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Cryptocurrency Forecasting Models and DeFi

Carlos Emilio Carranza Avila

Abstract

The nature of Cryptocurrency markets presents a challenge for Financial Time series forecasting, the
regular use of time bars as a source of data to forecast can prove insufficient to predict the movements of
the crypto token value. The use of additional data from DeFi sources can be used to create a more robust
base in which to use different methods to perform better feature generation and feature selection to use
for the prediction models. The use of the Three Barrier Method for labeling the movements of the data is
suggested as a way to generate multiclass labeling in which both directions of the prices and magnitude are
represented. The proposal of this work is that the use of DeFi data, the adapted use of the three-barrier
method, and the use of Genetic Programming could create a dataset that has good predictor capabilities for
the multiclass classification prediction of the movement and magnitude of the value of Bitcoin. In this work,
a comparison between prediction models is performed using a combination of benchmark models, and the
implementation of Random Forest and Multi-Layer Perceptron to construct a multiclass classifier for the
price movement of the cross of Bitcoin and USDT from the Binance Exchange using historical data from
Binance, Ethereum Blockchain, and symbolic data.
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1.1 Context-Problem

Introduced in 2008, bitcoin1 was presented as a decentralized currency that would eliminate 1 Nakamoto, S. (2008).
Bitcoin: A peer-to-peer
electronic cash system

the need for central banks or an intermediary for the production of the currency. Satoshi
Nakamoto’s invention began small; in 2010, for example, there was a transaction of 10,000

bitcoins for only two pizzas in Florida; as of November of 2022, bitcoin has a market cap of
318.37 Billion dollars.

In the following years, the growth of bitcoin as an alternative to fiduciary currency gained
the attention of the financial industry, with an average growth of 156.8%. Bitcoin has become
a great form of investment; with such competition to the traditional markets, it was essential
to improve the quality of predictions and the velocity with which the industry can predict the
future values or trends of the cryptocurrencies; because of this, machine learning has become
inseparable from the forecast of financial assets on the industry.

However, as of 2022, bitcoin has lost 71.76% of its value since last year, and the conditions
of the market are volatile; this volatility can be measured as 1.74714% on the previous 30 days
estimate as of November 2022

2, which can be explained as bitcoin is an asset with a finite market 2 yahoo finance (2022)

cap which is small in comparison with other assets so that every transaction will have a more
significant effect on the price.

This volatility can be seen in price changes between 5 to 10 percent of the daily market prices.
This makes this cryptocurrency a volatile asset, making the importance of an accurate forecast
much more urgent.

In this work, the predictability of the movements of bitcoin was analyzed using various
machine learning models to reach an optimized model that could accurately predict the
cryptocurrency’s movement. This uses different methods to treat the data before the training
period to obtain the optimal data preprocessing techniques and the best models available to get
better results.

1.1.1 Cryptocurrencies markets

As of 2022, cryptocurrencies run on the blockchain, which is a public ledger that records all
transactions held by the crypto holders; the cryptos are generated through the mining process,
in which computational power is used to solve complex mathematical problems and generate
tokens or coins3, later this coins can be exchanged through brokers or stored in wallets. 3 James Martin,

Jack Cunliffe, R. M.
(2019). Cryptomarkets:
A Research Companion.
Emerald Publishing
Limited

For this work, the exchange used to collect the data was Binance; this exchange was chosen
because it is the largest one in the world in terms of daily trade of volume of crypto; Binance
was founded in 2017 and is currently registered in the Cayman Islands, the determining factor
in choosing it is because being the largest market in the world means that Binance has a
more sophisticated market than other exchanges and that taking into account that bitcoin is
susceptible to large volume movements Binance is a good representation of the value of bitcoin
in the cryptocurrency market4. 4 Binance (2022)
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1.1.2 Defi

Another innovation came with the creation of Ethereum; this cryptocurrency had different
comparing it to Bitcoin; both are digital currencies, but Ethereum is programmable, which
permits the deployment of applications on the Blockchain of Ethereum5. 5 Ethereum.org (2022).

What is ethereum
This means that while Bitcoin is a coin that can be used to pay for services, Ethereum is a

market for different kinds of financial services.

One of those innovations was Smart contracts, which run on the blockchain and execute
functions according to their programming, making transactions; these are final and cannot be
reversed.

This makes the decentralized exchange also referred to as DEX. On this important platform,
much information about the behavior of cryptocurrencies is held, besides the information on
other exchanges. Because the transactions in Defi using DEX are Peer to peer, the information is
on the blockchain instead of the data from regular exchanges.

One of the most important DEX is Uniswap, which began in 2018, with transactions of more
than half a million dollars a day, open source contracts, and over three billion in assets in the
protocol; this makes Uniswap a great option to obtain more information about the behavior of
cryptocurrencies.

1.1.3 Financial TimeSeries Forecasting

Time series analysis is the practice of taking information from statistical information from points
arranged in chronological order, using the past to predict the future, and parts from the question
of how the past influenced the future.

In the case of financial time series, with the advent of financial markets and the use of stocks
in time, these became technical and advanced, which needed better techniques to predict the
value of the assets in the future, so the use of financial time series began to rise in the beginning
they did this using mathematical model by hand, and with the continuous sophistication of the
model’s used machine learning models currently being used.6 6 Nielsen, A. (2020).

Practical Time Series
Analysis. O’Reilly

1.2 Financial Machine Learning

Through the years, the industry became more technical, and the advances of machine learning
got the interest of the Financial world; with the advent of automation and its use in finance,
it became essential to get better and more efficient methods to forecast the future value of an
asset7, The use of algorithms to predict future values of assets became one of the more critical 7 Lopez de Prado, M. M.

(2018). Advances in Fi-
nancial Machine Learning.
Wiley

aspects of Financial forecasting,

Another significant advance in machine learning was the incursion of genetic programming8,

8 Gplearn (2016). Intro-
duction to gplearn

a method to generate computer programs based on biological evolution, taking unfit programs
and, through stochastic transformations obtaining new ones and continuing the same process
for generations until getting the expected result.

For machine learning, one application for genetic programming is the generation of symbolic
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variables; using evolution methods through transformations, one can create new variables that
have a high correlation with the target variable.

1.3 Document structure and Implementation Notes

The composition of this work will be the following: chapter 2 will contain a more detailed
problem definition for this work, in which the creation of the target feature and the problem
to tackle will be explained; chapter 3 is about the methodology used for the Data ETL and the
generation of the dataset used; as well as the sources of the datasets used; Chapter 4 will explain
the different models and the predictive modeling process used for this work. In chapter 5; the
results will be presented; furthermore in chapter 6; a discussion about the results and the future
work needed based on the results.



2 Problem Definition

Contents
2.1 Financial Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Cryptocurrencies Markets Dynamics . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Target Variable Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Features Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

In this chapter, the definition of the problem is explained in the two fundamental parts that
compose classification forecasting: the fundamentals of financial time series forecasting and
the particularities of a time series of a cryptocurrency asset. The problem type is also defined,
explaining the idea behind the choice of a multi-class classification for this particular case being
tackled in this work.
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2.1 Financial Time Series Forecasting

The modeling process working with time series typically begins with the premise that the time
series is dependent on temporality; this means that the chronology of the data cannot change,
so certain precautions have to be taken into account to maintain it. The basis of the forecast
with time series is that the previous data contains information that can help the model predict
the future value or label depending on the problem being tackled.1 1 Nielsen, A. (2020).

