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Abstract 

We propose a generalized algorithm to optimize an antenna through Broyden based input 

space mapping. We elaborate on the details of creating an effective coarse model from a 2D coarse 

mesh method of moments simulation on Matlab™ Antenna Toolbox. The fine model consists of a 

3D finite element simulation from Ansys™ EM2019 HFSS Antenna Toolbox. The coarse model is 

optimized using a minimax formulation to obtain a target response. The Broyden based input space 

mapping of the models is implemented through a generalized Matlab to HFSS driver. We design 

2 antennas; a dipole bowtie and a microstrip patch using the antenna optimization algorithm. We 

elaborate on the adjustments needed for the implementation of the algorithm to the specific 

examples.   
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Introduction 

The main contribution of this thesis dissertation is an antenna optimization algorithm 

through Broyden based input space mapping. We exploit the space mapping technique to be able 

to design antennas with a few simulations of a fine, very precise yet computationally expensive, 

model and many iterations of a coarse model , a less precise but computationally inexpensive 

simulation.  

 

The fine model is implemented as a 3D finite element analysis simulation using Ansys™  

EM2019 HFSS Antenna toolbox (HFSS for short) [1]. The coarse model is implemented as a coarse 

mesh 2D method of moments (MoM) simulation from Matlab™ Antenna toolbox [2]. We 

implement the algorithm in Matlab with a Matlab-Python™ driver for HFSS.  

 

The algorithm is then applied to the design of 2 different antennas: A dipole bowtie and a 

microstrip patch. We elaborate on the challenges to implement the algorithm for each case and 

provide the Matlab and Python™ code necessary to reproduce our results. 

 

We follow the literature on circuit optimization through space mapping that started with 

Bandler’s seminal work on the subject , surveyed by himself in [3]. The literature using this 

technique specifically for antennas is relatively young and started with Bandler’s alumni Zhu et al 

in [4], this is the first paper that exploits space mapping to optimize an antenna.  The literature has 

since grown with several approaches to antenna optimization through space mapping, most of them 

by Bandler’s alumni in [5]- [9]. The literature on the subject is sparse and there are many 

opportunities for contributions.  

 

This work focusses on implementation of antenna simulations, optimization methods and 

the space mapping technique, rather than antenna theory.  
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Chapter 1 presents the challenges of designing antennas. Elaborates on the inner workings 

of the simulation techniques using for the fine and coarse models, 3D finite element analysis and 

coarse method of MoM. Introduces a generalized Matlab-Python™ to HFSS driver and introduces 

the reader to the 2 antennas designed using the algorithm. 

 

Chapter 2 elaborates on the optimization techniques:  the minimax formulation for antenna 

engineering specifications. Presents the Nelder-Mead algorithm that is used multiple times during 

the antenna design. It introduces the reader to the literature on the Broyden based input space 

mapping technique. 

 

Chapter 3 presents the antenna frequency response optimization through input space 

mapping in general. The algorithm is analyzed in detail, describing the challenges and providing 

suggestions on how to tackle them. These suggestions are generalizations of the authors experience 

applying the algorithm to specific antenna designs.  

 

Chapter 4 presents the implementation of the algorithm to design a bowtie dipole antenna 

to engineering specifications. It presents the mathematical formulations of every step of the 

algorithm and the results of the fine and coarse simulations. The formulation of an effective coarse 

model takes center stage.  

 

Chapter 5 presents the implementation of the algorithm to design a microstrip patch antenna 

to engineering specifications. It presents the mathematical formulations of every step of the 

algorithm and the results of the fine and coarse simulations. The formulation of an effective coarse 

model takes center stage.  

 

Finally, we conclude highlighting the original insights and contributions of this work and 

present suggestions to extend this line of research.  

 

The author wishes to thank Dr. Zabdiel Brito for his patience and guidance through the 

development of this work and years of collaboration on this intellectual endeavor.  
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The authors original contributions presented in this thesis dissertation follow: 

 

 Formulation and development of a generalized algorithm for antenna optimization 

through Broyden based input space mapping.  

