapt to the instantaneous \leakage,
is also its weakness as it makes it difficult to compare the different
instantaneous attacks results.
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4.3.3 LRA Pseudo-code

The algorithm 2 describes the linear regression analysis, providing
a general overview on the particularities for the LRA algorithm
implementation.

Algorithm 2: LRA - Linear Regression Analysis

Input : a set of d -dimensional leakages
(
~̀ i

)
i6N

and the

corresponding plain-texts (xi)i6N , a set of model functions(
mp
)

p 6s Output: A candidate subkey k̂
/* Processing of the leakage Total Sum of Squares (SST) /* for

i = 0 to N − 1 do
µ−→

L
= µ−→

C
+~̀ i

σ−→L = σ−→L +~̀ 2
i

−→
SST = σ

−→
L − 1/N · µ2−→

L
/* Processing of the 2n predictions matrices /*
Mk and Pk /*
for k̂ = 0 to 2n − 1 do

/* Construct the matrixMk̂ and Pk̂ /*
for p = 1 to s do

for i = 0 to N − 1 do

Mk̂[i][p]← mp

[
F
(

xi, k̂
)]

Pk̂ =
(
M>

k̂
×Mk̂

)−1
×M>

k̂

for k̂ = 0 to 2n − 1 do
/* Test hyp. k̂ for all leakage coordinates */
for u = 0 to d− 1 do

/* Instantaneous attack (at time u) */
~β = Pk̂ ×

−→L [u]
/* Compute an estimator ~E of
−→L [u] =

(
~̀ 0[u], · · · ,~̀N−1[u]

)>
*/

~E =Mk̂ × ~β

/* Compute the estimation error (i.e. the SSR) */
SSR = 0
for i = 0 to N − 1 do

SSR = SSR +
(
~E[u]−~̀ i[u]

)2

/* Compute the coefficient of determination */
R[k̂][u] = 1− SSR/

−→
SST[u]

/* Most likely candidate selections */

candidate = argmaxk̂

(
maxuR[k̂][u]

)
return candidate
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4.3.4 Detailed Complexities of the LRA attack

A detailed counting of the elementary operations for the LRA based
attack is given in the table 4.3 in order to provide the operation
complexity.

Method Operations

Complexity

Classical LRA 2ndN(2sd + 2s + 3)
LRA with Improvement N(d + 1) + 2nd (2n(sd + 2s + 3) + 3)

Table 4.3: Operations complexity of the
LRA attack. The number of operations
with respect to the number of traces N,
the dimension d of the traces and the size
s of the regression basis.

In addition a memory budget needed for the implementation of
the elementary operations for the LRA based attack is given in the
following table 4.4 in order to provide the memory resources usage.

Method Memory

Complexity

Classical LRA d + 2n ∗ N ∗ s + 2n ∗ N ∗ s + N ∗ d
LRA with Improvement d + 22n ∗ s + 22n ∗ s + 2n ∗ d

Table 4.4: Memory complexity of the LRA
attack. The number of operations with
respect to the number of traces N, the
dimension d of the traces and the size s
of the regression basis.

4.4 Comparison with Simple DPA

Just considering the practical implementation of DPA against the \AES

substitutions (1 st round). In fact the well-known DPA attack 8 works 8 E. Prouff. DPA Attacks and S-boxes. InFast
Software Encryption. Springer, 4th edition,
2005

quite well only if the following assumptions are fulfilled:

• 1. \Word space assumption: within the word hosting the predicted
bit, the contribution of the non-targeted bits is independent of the
targeted bit value. Their average influence in the curves pack of 0

is the same as that in the curves pack of 1. So the attacker does not
need to care about these bits.

• 2. \Guess space assumption: the predicted value of the targeted
bit for any wrong \subkey guess does not depend on the value
associated to the correct guess.

• 3. \Time space assumption: the power consumption W does not
depend on the value of the targeted bit except when it is explicitly
handled.

But when confronted to the experience, the attack comes up against
the following issues.

Issue I. For the correct guess, \DPA peaks appear also when the
targeted bit is not explicitly handled. This is worth being noticed albeit
not really embarrassing. However this contradicts the third assumption.
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Issue II. Some DPA peaks also appear for wrong guesses: they
are called \ghost peaks. This fact is more problematic for making a
decision and comes in contradiction with the second assumption.