Practical Time Series
Analysis. O’ReillyIn contrast with other areas of time series forecasting, for example, in image recognition, one

can obtain samples of a physical object, having certainty that the model will have the same
molecular composition making the representation maintained, whereas in the case of financial
time series will not be, in other comparisons the uses of time series in health, for example in
the use of ECG for heart monitoring, is the same case, as that is a physical object. The general
behavior of the heart will not change as much, having certainty that it will behave between the
horizon marked by being a human organ, making that the representation is maintained as well.

In the case of financial time series, you take one sample of a stochastic process from which no
one has a hundred percent certainty of the representation, and it is impossible to take a sample
from a past process. Hence, the use of data is quite different from other kinds of time series
forecasting. Moreover, given that the price of an asset is a non-repeatable sample, which is taken
from an unknown and ever changes stochastic process, considering the sparsity of information
is of the utmost importance. This can be assessed by using techniques based on time-aware
sub data sets generators, where the entire data set is divided into subsamples, each of which
represents different distributions the target variable takes and thus provide an increase in
sparsity in target variable representation, with which out-of-sample and even out-of-distribution
generalization can be achieved under certain conditions2. 2 Muñoz-Elguezábal,

J. F. and Sánchez-
Torres, J. D. (2021).
T-fold sequential-
validation technique
for out-of-distribution
generalization with fi-
nancial time series data.
International Confer-
ence on Econometrics
and Statistics

In time series, two methods are usually used for forecasting: Regression and Classification.
The first is used to predict the asset’s value using the time series information and indicates the
asset’s future value. The second is used for classification, which makes a forecast of the different
classes assigned to the different samples used for the problem.

In this work, the methodology chosen was to frame the problem as a classification, meaning
that a label had to be created in which all periods would be classified as one of the classes
created for it.

In the case of classification, the ŷ is represented as ∈ {0,1} in case of binary problems and ∈
{0,1,..., N} in case of multi-class cases. For this work, the multi-class classification was chosen
because the objective of the target variable was to represent the magnitude as well as the
direction of the value of bitcoin.3 3 López de Prado, M. M.

(2020). Machine Learning
for Asset Managers. Cam-
bridge University Press

2.2 Cryptocurrencies Markets Dynamics

In principle, crypto markets function with the same process that a regular stock exchange
would behave, with the bonus that it is decentralized; as of November 2022, there are more than
nine thousand cryptocurrencies worldwide, with the most important ones being Bitcoin and
Ethereum in that order. These cryptocurrencies have different ways to be obtained; the first
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one is through mining, where to solve complex mathematical problems, the computer or server
mines the token.

The second one is through exchanges. As of November 2022, Bitcoin’s total market
capitalization rests at 310 billion dollars, down from 1.26 trillion dollars in November 2021,
which shows the kind of volatility the token has. There are many cryptocurrency exchanges; the
most important one is Binance, having a market cap of 47 billion dollars as of November 2022.4 4 yahoo finance (2022)

The way the exchanges work is through bids and asks, and has many different symbols or
tokens available to exchange; one example of this is the one used for this work, which is a cross
between bitcoin and USDT, a representation in the token form of U.S. dollar, having the same
value as that currency. When wanting to partake in a transaction, it’s organized in two ways,
bidding high and asking low comes first. It’s organized in rows, where the first one of the row
comes first in the transaction, in a way meeting in the middle when a bid and ask are the same,
the transaction happens, and all this is recorded in the order book of the token.5 5 James Martin,

Jack Cunliffe, R. M.
(2019). Cryptomarkets:
A Research Companion.
Emerald Publishing
Limited

With the arrival of Ethereum, a new way to exchange crypto tokens became available, which
are the Smart Contracts, which are programs that run through the blockchain and execute
transactions that cannot be reversed automatically; these Smart Contracts come programmed
with information about the quantity, ask or bid for the trade and are deployed to the blockchain
to wait for the transaction, for this work the data obtained was from the Uniswap from Ethereum,
compiling data from the cross between BTC and USDT on the Ethereum blockchain.6 6 Ethereum.org (2022).

What is ethereum

2.3 Target Variable Formulation

For this classification problem, the use of a label was chosen; a label is a representation of one
or more characteristics of the target; in this case, the target was to obtain information both on
the magnitude of the price change as well as the direction of the movement, to achieve this
the objective became to create a multi-class classification system which was represented with
the following numbers ŷ ∈ {0, 1, 2, 3}, for the formulation of the target the values of Open and
Close would be used to create the label.

COt = Closet − Opent (2.1)

Using the result of COt, the classes were assigned using thresholds based on the quintiles of
the total values of it, assigning a class to each period evaluated; the thresholds were not fixed
and changed depending on the periodicity of the data, and the purpose of the moving threshold
was to obtain a target variable that was balanced and had an equal representation in all the
classes.

To get the price direction and magnitude, the algorithm would use the prices of Opent

and closet in conjunction with the threshold calculated from the quintiles at 25% and 75% to
generate the four labels that encompass both magnitude and price direction. The following is
the formulation of the target variable as will be used in this work.

ŷt = sign{Closet − Opent} (2.2)

The label formulation that became the target was not as effective as it will be described in



20

chapter 4, so it became essential to generate the target with a more sophisticated formulation.
The one chosen was the triple barrier method of label generation, as the last method, also known
as fixed time horizon, uses fixed time intervals and fixed thresholds, which do not represent
the way the market functions, so in his book, Lopez de Prado suggests a method called triple
barrier method or TBM.7 7 López de Prado, M. M.

(2020). Machine Learning
for Asset Managers. Cam-
bridge University Press

TBM is a method in which dynamic thresholds are used, based on daily volatility allowing
for more optimal thresholds than the other method; in his proposal, De Prado uses barriers that
mark events, and rather than fixing the thresholds, they can be interpreted as profit taking or
stop loss. This labeling method produces labels in binary form, with -1 being don’t sell, and
one as well, and all other periods without touching the barriers come with a percentage of how
close it is to that barrier; in this work, this was reworked to produce four labels, with the intent
to implement a labeling process to take into account magnitude and direction of the asset.

Xt−n:t−1 = ϕData (2.3)

2.4 Features Formulation

The Features used to train the models were sourced from different places; the first one, as
previously stated, is the time bars that came from the order book from Binance, which will be
referred to as the OHLCV; from Binance also came the order book data; and the public trades
data, that represent the transactions as well as ask and bids in the exchange, this will be the
endogenous data.

On the other hand, exogenous data is the data that came from outside the exchange; this data
presents more variety and is used to obtain more variables with the assumption that it will help
to create better models once it is transformed. one of those exogenous datasets is the Defi data,
that came from the liquidity pool which is cryptocurrency locked in smart contracts, the two
most important DeFi exchanges are SushiSwap and Uniswap, with the latter being the bigger
of the two, and use liquidity pools on the Ethereum blockchain, for this work the data used
was sourced from Uniswap, using a cross between BTC and USDT, more of the content and
transformation of this datasets will be explained on chapter 3.