 A generalized Matlab™-Python™ to HFFS™ driver. This driver can be reused for 

any HFFS™ simulation and is not specific to antenna simulations.  

 Formulation and development of a dipole bowtie antenna design using the Broyden 

based input space mapping algorithm.  

 Formulation and development of a microstrip patch antenna design using the 

Broyden based input space mapping algorithm.  

 Implementation in Matlab™, Python™ and HFSS™ of the antenna optimization 

algorithm that includes: 

o Matlab™  code for MoM coarse model formulation and implementation for 

bowtie dipole and microstrip patch antennas. 

o  Matlab™ code for formulation and implementation of the minimax 

formulation and optimization of the coarse model for bowtie dipole and 

microstrip patch antennas. 

o Matlab™ code for the formulation and implementation of the Broyden 

based input space mapping algorithm.  

o Matlab™ and Python™ code for an HFSS™ driver for bowtie dipole and 

microstrip patch antennas. 

o HFSS™ Antenna toolbox implementation for bowtie dipole and microstrip 

patch antennas. 
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1. Antenna Electromagnetic Simulation 

In this chapter we briefly describe the simulation techniques used in the rest of the work 
and provide an introduction and references for the two antenna types used as examples of 
implementation of the algorithm.  The reader is referred to [2] for a detailed discussion of Matlab™ 
Antenna toolbox MoM implementation. The reader is encouraged to consult the references for a 
detailed exposition of the simulation techniques. 

1.1. Simulation Techniques: Matlab™ Method of Moments. 

1.1.1 Meshing 

Also known as discretization of metals. It creates an array of triangles on the metal 
surface [2]. Shown in Figure 1-1.  
 

 

1.1.2 Basis functions 

 
Matlab uses the Rao-Wilton-Glisson basis functions on triangle pairs to calculate the 

surface currents. Shown in Figure 3-1. This is applied to the discretized metal surface [2]. 

Figure 1-1 Matlab MoM meshing. Taken from [2]. 
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1.1.3 Interaction matrix 

Figure 1-2 Basis functions applied to discretized 
metal surface. Taken from [2].  

Figure 1-3 Typical interaction matrix for 256 basis 
functions. Taken from [2]. 
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Next, the antenna is excited by 1V on the feeding edge. The free-space Green's function 
between all basis functions is calculated for all the triangles on the antenna surface. This creates 
a diagonally dominant matrix as shown in Figure 1-3 [2]. 

 

1.2. Simulation Techniques: HFSS 3D Finite Element analysis. 

 
We use the HFSS 3D finite element modelling technique as the fine model. The finite 

element method technique divides a solid in thousands of tetrahedrons like the ones shown in 
the Figure 1-4 . The field equations, magnetic and electric fields are then solved for each 
element.  

 

 

1.3. Matlab™ to HFSS Driver. 

When designing circuits using optimization techniques it is often desirable to use Matlab™ 
to drive other simulation software. This allows to leverage Matlab™ optimization functions and 
extensive mathematical libraries. In order to implement the algorithm, we drive Ansys™ EM 
desktop HFSS from Matlab. 

 
The proposal is to create a generalized Matlab™-Python-HFSS™ driver based on python 

templates as shown in Figure 1-5. 
 

 A Python template that is specific for the optimization objective is created. This 
template uses HFSS™ python instructions to modify HFSS™ parameters and run 

Figure 1-4 
Tetrahedron for finite 
element analysis. 
Taken from [1] 
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simulations. The parts that are not modified by the Matlab™ model are hardcoded 
in the template.  

 The generalized Matlab™ driver receives from the optimization script a list of 
parameters and the line numbers where to write them in the template. Then it loads 
the template, modifies the requested lines and saves it. 

 The generalized Matlab™ driver calls Ansys™ EM desktop executable file and 
loads the Python script generated from the template. 

 HFSS™ executes the modifications to the model, runs the analysis and returns a 
model response in csv format to a specified directory. All the instructions are 
explicit in the python script generated from the template.  

 The generalized Matlab™ driver waits for the HFSS routine to finish and imports 
the data generated in the csv file. It returns the model response to the optimization 
or model script that called it. 
 