The reason why wrong guesses may generate DPA peaks is that
the distributions of an \S-Box output bit for two different guesses are
deterministic and so possibly partially correlated 9. The following 9 E. Prouff. DPA Attacks and S-boxes. InFast

Software Encryption. Springer, 4th edition,
2005

example is very convincing about that point. Let’s consider the leftmost
bit of the fifth \S-Box of the \AES when the input data D varies from 0 to
63 and combined with two different subkeys: MSB (SBox5(D⊕ 0x00))
and MSB (SBox5(D⊕ 0x36)). Both series of \bits are respectively
listed hereafter, with their \bitwise XOR on the third line:
1101101010010110001001011001001110101001011011010101001000101101

1001101011010110001001011101001010101101011010010101001000111001

0100000001000000000000000100000100000100000001000000000000010100

The third line contains 8 set \bits, revealing only eight \errors of
prediction among 64. This example shows that a \wrong guess, say 0,
can provide a \good prediction at a rate of 56/64, that is not that far
from the correct one 0x36. The result would be equivalent for any other
pair of subkeys K and K⊕ 0x36. Consequently a substantial concurrent
DPA peak will appear at the same location than the right one. The
\weakness of the contrast will disturb the guesses ranking especially in
presence of high \Signal to Noise Ratio (SNR). 10 10 This particular counter-example proves

that the ambiguity of DPA does not lie in
imperfect estimation but in wrong basic
hypothesis.

Issue III. The true DPA peak given by the right guess may be
smaller than some \ghost peaks, and even null or negative! This
seems somewhat amazing and quite confusing for an attacker. The
reasons must be searched for inside the crudeness of the optimistic first
assumption.
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5.1 Experimental Setup and Results

For each \power trace a pair of the \plain-text and the \encrypted

\cipher-text is required1. Therefore all the information needed 1 At this point you should either given
or were able to measure the power
consumption (traces) of any electronic
device by yourself

is on disposal with excepting the \secret key. It is the goal of
the \differential power analysis to extract the secret key using
the mentioned power traces, \plain-text, \cipher-text and the
knowledge of the \encryption algorithm by creating the hypothesis
of the \power consumption and correlating it to the \measured traces.

5.2 Correlational Power Analysis - Key Recovery

5.2.1 Schedule

1. Plot one \power trace, checking that it is complete.

2. Check the \alignment of traces (they overlay correctly, triggering
works).

3. Select the appropriate part of the traces (for example the part
containing the first round). Reading the appropriate number of
traces.
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4. Depending on the measurements, a correction of mean values may
have to be performed (if the measurements "wander" in voltage over
time). It can be done so by subtracting from each trace its \mean

value.

5. Recover the \secret key using the DPA with correlation coefficients.

5.2.2 Methods

Use DPA with \correlation analysis. The core of the method is as
follows

1. Choose an intermediate value that depends on \data and \key

2. Measure the power traces while encrypting the data

3. Build a matrix of \hypothetical intermediate values inside the
cipher for all possible keys and traces

4. Using a \power model, compute the matrix of hypothetical power
consumption for all keys and traces

5. Statistically evaluate which \key hypothesis best matches the
measured power in each individual time

For better vision of the previous method take a look in the figure
5.1. The \right key (part of key) is determined by Key Hypothesis ->
Intermediate Value -> Power Consumption, best correlating to actually
measured consumption at some moment. Repeating the analysis for
other parts of the key, until the whole key is determined, the idea is
shown in the figure 5.1.

5.2.3 AES Weakness

In \AES, the \plain text block is first XORed with the primary key
and then goes through 10 rounds of processing. Each round consists of:

• SubByte

• ShiftRow

• MixColumn

• AddRoundKey

and it could be visualized in figure 5.2.
By looking for the \roundkey of the last round (the only one without

the \MixColumn step).
In order to implement a \DPA attack, an attacker first observes m

\encryption operations and T power traces captures with k samples
each.
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Figure 5.1: Block Diagram illustrating
steps 3 to 5 of the CPA attack. It also
outlines the architecture of a framework
that could be carried out to classify
various estimators (pink hexagon).
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Figure 5.2: Block diagram for the AES
algorithm, for a general overview.