Having those datasets, the other kind of data that will be used is created based on the
previous data, the first of these methods is to use stochastic processes to generate more data
using the time series to extract new data from the time bars—using lags, means, and differences
to create new features. The second is through evolutionary computing, which is the process of
creating new programs using a method that mimics evolution and is now applied to machine
learning, through a symbolic transformer, which makes symbolic features using math equations
and "breeding" new features8 in a process that used multiple epochs to create new data that 8 Taber, K. (2009). Learn-

ing at the symbolic level.
Models and Modeling in
Science Education, 4:75–
105

represents the hidden relation between the original features and the symbolic ones, more of this
process will be presented in chapter3.
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In this chapter, the data sources will be discussed, presenting the different datasets used,
their generation and composition, and an explanation of how the final dataset is compiled.
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3.1 Data Sources

The process that was conducted to obtain the data from the mentioned sources is the following:
First, for the case of Binance, it was obtained from the Binance Vision source and the data in
particular is the Open, High, Low, Close, Traded Volume (quote), and Traded volume (base) of
the selected symbol.

Also, from Binance, it was obtained the Full OrderBooks of the same symbol, along with the
PublicTrades. and thus, the overall, the complete set of data that is used for this work can be
stated within the following categories:

In the case of de Decentralized Finance type of data, it was obtained by the use of an external
service, Bitquery.io, which provided a Graphical User Interface to construct queries for the
GraphQL-based API, having in that sense, free access to the transactions history of the Ethereum
Blockchain, in particular transactions To and from a specific smart contract named "Uniswap
V3", a liquidity pool is operating entirely in the blockchain.

• Centralized Exchange Activity: OrderBooks, PublicTrades, OHLC.

• Decentralized Exchange Activity: Liquidity Pool.

3.1.1 Binance

The data was obtained from Binance vision1, which permits downloading the compiled data in 1 Binance (2022)

OHLCV format from a repertoire of indexes and different time metrics, the dataset used for
this project was composed of monthly OHLCV datasets from January 1st, 2021, to October 31st,
2022, with a period frequency of 1 minute for a total of 962,367 minutes measured and nine dif-
ferent features, besides a timestamp as this is a financial time series this can be seen on figure 3.1.

Figure 3.1: OHLCV Plot
OHLCV plot of finance data, period of September through November 2022

The data that compose the dataset are numerical, discrete, and linear. the target feature
created is categorical and ordinal. later, autoregressive data was designed to generate more
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features, and genetic algorithms were used to develop genetically generated features.
The first dataset is composed of the following features2: 2 Binance (2022)

• Timestamp: Index, the periods of 1 minute.

• Open: The first price of the period.

• High: The highest value of all the prices per period.

• Low: The lowest price value of the period.

• Close: Final price of the period.

• Volume: The total sum of bitcoins operated per period.

• Quote Asset Volume: Total quantity of USDT operated during the period.

• Trades: Total number of trades per period.

• Buy Asset Volume

• Taker Buy asset volume: Total quantity of BTC operated during the period.

Figure 3.2: Data statistics
Statistics of the OHLCV data

Public Trades also was sourced from Binance; the data of the public trades during September
was compiled and transformed using statistic methods; the dataset is numerical, discrete, and
linear; the features are the following3: 3 Binance (2022)

• std prices: This represents the standard deviation of the price.

• means price: Mean price during the period.

• median price: Median price during the hour period.

• lowest price: Lowest price during the sample.

• highest price: Highest price during the period.

• sell trades volume: Volume of trades sold.

• buy trades volume: Volume of trades bought.
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• sell trades count: Number of sold events.

• buy trades count: Number of trades from the buyer side.

• quantile 25 volume: Quantile 25 of volume.

• quantile 75 volume: Quantile 75 of volume.

• Interquantile range volume: Measure of dispersion based on lower and upper quartile.

• trades count: Number of trades per period.

• trades volume: Total volume per sample.

Figure 3.3: Data statistics
Statistics of the Public Trades data

The final dataset obtained from Binance Vision is the order book metrics. This one consists of
the calculations performed on the order book data, which is composed of periods with a list of
asks and bids for the particular asset.

• Top of the book volume: Volume of the first ask and bid per period.

• Head of the book volume: Volume of the first five levels of the book per period.

• Limit order book volume: volume of the entire period of the order book.

• Limit order book imbalance: Imbalance from the whole of the book per period.

• Head of the book imbalance: Imbalance between ask and bid from the top levels of the
period.

• LOB volume weighted average price: mean of the volume weighted by the price of the whole
book.

• Head of the book volume weighted average price: Mean of the volume weight of the top
levels.



data and methods 25

Figure 3.4: Data statistics
Statistics of the Public Trades data

3.1.2 Ethereum blockchain

To obtain information about the trading activity in a Liquidity Pool provided by the smart
contract Uniswap v3, which is also considered a Decentralized Exchange that is entirely live
functioning in the Ethereum network, as a smart contract.

The dataset extracted from the blockchain was composed of 4175 timestamps of one hour
each, encompassing the time from June 1st, 2022, to November fifteen, 2022; the dataset is
composed of the following features:

• Timestamp: index, periods of 1 hour.

• Price: the mean value of the crypto in that hour.

• Volume: the total volume traded in the timestamp.

• Base volume: volume calculated at the time based on how much one can buy with the
quantity of BTC one has.

• quote volume total: volume of BTC quoted.

• mean gas value: pricing value to conduct a transaction or execute a contract on the blockchain.

Figure 3.5: Data statistics
statistics of the Public Trades data
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Figure 3.6: Data Histogram
Histogram of the features from the first dataset

The first thing that became apparent, as seen in figure 2.2, was that the OHLCV had similar
distributions and that the volumes did as well; later, the data was resampled to one-hour
intervals; this changed the distribution and created data that had more significant differences
between features. All the parts are numerical, and there are no categorical data. First, generating
more features to explain and a target feature representing the different classes was necessary.

3.2 Data set formation

Thea is presented in periods of one minute, encompassing the timeframe that January 1, 2021,
to October 31 2022, for the experiments, the following was used:

• 4 hours per sample period. Only OHLCV

• 8 hours per sample period. Only OHLCV

• 1 hour per sample period. Only OHLCV

• 1 hour per sample, with all the datasets.

This being a time series, to split the dataset for training and testing, there was special
consideration for maintaining the time series, so no random or shuffle of the data was performed,
as this would have disrupted the temporality of the dataset, which will be expanded upon in
chapter 4.
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3.2.1 Classical

The classical way to split a time series is to take a certain percentage from the last part of the
dataset and divide it into training, validation, and testing. To achieve this, the dataset was split
into 70%, which is used to generate features x, and matrics, another 20% for testing, and a final
10% for validation. These are visualized in figure 2.3.3.9

Figure 3.7: Split of Features
Split of the x dataset, composed of features.

3.2.2 Data Methods

3.3 Experiment 1 Data Methods

For the first experiment, the OHLCV dataset was used; the dataset was composed of 962,367

timestamps and nine different variables as expressed before; the dataset was obtained from
Binance vision and encompasses from January 1, 2021, to October 30, 2022.

In the first experiment, the dataset was resampled to 4 hours. This had the objective of
matching half a day of trading and could show the cryptocurrency trends in the given timeframe.
This means that a low frequency was used, as this experiment starts from the simplest and
continues to increase the complexity in each experiment.

Next, a new set of features were created; these features present information on the price
behavior of the asset, which are created using basic statistic methods, and four features can be
generated that help explain the prices and their behavior throughout the time series.

• Volatility: Difference between the highest value and the lowest.

Vt = Ht − Lt (3.1)

• Uptrend: Difference between the highest value and the first value on the epoch.

HOt = Ht − Ot (3.2)

• Downtrend: The difference between the lowest value and the last value.

OLt = Ot − Lt (3.3)
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• Direction: the difference observed between the close, and open value is the feature used to
create the target feature ŷ.

COt = Ct − Ot (3.4)

These features are called micro-trends and help to find more information and connections
between the data, also helping explain the behavior of the price values of the BTC/USDT cross.
After creating the microtrends, the following step was creating the autoregressive features.

Using the linear features, the autoregressive features were created using means, differences,
standard deviation, and lag. Two hundred twenty-five new features were created using this
method, and due to the nature of the autoregressive methods, the dataset was left with 3990

timestamps.

3.3.1 Target Engineering Experiment 1

The target, as previously discussed, is a label called signal, which takes the value of COt and
gives it a classification based on a classification method using an empirically chosen threshold;
for this particular problem, a multi-class signal was used, and this created four classes. ŷ is
based on COt (close-open), one of the statistic features as a signal it will help to see the direction
of the trend in price per epoch; this is later shifted one epoch before, so we don’t cause a leakage
of the data, as it can happen when working with time series, because the model would be
predicting the present with data from the same epoch. The formula for ŷ is:

ŷ = sign[Closet − Opent] (3.5)

The next step was to check the correlation between features and target, choosing to eliminate
the elements with a correlation below 15% correlation with ŷ using the spearman correlation
and also to eliminate the features with a correlation between them which exceeded a threshold
chosen at 80% correlation using the Pearson coefficient, to accomplish this a method was
implemented where those features would be selected and eliminated from the dataset, leaving
it with 107 features to train the models. The formula used for Spearman is the following one.

ρ = 1 −
6 ∑ d2

i
n (n2 − 1)

(3.6)

In which: d= the distances of the ranks of the variables xi and yi n = number of samples.
Pearson was the second used because it is the most widely used method to check the

correlation between features. in which 1 represents a perfect positive linear relationship and -1
is a perfect negative one. In contrast, a 0 represents no correlation at all.

ρ =
cov (X, Y)

σxσy
(3.7)

The estimate is done with the following formula:

r = ∑n
i=1 (xi − x) (yi − y)√

∑n
i=1 (xi − x)2 (yi − y)2

(3.8)
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Following this, the dataset was split into X and Y datasets. The X dataset was transformed
using a scaler and later a normalizer to achieve a scale from 0 to 1 for the data and a mean of 0

using both methods. The equations used are the following:

xscaled =
x

max (|x|) (3.9)

xnorm =
X − Xmin

Xmax − Xmin
(3.10)

After this, the datasets were split into three smaller datasets for Train, Test, and validation,
following the metric of 70%,20%, and 10%; special care was taken to not disturb the periodicity
of the dataset, as with time series, one cannot use the normal methods to split the data as seen
on figure 4.2.

Figure 3.8: Heatmap of highly correlated features
Heatmap generated from the features produced having more than or equal to 80% correlation between features.

3.3.2 Experiment 2 Data methods

In contrast with the first experiment, the resample of this iteration was changed to eight hours;
this was elected because of the time a trade session lasts, after this, the same methods were
used, and the basic statistics features and the autoregressive were added to the dataset, adding
to 1983 timestamps and 234 different explanatory features.

For the symbolic features, a symbolic transformer was implemented with the following
parameters: functions such as subtraction, adding, inverse, multiplication, division, absolute,
logarithmic, and square root; the parameters were a population of 12,000, tournaments of 3000,
hall of fame of 30, for five generations, to create 20 new features.
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With those parameters and the entire dataset, four different features were created and later
added to the dataset. The data transformation was implemented in the same way as the first
experiment, with the difference that it was done before the feature selection, with the hypothesis
that it could change the metrics results.

After applying the feature selection, only 88 features remained on the dataset. The data was
split using the same method as in experiment one splitting it into three datasets for train, testing,
and validation.

Figure 3.9: Data Split
Plot of Data split performed, using 70, 20, 10 ratios for Training, test, and validation.

3.3.3 Target Engineering

For the second experiment, ŷ was created in the same way, with the only distinction being that
the benchmark was changed to reflect the difference in resampling of the timestamps, rising to
300 the benchmark value to get a more balanced classification.

3.3.4 Dataset Generation Experiment 3

The OHLCV dataset was generated the same way as the last experiment; then, it was resampled
as 1-hour timestamps to match the Uniswap dataset. The dataset was merged, and the
timestamps without Uniswap or OHLCV data were removed, leaving 3824 timestamps and 14

features.

After this, the same methods were applied to create explanatory features, creating 226

autoregressive features and 17 symbolic ones, giving a total of 264 descriptive features.

The dataset was then split into X and Y and transformed through the scaling and
normalization transformations; then, the feature selection was applied, leaving 124 explanatory
features.
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3.3.5 Target Engineering Experiment 3

The target variable ŷ was created in the same way as the previous experiments, with a different
threshold whose value was elected to reflect the temporality of the timestamps.
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3.3.6 Dataset Generation Experiment 4

With the assumption that more features could help to create a dataset with more prediction
possibilities, the dataset used in experiment 4 all the datasets was used; this means that OHLC,
order books, public trades, and Uniswap data were used to generate a dataset for September
2022, this data had 697 timestamps and was composed of forty-two different features, from
each of the other previous datasets. After this, the autoregressive features were created using
the same methods as the other experiments, resulting in a dataset composed of 191 different
features. Which would be used to create new symbolic features. This method was the same as
before and used the following parameters:

• Population: 12000

• Tournament: 3000

• hall of fame: 300

• Generations: 7

• Features generated: 100

• with a depth of 2 to 16

With this, the symbolic transformer generated one hundred new features for a total of 290 with
aggregated, autoregressive, symbolic, and original features, which would begin the process of
choosing the feature variables to train the model.

Figure 3.10: Data Correlation
Plot of the Matrix generated with the correlations between variables.
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3.3.7 Target variable generation Experiment 4

For experiment 4, a different way to create the labels was used; this method is referred to as three
barriers by Lopez De Prado; what it does is create dynamic thresholds for the labeling based on
the volatility of the market, creating three barriers, upper, middle, and low. The method was
adapted and changed to make four classes instead of two, where in the case presented by Lopez
De Prado4, it creates signals only when touching the barriers, and in the case presented in this 4 Lopez de Prado, M. M.

(2018). Advances in Fi-
nancial Machine Learning.
Wiley

work, it was reworked to assign signals to each case.