The algorithm 3 presents a pseudo-code for a common
implementation of AES-128 cipher. In this algorithm is marked the
precise point were the attack is performed on the 1st round of the
encryption process.

Algorithm 3: AES-128 Cipher
Input: 128 bits (plain-text)
Output: 128 bits (cipher-text)
w: 44 words, 32 bits each (expanded key)
state = in;
AddRoundKey(state, w[0, Nb-1]);
for round = 1 to Nr˘1 do

SubBytes(state); // <—– Attack this point in round 1!
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]);

SubBytes(state);
ShiftRows(state);
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]);
out = state;
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5.2.4 Correlation for Attack Performing

After taking some measurements, It’ll put on disposal D power traces
t, and each of these traces will have T data points. Using subscript
notation, td,j will refer to point j in trace d(1 ≤ d ≤ D, 0 ≤ j < T).

Also estimating the \power consumption in each trace using the
model. Supposing there are I different subkeys that it is wanted to try.
Then, hd,i will refer to the \power estimation in trace d, assuming that
the \subkey is i(1 ≤ d ≤ D, 0 ≤ i < I).

With these \data, it could be evaluated how well the model and
measurements match for each guess i and time j, by finding how t
and h correlate over the D traces2. One way of calculating this is as 2 Kjell Johnson Max Kuhn. Applied

Predictive Modeling. Springer, 1st edition,
2013. ISBN 978-1461468486

indicated in equation 5.1:

ri,j =
∑D

d=1

[(
hd,i − hi

) (
td,j − tj

)]
√

∑D
d=1

(
hd,i − hi

)2
∑D

d=1

(
td,j − tj

)2
(5.1)

There is an alternative form for the \correlation equation that is
suited to use for online calculations - it allows to add one trace at a
time without re-summing all of the past data. This form is presented in
equation 5.2 as follows:

ri,j =
D ∑D

d=1 hd,itd,j −∑D
d=1 hd,i ∑D

d=1 td,j√((
∑D

d=1 hd,i
)2 − D ∑D

d=1 h2
d,i

)((
∑D

d=1 td,j
)2 − D ∑D

d=1 t2
d,j

)
(5.2)

Note that these two proposals are equivalent 3. 3 Cheng Soon Ong Marc Peter Deisenroth,
A. Aldo Faisal. Mathematics for Machine
Learning. Cambridge University Press, 1st
edition, April 2020. ISBN 978-11084551455.2.5 Picking a Subkey

The last step is to use the values of ri,j to decide which \subkey matches
the traces most closely. There are two steps to perform this:

• For each subkey i, find the highest value of |ri,j|. This will discard
the time information - just wanting to know how good the guess
done, it was, - but not taking care about where those guess matched
the trace.

• Looking at the maximum values for each subkey, find the highest
value of |ri|. The location i of this maximum is the best guess and it
is correlated more closely with the traces than any other guess.

Note that, the working with \absolute values only, because the
sign of the relationship doesn’t care about. The important to know is
that a \linear correlation exists 4. 4 Kjell Johnson Max Kuhn. Applied

Predictive Modeling. Springer, 1st edition,
2013. ISBN 978-1461468486
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5.3 Laboratory Results

5.3.1 Real World Implementation

To be successful a \DPA attack needs to follow a few steps:

• Generate a huge amount of encryption/decryption operations using
the target \cryptosystem and key.

• Trace, for each operation, both \power consumption and I/O (clear
text and/or cipher text)

• Take a byte from the \S-Box 5 output and use it as a separator. 5 E. Prouff. DPA Attacks and S-boxes. InFast
Software Encryption. Springer, 4th edition,
2005

• Make the average out of each sub group.

• Repeat operation for each possible value of a byte (255 values) (8-bit
MCU).

• Take the highest average and enjoy finding a byte of the key.

• Repeat for each byte of the key.

Figure 5.3: A small loop antenna can
be used to pick up electromagnetic (EM)
signals.

The laboratory set up is being shown in the figure 5.3. The \AES

implementation on a former well known platform, to search for
\side-channel effects. By averaging the \spectrogram over multiple
traces, the following spectrogram can be obtained (captured at 3.5MHz).
A repeating pattern occurs that is caused by the individual rounds of
the AES algorithm, take a look in the figure 5.4.

Even though it was not possible to find any \correlation between
the spectrogram and \key bits. Most likely, the time resolution of the
spectrogram is too low, to get a good correlation 6. 6 This is not a real problem

The next attempt was done by using a demodulated \time series

signal. A new \static alignment was implemented, that works on
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Figure 5.4: Spectrogram captured at
3.5MHz. A repeating pattern occurs that
is caused by the individual rounds of the
AES algorithm.

\time series signal was implemented. Now there are some good
signals around the \clock frequency of 16MHz (141MHz in that figure
5.5). Interestingly the second \harmonics are also very strong (157MHz).
They are very interesting as they could be analyzed without using an
\up-converter.

Figure 5.5: Demodulated time series
signal. There are some good signals
around the clock frequency of 16 MHz
(141 MHz in the graph). The second
harmonics are also very strong (157 MHz
in the graph)

By selecting a carrier close to the \clock frequency at 16.253MHz,
and with a 233kHz bandwidth \low pass filter 7 and applying in 7

70 times lower than clock frequency

the signal an \amplitude demodulation. The resulting signal has a lot
of \high-frequency components, looking a bit noisy, see the figure 5.6.
Even though after 6022 traces this noise still remains, so it is actually
caused by the CPU and could contain \side-channel information.

Figure 5.6: Resulting signal, by selecting
a carrier close to the clock frequency
at 16.253 MHz, and with a 233 kHz
bandwidth low pass filter. The signal has
a lot of high-frequency components, it is
actually caused by the CPU and could
contain side-channel information.
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5.3.2 Breaking AES using CPA

A good method for breaking \AES with a \power analysis is the
so-called correlation power analysis (CPA). Its most advantage in
comparison to \differential power analysis (DPA) is, that we can
correlate the \power consumption with any arbitrary function. It makes
use of the Pearson correlation which looks as equation 5.3 shows at
follow:

corr(X, Y) =
n ∑i xiyi −∑i xi ∑i yi√

n ∑i x2
i − (∑i xi)

2
√

n ∑i y2
i − (∑i yi)

2
(5.3)

This formula gives the correct result, only by having to keep on the
track of the number of traces and the sum of xi, x2

i , xiyi, yi and y2
i . The

\correlation coefficient can then be computed using the equation
above.

In the case of \AES, we use the fact that an \XOR operation with
an 1 bit 8 uses more power than XOR with a 0 bit . Depending on 8 Known as bit flip

the challenge, the number of \bit flips is \predicted and directly
correlated with the \power consumption. The important part of the
\AES is the application of the S-Box in the first (or last) round, as
equation 5.4 shown.

r = r⊕ sboxi [l ⊕ ki] (5.4)

l and r are parts of the \plain-text and can be controlled by the
\attacker, ki is a 6-bit subkey for the i-th \S-Box which is a \nonlinear

\lookup table. The number of \bit flips depends on a part of
the \plain-text and a part of the key. Correlating the hamming
weight of the output of the S-Box with the actually measured \power

consumption, equation 5.5.

corr (st, ham (sboxi [r⊕ ki])) (5.5)

This correlation is computed for all possible 64 subkeys and every
\time step of the \power trace. For the right subkey, we expect a
high \correlation with the actual \measured sample-st exactly at the
point, where the \S-Box operation happens. The image 5.7 shows the
correlation for the correct subkey of the first S-Box (black) and the
\mean trace (gray) after 6022 traces. The \spike (high correlation) at
the beginning of the AES routine is caused by the XOR operation with
the S-Box output.

By comparing the maximum \correlation over time for all possible
subkeys, the correct subkey had the highest \correlation after 1500

traces, as figure 5.8 shown. The distance between first and second
winner is quite significant and a total \correlation of 0.1 not too bad,
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Figure 5.7: Correlation for the correct
subkey of the first S-Box (black) and the
mean trace (gray) after 6022 traces. The
spike (high correlation) at the beginning
of the AES routine is caused by the XOR
operation with the S-Box output.

especially as the underlying signal had a 70 times lower \bandwidth

than the \CPU clock of the \device unit test (DUT).