Figure 3.11: Plot of Labeling Method
Plot of the classification of each epoch based on their label

Figure 3.12: Histogram of ŷ
Histogram of Target Variable
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3.3.8 Feature Selection Experiment 4

After generating all the variables to be used, the next step was to select the ones that would
contribute the most to the final model; the method used was the same as in past experiments,
and the resulting Plot for the correlation matrix with the highly correlated features exceeding
80% correlation was the following one:

Figure 3.13: Highlight of the Plot with highly correlated features
Plot of the correlation matrix

This Plot shows the correlation between the different types of data used, with the different
sections composing the highly correlated Plot being highlighted. This is explained because of
the other methods that the data was transformed and created, which is to be expected.

Dropping the features left the dataset with eighty-five features, which would be used to
correlate with the target variable, then dropping the features which do not meet the minimum
correlation to the target, leaving only 70 features in the final dataset.
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Figure 3.14: Final dataset correlation to ŷ
Plot of the correlation matrix

3.3.9 Data Split Experiment 4

The Data split was done the same way as in past experiments, splitting the data into 70 percent
for training, 20 for testing, and ten percent for validation.

Figure 3.15: Data split for X dataset
Data Split for X features
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Figure 3.16: Data split for ŷ dataset
Data Split for ŷ
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The contents of this chapter are the models used for the prediction of ŷ and the different
experiments implemented during the optimization of the models.
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4.1 Data Scaling

Before applying the datasets to the models, a series of statistical techniques were applied:
Transformation, standardization, and normalization help in the process of machine learning
due to the original data being on different scales, these scaling methods have a vital role in
the preprocessing of the data, and has an impact on the performance of the machine learning
algorithms, in this work the scaling methods used were scaling and normalization.

4.2 Predictive Models

Two models were proposed as benchmarks, starting from the simplest one, a Martingale, and
the second one is based on the premise of information updates given past results, which Naive
Bayes does provide. Then three models are proposed for the experiments, logistic regression,
random forest classifier, and a neural network in the form of the multi-layer perceptron.

4.2.1 Martingale

Martingale was the first benchmark method, chosen because it is the simplest method used in
finance as well as being a staple for low computing cost forecasting methods, and it parts from
the assumption that the value of the signal ŷt+1 is going to be the same as the one in ŷt, this can
be expressed on the following way:

[Xt] = E [Xt−1] (4.1)

4.2.2 Naive Bayes

The second benchmark method chosen was the Naive Bayes which based on Bayes Theorem
assumes that the features used for the classification are independent between them, this being
the naive part of the model, this method did not have optimization and was only used as a
benchmark to contrast with the other more complex models.

The following equations are used on the Naive Bayes model:

• Posterior Probability:

P
(
ωj
∣∣x) = p

(
x
∣∣ωj
)
· P
(
ωj
)

p (x)
(4.2)

posterior probability =
likelihood · prior probability

evidence
(4.3)

• Decision Rule:

Decide ω1 if P (ω1|x) > P (ω2|x) else decide ω2. (4.4)

p (x|ω1) · P (ω1)

p (x)
>

p (x|ω2) · P (ω2)

p (x)
(4.5)
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• Objective function:

Decide ω1 if P (ω1|x) > P (ω2|x) else decide ω2.
p (x|ω1) · P (ω1)

p (x)
>

p (x|ω2) · P (ω2)

p (x)
(4.6)
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• And uses the following equation to represent that the features are gaussian ( the naïve part):

P (xi | y) =
1√

2πσ2
y

exp

(
−
(

xi − µy
)2

2σ2
y

)
(4.8)

4.2.3 Logistic Regression

This model for classification is also known in the literature as logit regression and Maxent
classifier, this model uses the probabilities of possible outcomes using the logistic function.

f (x) =
L

1 + e−k(x−x0)
(4.9)

The Logistic Regression model was used twice in each experiment the first time without any
optimization, and the second using hyperparameters optimization to contrast the results of the
different configurations of the models.

The configuration for the second model used the Multinomial case, as ŷ was produced with
4 classes, on the multinomial case the objective of the optimization becomes the following
equation:

min
W

−C
n

∑
i=1

K−1

∑
k=0

[yi = k] log( p̂k(Xi)) + r(W). (4.10)

where P(yi = k|Xi) represents the Iverson bracket in which p= 0 if False, and in every other
case as 1, for the regularization the elastic net was used and is expressed by the following:

1 − ρ

2
∥W∥2

F + ρ∥W∥1,1 (4.11)

For the optimization of the model on the second iteration of the model implementation in each
experiment, a grid was used to check different hyperparameters and choose the best-performing
one.

4.2.4 Random Forest

This ensemble method of randomized trees creates multiple trees for classification and combines
the predictions using an average of the different models, this is used because the ensemble
reduces the variance between the different trees creating a more robust model. The method
ensembles multiple trees independently from each other and then average the results. Each tree
is produced using the following equations:
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• The node m is represented by Q with n samples, then each candidate is split then partitioning
the data into the two QS below:

Qle f t
m (θ) = {(x, y)|xj ≤ tm}

Qright
m (θ) = Qm \ Qle f t

m (θ)
(4.12)

• Then the quality of the splits of node m is computed using the loss function H.

G(Qm, θ) =
nle f t

m
nm

H(Qle f t
m (θ)) +

nright
m
nm

H(Qright
m (θ)) (4.13)

• and then the parameters used to minimize the impurity

θ∗ = argminθ G(Qm, θ) (4.14)

• as the target is a classification the criteria for classification are:

pmk =
1

nm
∑

y∈Qm

I(y = k) (4.15)

4.2.5 Multi Layer Perceptron

The final method used was a multi-layer perceptron or MLP which is a feedforward neural
network, which is composed of more than one perceptron, it is composed of an initial layer, a
final layer, and one or more hidden layers, the initial layer receives the initial signal, the final
layer makes the decision of the prediction and the hidden layers perform the computational task
of the MLP, which function in two ways, as a forward pass, where the signal flow transits from
the input layer, through the hidden ones into the output were the decision is made, then there is
the backward pass, or backpropagation, where the partial derivatives of the error function are
backpropagated through the neural network, then using the error, the parameters are adjusted
to get the MLP to minimize the error until the model cannot reduce the error anymore.
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Figure 4.1: Diagram of an MLP
MLP consisting of 16 neurons in the input layer, 12 in hidden layer 1, 10 in hidden layer 2, and 4 in the output layer..

4.3 Modeling Process

The process was defined fundamentally with three elements in mid-periodicity, giving more
importance to target and cost function engineering, then to be specially focused on financial
time series data, and finally providing support for recursive experiment definition. Thus, the
following are the general steps that are part of the predictive modeling process.

• Data set generation

• Target engineering

• Cost function engineering

• Feature engineering

• Model definition

• Model training and validation

• Performance analysis
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4.4 Experiments

The criteria for the experiment definition are included in this chapter since it involved sections
of the entire predictive modeling process. Also, the dynamics of the experiments followed a
sequential definition and execution, e.g. the first experiment was conducted and its results were
used to define the second experiment, and from the results of this last one, compared with the
previous one, a third experiment was defined and executed based on the results of experiment
2, and a final experiment was formulated based on previous results.