Figure 5.8: Graphic comparing the
maximum correlation over time for all
possible subkeys, the correct subkey had
the highest correlation after 1500 traces.

The MCU had been programmed such that it had 67 76 89 79 88

98 A6 57 65 F7 65 77 5B 87 68 8C as the chiper key. Here it prints the
keybytes with the highest correlation coefficients ρmax1 in descending
order. There are 16 columns as there are 16 key-bytes. The first row
matches exactly to the key used. For convenience of comparing they
are tabulated in Table 5.1, where the column named SBox K1 shows
the set of keybytes which gave the highest correlation. The column
ρmax1 is the correlation coefficients for each of the keybytes in SBox K1.
The SBox K2 and rmax2 are for the set of keybytes which has the next
highest correlation and so on.

As it is shown, the column SBox K1 matches the exact key used.
The correlation coefficients for those keys are quite high where all
are more than 0.13. But these correlation coefficients for the key with
second highest correlation and the third highest correlation are much
lesser where both of them are less than 0.08. Therefore the fact that the
correlation coefficients of SBox K1 and SBox K2 are having a large gap
between them compared to the gap between the correlation coefficients
of SBox K2 and SBox K3, lets us confidently decides SBox K1 would
give us the correct key. 9 9 For getting the correct key not even 1700

traces were necessary.The table 5.2 shows the ratio gotten with LRA based attack. Showing
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Key byte SBox rmax1 SBox rmax2 SBox rmax3

K1 K2 K3

0 67 0.13794 D0 0.07278 54 0.07261
1 76 0.13790 C6 0.07292 26 0.07272
2 89 0.13826 F9 0.07271 7D 0.07253
3 79 0.13764 49 0.07279 8B 0.07248
4 88 0.13812 F4 0.07258 B4 0.07251
5 98 0.13895 52 0.07269 8E 0.07251
6 A6 0.13783 98 0.07276 12 0.07241
7 57 0.13776 41 0.07262 63 0.07247
8 65 0.13814 95 0.07278 18 0.07251
9 F7 0.13789 30 0.07249 3F 0.07243
10 65 0.13901 10 0.07283 83 0.07249
11 77 0.13796 CF 0.07264 F0 0.07249
12 5B 0.13780 4D 0.07248 65 0.07235
13 87 0.13802 44 0.07256 B2 0.07253
14 68 0.13801 7E 0.07286 4E 0.07278
15 8C 0.13869 A8 0.07271 38 0.07269

Table 5.1: List of correlation ratios,
using 5000 traces as reference. The
column named SBox K1 shows the set
of keybytes which gave the highest
correlation value. The correlation
coefficients for those keys are quite high
in comparison with the next highest
correlations

the LRA rate is not that high than presented before for CPA, showing
that the correct guess not always stands out with a good contrast, and
even more, in some cases the highest score are not achieved by the
correct key byte, leading in false positive detections. but it proves to
remain exploitable and thus a robust indicator.

Whereas it has been successfully demonstrated that both DPA and
CPA techniques could be viable in deducing the full 16-byte key of
AES-128 by monitoring the power consumption of an MCU which
implements the AddRoundKey and SubBytes steps in round 1 of AES.
However, side-by-side comparison of the results produced by DPA and
CPA demonstrate that the \Hamming weight Power Model approach
may produce key guess results which are easier to interpret from
an analytics perspective due to the lack of harmonic noise (\ghost
peaks) in comparison with the \difference of means or the LRA
attack techniques. Since results produced here have been gathered
in a white-box testing environment, variation in findings may exist
when applying these techniques in real-life devices.

The core limitation in this work is how applicable the methodology
is when attempts are made to perform attacks on real-life cryptographic
devices running AES-128 under a black-box environment. By building
an accurate selection function (DPA) or power model (CPA), one
could predict the output of the final AddRoundKey step given known
plaintext inputs. If prediction of output is correct, then one simply
reverses each round of AES until they have the original starting cipher
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Key byte SBox LRAKey SBox LRAmax1,2 SBox LRAmax3

K1 K2 K3

0 67 0.07794 7D 0.07791 D4 0.07689
1 76 0.07590 51 0.07572 2A 0.07522
2 89 0.07826 9F 0.07649 DA 0.07513
3 79 0.07564 94 0.07578 71 0.07495
4 88 0.07812 75 0.07651 AB 0.07587
5 98 0.08095 B8 0.07658 70 0.07599
6 A6 0.07453 69 0.07471 31 0.07468
7 57 0.07376 13 0.07467 12 0.07428
8 65 0.08145 59 0.07642 47 0.07581
9 F7 0.07893 C1 0.07543 AF 0.07498
10 65 0.08018 8F 0.07468 38 0.07431
11 77 0.07567 7C 0.07469 01 0.07449
12 5B 0.07805 B4 0.07546 35 0.07383
13 87 0.07322 AA 0.07583 2E 0.07560
14 68 0.08016 43 0.07788 EB 0.07768
15 8C 0.08191 CA 0.07516 55 0.07515

Table 5.2: List of LRA ratios, using 5000

traces as reference. The column named
SBox K1 shows the set of correct key-

bytes which not always gives the highest
LRA values, leading in false positive
detections (ghost peaks).

key values.
The other more challenging problem is of knowing when to capture

power traces in a real-life device running cryptographic operations.
Further complexity is introduced since different devices may behave
in a distinct manner depending on their hardware and software
implementations. As a general suggestion to solve this problem, one
should first attempt to identify the actual cryptographic algorithm
running on the device. For this case, SPA alone may prove valuable
in performing such purpose, if it is identified that communication
occurs between a real-life device and a PC under the attackers control
during known cryptographic functions, it may be possible to use such
responses as a capturing trigger. In the worst case scenario, it may still
be possible to attack a device by gathering enough traces and ensuring
they are aligned in a coherent manner.





6 Conclusions

The presented work was about the study on the effectiveness
and efficiency of the CPA, the LRA and the simple DPA attacks
when performed in a context where the exact time of the sensitive
computations is not known.

Following a practical approach, the leakage of various selection
functions widely used in existing light-weight ciphers for an 8-bit
processor was investigated. By analyzing how these results relate to
the intuition about side-channel leakages based on the non-linearity of
the selection function.

The previous experience on a large set of chips over the last years
has convinced on the validity of the Hamming distance model and the
advantages of the CPA method against LRA and simple DPA, in terms
of efficiency, robustness and number of experiments. However the main
drawback of CPA regards the characterization of the leakage model
parameters. As it is more demanding than DPA, and the method may
seem more difficult to implement.

Using the knowledge gained from the evaluation of selection
functions, unprotected software was attacked in implementations of
eight well-known light-weight ciphers, namely AES, Fantomas, LBlock,
Piccolo, PRINCE, RC5, Simon, and Speck. By grouping the results
of the experiments into classes according to the observed resistance
against CPA attacks.

The lessons learned from these experiments helped to select the
appropriate leakage functions to attack the light-weight block cipher.
Thereby, the mainly imperfection of leakage evaluation based on non-
linearity, was the XOR bit-wise operation.

It was showed that unprotected implementations of the AES based
on the S-box and T-table strategies can be broken even when the
attacker controls only one input byte of the cipher with less than 1500

electromagnetic traces acquired from a 8-bit processor in about one
hour. Knowledge of the implementation strategy does not significantly
improve the attack outcome, nor does it reduce the attack complexity.
An important and reassuring conclusion is that all the countermeasures
designed against DPA offer the same defensive efficiency against the
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attack model based LRA or CPA. This is not that surprising since
those countermeasures aim at undermining the common prerequisites
that three approaches are based on: side-channel observably and
intermediate variable predictability.

Finally considering the popularity of the AES chipper algorithm and
because the unprotected implementation of AES was broken with the
smallest number of power traces, Thus, unprotected implementations
of the AES should not be used to secure the communication between
end devices in secured network protocols in any case.

Future work will be relied on expanding the previous analysis to
16-bit, 32-bit and 64-bit micro-controller architecture devices. Also
considering the expansion of Hamming weight power consumption
models to more advanced power models based in new emerging energy
theories like Energy behavior in Quantum Field Theory, as possible
example.
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