The elements considered for experiment definition were:

• Data set generation

• Target Engineering

• Feature Engineering and Selection

• Model Optimization

4.4.1 Model definition

4.4.2 Experiment 1

The first experiment was formulated using only the OHLCV data, using the data from 2021

through November 2022, with 962367 samples, and 9 initial features, with a periodicity, changed
to 4 hours per sample. The formulation for the preprocessing of the data was to use scaling
and normalization after the feature selection, the target feature was generated with a threshold
chosen and the only method to produce more features was autoregressive only. The final dataset
had 107 explanatory features.

• Data Sources: OHLC

• period: January 1st 2021 to October 31st 2022

• Periodicity: 4 Hour intervals per sample.

• optimization of the models with a grid.

• Feature Creation methods: Autorregresive.

• Scaling and Normalization before feature selection.

In the first experiment, the following models were used as benchmarks:

• Martingale

• Naive Bayes

• Logistic Regression(no optimization)

Following the benchmarks a logistic regression was implemented using the elastic-net penalty
and optimized by a grid composed of the following parameters:

• L1 Ratio [.10,.20,.30,.40,.50,.60,.70,.80,.90]
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• Class weight [None, ’balanced’]

• C [0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0]

• Solver [’newton-cg’, ’sag’, ’saga’,’lbfgs’]

The Logistic Regression used accuracy as its metric.

The next model implemented was the Random Forest, which was optimized by a grid; the
model used the following parameters:

• Max Features [’sqrt,’ ’log2’, None]

• Criterion[’gini,’ ’entropy,’ ’log loss’]

• Number of Estimators [100, 500,1000]

• Max Depth was set as none

• Min samples split set as 2

Finally, the MLP for classification was implemented using a grid for optimization. The model
was created using TensorFlow and Keras modules in python. The parameters used for this
configuration were:

• number of inputs

• quantity of neurons per layer

• quantity of hidden layers

• learning rate

• batch size

• epochs set as 50

The model used the loss function of categorical cross-entropy which is used for multi-class
classification the optimizer chosen was Adam, and the metric was accuracy. In this configuration,
there was one hidden layer and the model was set up to choose the best-performing configuration
through optimization.

4.4.3 Metrics for the models

For the evaluation of the models, the following metrics were used:

• Accuracy, measures the model performance, the formula is the following one:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.16)

• Precision, how accurate the positive predictions were.

Precision =
TP

TP + FP
(4.17)

Precision =
TP

TP + FP
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• Recall is the ratio of true positives to total positives in the data.

Recall =
TP

TP + FN
(4.18)

• Specificity, percentage of true negatives.

Speci f icity =
TN

TN + FP
(4.19)

• f1 score hybrid metric for unbalanced classes.

F1 =
2TP

2TP + FP + FN
(4.20)

• Balanced Accuracy, the accuracy that considers the true weight of unbalanced classes.

4.5 Experiment 2

For the next experiment, the formulation of the implementation of the code was changed to see
the effects of resampling at a different interval chosen to be 8 hours, using symbolic features,
and changing the transformation of the data to before the feature selection, with the hypothesis
that this can improve the metrics of the models due to more data being on each sample period.

• Data Sources: OHLC

• period: January 1st 2021 to October 31st 2022

• Periodicity: 8 Hour intervals per sample.

• Further optimization of the models.

• Feature Creation methods: Autorregresive, Symbolic.

• Scaling and Normalization after feature generation.

The final dataset used in the second experiment was composed of 235 features composed of
features from the original dataset, autoregressive created ones, and symbolic features.

4.5.1 Model definition

The models were implemented the same way as experiment one, having three benchmarks,
the martingale, naive Bayes, and logistic without optimization, and three optimized models,
Logistic regression with elastic net, Random forest classifier, and MLP for classification. These
last three were optimized through a grid with the chosen parameters.

• Martingale

• Naive Bayes

• Logistic Regression(no optimization)
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following the benchmarks, logistic regression was implemented using the elastic-net penalty
and optimized by a grid composed of the following parameters:

• L1 Ratio [.50,.60,.70,.80,.90]

• Class weight [None, ’balanced’]

• C [0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0]

• Solver [Saga]

The Logistic Regression used accuracy as its metric.

The next model implemented was the Random Forest, which was optimized by a grid; the
model used the following parameters:

• Max Features [’sqrt,’ ’log2’, None]

• Criterion[’gini,’ ’entropy,’ ’log loss’]

• Number of Estimators [100, 500,1000]

• Max Depth was set as none

• Min samples split set as 2

Finally, the MLP for classification was implemented using a grid for optimization. The model
was created using TensorFlow and Keras modules in python. The parameters used for this
configuration were:

• number of inputs

• quantity of neurons per layer: variable Number of inputs plus [2,4,8,16,32,64]

• quantity of hidden layers two sigmoid activation

• learning rate [0.01,0.1,0.5,1]

• batch size [1,8,16]

• epochs set as 50

The model used the loss function of categorical cross-entropy for multi-class classification. The
optimizer chosen was Adam, and the metric was accuracy. There was one hidden layer in this
configuration, and the model was set up to select the best-performing configuration through
optimization.
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4.6 Experiment 3

Based on the results of experiment 2, experiment 3 implemented more changes to improve
metrics and create more robust forecasting models. The following changes were implemented
in this experiment:

• Data Sources: OHLC, Uniswap

• period: June 1, 2022- October 31, 2022

• Periodicity: 1 Hour intervals per sample.

• Further optimization of the models.

• Feature Creation methods: Autorregresive, Symbolic.

• Scaling and Normalization after feature generation.

4.6.1 Model Definition

The models were implemented in the same formulation as experiment two, having three
benchmarks, the martingale, naive Bayes, and logistic without optimization, and three optimized
models, Logistic regression with elastic net, Random forest classifier, and MLP for classification.
These last three were optimized through a grid with the chosen parameters.

• Martingale

• Naive Bayes

• Logistic Regression(no optimization)

following the benchmarks, logistic regression was implemented using the elastic-net penalty
and optimized by a grid composed of the following parameters:

• L1 Ratio [.50,.60,.70,.80,.90]

• Class weight [None, ’balanced’]

• C [0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0]

• Solver [Saga]

The Logistic Regression used accuracy as its metric.

The next model implemented was the Random Forest, which was optimized by a grid; the
model used the following parameters:

• Max Features [’sqrt,’ ’log2’, None]

• Criterion[’gini,’ ’entropy,’ ’log loss’]

• Number of Estimators [100, 500,1000]

• Max Depth was set as none
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• Min samples split set as 2

Finally, the MLP for classification was implemented using a grid for optimization. The model
was created using TensorFlow and Keras modules in python. The parameters used for this
configuration were:

• number of inputs

• quantity of neurons per layer: variable Number of inputs plus [2,4,8,16,32,64]

• quantity of hidden layers two sigmoid activation

• learning rate [0.01,0.1,0.5,1]

• batch size [1,8,16]

• epochs set as 50

The model used the loss function of categorical cross-entropy for multi-class classification. The
optimizer chosen was Adam, and the metric was accuracy. There was one hidden layer in this
configuration, and the model was set up to select the best-performing configuration through
optimization.

4.7 Experiment 4

Based on the results of experiment 3, experiment 4 had significant changes in the way that
the target variable was produced. Also, more sources for data were used, which impacted the
period that could be used for the final dataset. in the case of the models, those were optimized
through a random search to make modeling the data faster and more accurate.

• Data Sources: OHLC, Uniswap, Publictrades

• period: September 2022

• Periodicity: 1 Hour intervals per sample.

• Further optimization of the models through random search.

• Feature Creation methods: Autorregresive, Symbolic.

• Scaling and Normalization after feature generation.

4.7.1 Model Definition

The models were implemented in the same formulation as experiment two, having three
benchmarks, the martingale, naive Bayes, and logistic without optimization, and three optimized
models, Logistic regression Elastic net, Random forest, and MLP for classification. These last
three were optimized through a grid with the chosen parameters.

• Martingale

• Naive Bayes
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• Logistic Regression(no optimization)

following the benchmarks, logistic regression was implemented using the elastic-net penalty
and optimized by a grid composed of the following parameters:

• L1 Ratio [.50,.60,.70,.80,.90]

• Class weight [None, ’balanced’]

• C [0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0]

• Solver [Saga]

The Logistic Regression used accuracy as its metric.

The next model implemented was the Random Forest, which was optimized by a grid; the
model used the following parameters:

• Max Features [’sqrt,’ ’log2’, None]

• Criterion[’gini,’ ’entropy,’ ’log loss’]

• Number of Estimators [100, 500,1000]

• Max Depth was set as none

• Min samples split set as 2

Finally, the MLP for classification was implemented using a grid for optimization. The model
was created using TensorFlow and Keras modules in python. The parameters used for this
configuration were:

• number of inputs

• quantity of neurons per layer: variable Number of inputs plus [2,4,8,16,32,64]

• quantity of hidden layers: four soft plus, tanh activations.

• learning rate [0.01,0.1,0.5,1]

• batch size [1,8,16]

• epochs set as 50

• Input Layer: Relu

• Output Layer: Softmax 4 neurons.

• Optimizer: Adam
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In this chapter the obtained results are discussed, and also a comparison between models is
analyzed.
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5.1 Model’s Performance

5.2 Experiment 1

Experiment one presented the following metrics:

Table 5.1: Experiment 1 Model Results

Model Accuracy Recall Precision F1

Martingale 31.328321 31.328321 31.331823 31.330068

Logistic Regression 31.203008 32.581454 21.364127 25.806288

Naive Bayes 27.067669 27.067669 28.127838 24.895935

Random Forest 34.335840 34.335840 23.155341 26.611362

MLP 33.21 33.22156 28.5486 30.584

5.2.1 Martingale Experiment 1

Martingale in the first experiment performed poorly with accuracy recall and precision and f1
at 31.33%, the benchmark model did the following classification:

• -2: 1501

• -1: 486

• 1: 474

• 2: 1529

Figure 5.1: Predictions for Martingale
Martingale histogram
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The confusion Matrix produced gave the following results:

Figure 5.2: Plot of the Confusion Matrix
Confusion Matrix for Martingale Model

5.2.2 Naive Bayes experiment 1

Naive Bayes performed the worst amongst the models in experiment 1, which was expected as
the features are correlated. As in the case of the martingale, the Confusion Matrix Shows, that
the predictions are random, and distributed among all the classes.

Figure 5.3: Predictions for Naive Bayes
Naive Bayes Confusion Matrix

5.2.3 Logistic Regression Experiment 1

First, the Logistic Regression was implemented without optimization.

• The Logistic Regression without optimization had an accuracy of 31.4536% for the
classification of test data, while 31.5789% for validation data.

• The confusion matrix shows a bias towards the -2 and 2 classes.

• A balanced accuracy of 24.6656% confirms the bias towards the extreme classes.
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With the optimization through the grid the logistic regression presented the following:

• Accuracy of 32.5814 for test and 31.5789 for validation.

• It showed the same bias as the non-optimized model.

• The confusion matrix, showed bias towards the classes -2 and 2

Figure 5.4: Predictions for Regression
Logistic Regression Confusion Matrix

5.2.4 Random Forest Experiment 1

The random forest was optimized through the grid and had a score of 0.4268 for the training
data, the best parameters were, the Gini criterion, and max features with square root, the test
dataset presented a score of 0.3433 while the validation had a 0.3358 score, this case also had
the issue of bias towards the extremes of the classes, with zero true positives in the -1 and 1

classes. [ 99 0 0 174] [ 47 0 0 86] [ 41 0 0 101] [ 75 0 0 175]

5.2.5 Multi Layer Perceptron

The MLP was implemented using a grid optimization and had poor performance as expected in
the first experiment, the best training accuracy was 0.4830 with an accuracy of 0.3321 for the
testing data and validation of .3149 which was worst than the random forest metrics.
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Figure 5.5: Training Performance for MLP
Plots of the Training data Loss and accuracy for MLP training

5.3 Experiment 2

Table 5.2: Experiment 2 Model Results

Model Accuracy Recall Precision F1

Martingale 29.248613 29.248613 29.247544 29.248064

Logistic Regression 20.454545 20.454545 9.888858 9.920318

Naive Bayes 31.565657 31.565657 30.331704 27.074559

Random Forest 26.010101 26.010101 32.626474 23.502318

MLP 27.27 25.581 28.5486 30.584

5.3.1 Martingale Experiment 2

In experiment 2, the martingale performed similarly to experiment 1.
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Figure 5.6: Confusion Matrix for Martingale
Plots of the Training data Loss and accuracy for MLP training

Figure 5.7: Histogram for Martingale classification
Histogram Plot of Martingale prediction

5.3.2 Naive Bayes Experiment 2

In contrast, to experiment 1 the Naive Bayes performed the second best in the second experiment,
this demonstrates that it’s possible that the data was not handled properly or that the periodicity
of the data was too high. The validation data showed better accuracy, and recall with 0.3434 but
worst precision, with only .2659



results of the models 55

Figure 5.8: Predictions for Naive Bayes
Naive Bayes Confusion Matrix

5.3.3 Logistic Regression Experiment 2

First, the Logistic Regression was implemented without optimization.

• The Logistic Regression without optimization had an accuracy of 27.0202% for the
classification of test data, while 27.7474% for validation data.

• The confusion matrix shows no bias towards the -2 and 2 classes.

• A balanced accuracy of 28.2.6656% confirms that the threshold for the signal has to be higher.

With the optimization through the grid the logistic regression presented the following:

• Accuracy of 20.4554 for test and 20.4545 for validation.

• It showed that the model was overfitted as the training accuracy was .3722

• The confusion matrix, showed bias towards the classes -2 and 2

Figure 5.9: Predictions for Regression
Logistic Regression Confusion Matrix
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5.3.4 Random Forest Experiment 2

• The Training accuracy was of 0.3556 which was higher than the test and validation accuracy.

• The random forest with the best estimator was one with a number of estimators of 500 and
max features of log 2.

• The test accuracy was of .2626 and the validation was off.26010

• The confusion matrix had numbers in every category and seemed to be random.

5.3.5 Multi Layer Perceptron Experiment 2

The MLP was implemented using a grid optimization and had poor performance as expected in
the first experiment, the best training accuracy was 0.4111 with an accuracy of 0.2727 for the
testing data and validation of .2653 which was worst than the naive Bayes model.

Figure 5.10: Training Performance for MLP
Plots of the Training data Loss and accuracy for MLP training
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5.4 Experiment 3

Table 5.3: Experiment 3 Model Results

Model Accuracy Recall Precision F1

Balanced

Martingale 27.850877 27.850877 27.850790 27.850829

Logistic Regression 27.945205 27.945205 50.659737 23.562354

Naive Bayes 31.232877 31.232877 33.803137 25.416627

Random Forest 32.054795 32.054795 32.509789 31.269207

MLP 33.95 32.61 30.63 30.584

5.4.1 Martingale Experiment 3

In experiment 3, the martingale performed similarly to experiment 2.

Figure 5.11: Confusion Matrix for Martingale
Plots of the Training data Loss and accuracy for MLP training

Figure 5.12: Histogram for Martingale classification
Histogram Plot of Martingale prediction

5.4.2 Naive Bayes Experiment 3

In contrast, to experiment 2 the Naive Bayes performed the third best in this experiment, The
test data showed worse accuracy than the validation split with 31.2328 The validation data
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showed better accuracy, and recall with 0.34.6153 but worst precision, with only .2658 and both
had bias towards the classes 1 and -1.

Figure 5.13: Predictions for Naive Bayes
Naive Bayes Confusion Matrix

5.4.3 Logistic Regression Experiment 3

First, the Logistic Regression was implemented without optimization.

• The Logistic Regression without optimization had an accuracy of 31.9178% for the
classification of test data, while 33.5164% for validation data.

• The confusion matrix shows no bias towards the -2 and 2 classes.

• A balanced accuracy of 30.6951% confirms that the threshold for the signal was closer to
reality.

With the optimization through the grid the logistic regression presented the following:

• Accuracy of 27.9452 for test and 28.5714 for validation.

• It showed that the model was overfitted as the training accuracy was 0.3339

• The confusion matrix, showed bias towards the classes -2 and 2
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Figure 5.14: Predictions for Regression
Logistic Regression Confusion Matrix

5.4.4 Random Forest Experiment 3

• The Training accuracy was 0.4358 which was higher than the test and validation accuracy.

• The random forest with the best estimator was one with a number of estimators of 1000 and
max features of square root and criterion gini.

• the test accuracy was 0.3273 and the validation was of 0.3131

• the confusion matrix had numbers in every category and seemed to be random.

5.4.5 Multi Layer Perceptron Experiment 3

The MLP was implemented using a grid optimization and had a poor performance as expected
in the first experiment, the best training accuracy was 0.3646 with an accuracy of 0.3395 for the
testing data and validation of .3175 which was the best performing model in this experiment.
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Figure 5.15: Training Performance for MLP
Plots of the Training data Loss and accuracy for MLP training
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5.5 Experiment 4

Table 5.4: Experiment 4 Model Results

Model Accuracy Recall Precision F1

Logistic Regression 40.14598540145985 40.14598540145985 34.30413625304137 9.920318

Naive Bayes 27.73722627737226 27.73722627737226 30.373108868515143 36.98576592828412

Random Forest 51.82481751824818 51.82481751824818 45.164598331714515 45.76283855418012

MLP 42.34 42.34 41.56 43.82

5.5.1 Naive Bayes Experiment 4

The Naive Bayes performed the worst in this experiment, The test data showed better accuracy
than the validation split with 27.7372 The validation data showed worse accuracy, and recall
with 10.29411 with only .2558 in precision and both had a bias towards the classes 1 and -1.

Figure 5.16: Predictions for Naive Bayes
Naive Bayes Confusion Matrix

5.5.2 Logistic Regression Experiment 4

First, the Logistic Regression was implemented without optimization.

• The Logistic Regression without optimization had an accuracy of 36.4963% for the
classification of test data, while 38.2352% for validation data.

• The confusion matrix shows bias towards the -1 and 1 classes which can be explained for the
few samples of the dataset.

• A balanced accuracy of 21.6676% confirms that there are few data and needs more samples.

With the optimization through the grid the logistic regression presented the following:

• Accuracy of 40.1459 for test and 36.76470 for validation.
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• It showed that the model was not overfitted. with 0.45255 for training

• The confusion matrix, showed bias towards the classes 1 and -1

Figure 5.17: Predictions for Regression
Logistic Regression Confusion Matrix

5.5.3 Random Forest Experiment 4

• The Training accuracy was 0.5135 which was lower than the test and higher than the validation
accuracy.

• The random forest with the best estimator was one with a number of estimators of 1000 and
criterion log loss and no max features.

• The test accuracy was 0.5182 and the validation was 0.4117

• The confusion matrix had a visible bias towards classes 1 and -1.

Figure 5.18: Tree Generated
Generated tree for the model
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5.5.4 Multi Layer Perceptron Experiment 3

The MLP was implemented using a grid optimization and had better performance than expected
in the final experiment, the best training accuracy was 0.8243 with an accuracy of 0.4234 for the
testing data and validation of .5572 which was the best performing model in this experiment,
the model appears to be overfitted, and it most possibly is because there were too few data for
this experiment.

Figure 5.19: Training Performance for MLP
Plots of the Training data Loss and accuracy for MLP training
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This chapter includes a discussion of the results shown in chapter 5 and presents the proposal
for future work.
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6.1 Conclusions

• Symbolic-created features using evolutionary computation have an important part in the
process of feature generation for financial time series forecasting, where certain relations
between features are hidden or cannot be easily seen.

• The primary objective of implementing a model with accuracy to forecast the movements of
the movement of cryptocurrency through 4 labels was not achieved, and it’s possible that the
problem should be seen as a binary one.

• The use of the three-barrier method vastly improved the metrics for the models in experiment
four; even if the data had a sample that was small and had an effect on the performance of
the testing and validation phase, the correlation between the target and explanatory features
was bigger and had a better performance even if the dataset was smaller.

• the feature engineering and feature selection had an impact on the performance of the models,
which can be seen particularly in experiment 4; the use of Uniswap and Publictrades Data
helped to improve the predictability of the model, giving more information and permitted
the generation of better explanatory features throughout the autoregression and symbolic
transformer.

• The best-performing models were the random forest classifier and the Multi-Layer perceptron
in experiment 4, the random search grid method for optimization vastly improved the
execution times of the models and had better metrics.

• The benchmarks performed the worst in all of the experiments, which is to be expected.

• The crypto market presents different challenges compared to the traditional markets on
which to create a forecasting method and the application of a machine learning method.

6.2 Future Work

• The first thing that could be improved in further revisions is the use of a larger period of
sample for the models, using a larger quantity of periods of time to train the model, and a
larger sample for testing and validation.

• The second thing that could be implemented is the use of stochastic methods to optimize the
models, which would improve the training time, as well as the performance of the models.

• Generate the symbolic data only using the test dataset to optimize the process of evolutionary
computation for the symbolic transformer and generate data in a more advanced manner.

• The use of a more sophisticated model for classification, such as a Recurrent Neural Network,
which could have a better learning capacity for this type of classification problem.

• The use of a cluster for training models with a larger quantity of data to circumvent the time
the models require.
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