 

 

Figure 1-5 Matlab-Python-HFSS generalized driver 



 

 9

1.4. Microstrip Patch Antenna. 

The first microstrip antenna concepts date back to the 1950s with Deschamps array in 1953 
being the first microstrip like antenna. However, at the time this was only an academic inquiry, it 
was until the aerospace industry provided power incentives for its adoption in the 1970s that its 
use became very popular [10]  

 
Even though the theoretical base for the microstrip patch antenna analysis is that of the 

transmission line, the use of microstrip patch antennas exploded until the method of moments and 
computers became widely available [10].  

 
Microstrip patch antennas are inexpensive to manufacture and have a very low profile. 

Nowadays microstrip antennas are extensively used for Bluetooth, GPS and WLAN [10].    
 
 For a very good first order approximation, using half a wavelength for the length of a 

microstrip patch antenna. This implies that a 300 MHz antenna is around 1 meter in length. For 
this reason, most of the applications are in the microwave range.  
 

1.5. Dipole bowtie Antenna. 

The bowtie antenna is a particular case of the family of biconical antennas, which can have 
2D and 3D implementations. The bowtie antenna being a 2D triangular biconical antenna, 
usually etched on a PCB. 
 

Figure 1-6 Examples of 3D biconical antennas. 
Taken from [22], CC license CC BY-SA 3.0. 
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Biconical antennas main advantage is their relatively wide bandwidth around the 
resonance frequency. Early versions of these antennas date back to 1987 by Sir Oliver 
Lodge [11].  
 
 As Kraus elaborates on chapter 8 of his classic book on antenna theory [11] “an 
infinite biconical antenna is analogous to an infinite uniform transmission line. The 
biconical antenna acts as a guide for a spherical wave in the same way that a uniform 
transmission line acts as a guide for a plane wave.” Which allows the analysis of the input 
impedance of the antenna using Maxwell’s equations to yield relatively simple closed form 
solutions. This in turn created a special interest in this antenna family before the powerful 
computer simulators were widely available. 
 
 The reader is referenced to Kraus [11] for an in-depth analysis on the subject.  
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2. Optimization Algorithms. 

This chapter briefly describes the optimization algorithms used in the rest of the thesis 
dissertation. The reader is encouraged to consult the references for a detailed exposition of the 
algorithms. 

2.1. Direct optimization. 

2.1.1 Minimax. 

The minimax formulation is used extensively in engineering optimization problems. Its 
main advantage consists in its straightforward ability to setup the optimization problem in terms 
of engineering specifications. Following the detailed exposition of  Prof. Rayas in [12],we 
introduce the Minimax formulation for engineering circuit design and optimization: 

 
 𝒙∗ = arg min

𝒙
max{… 𝑒௞(𝒙) … } 

  

( 2-1 ) 

 

𝑒௞ = ቐ

𝑅௞(𝒙) − 𝑆௨௕            for all 𝑘 ∈ 𝑰௨௟  

 𝑆௘௤ − 𝑅௞(𝒙)         for all 𝑘 ∈ 𝑰௘௤

𝑅௞(𝒙) − 𝑆௟௕            for all 𝑘 ∈ 𝑰௟௕

 

  

( 2-2 ) 

 
Where: 

 𝑅௞: is the model’s response (simulation or calculation) at the kth 
index. 
 𝑆௨௕: is the engineering specification at the upper bound. 
 𝑆௟௕: is the engineering specification at the lower bound. 
  𝑆௘௤: is any engineering specification that is not a bound but perhaps 
a desired characteristic of the response waveform, i.e. the value of the 
response at a resonance frequency.  

 
 The minimax formulation first compares the model responses to the engineering 
specification, then selects the maximum error as the objective function response. The objective 
function is then minimized using an optimization algorithm. This works uses the Matlab™ 
implementation of Nelder-Mead’s minimization algorithm extensively. This dynamic then finds a 
solution for all the specifications, if the changes in the variables during the optimization favor one 
of the specifications too much, another specification will produce the maximum error and hence 
the algorithm will move in that direction.  
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 In this work it was not necessary to normalize the error responses nature of the problem. 
However, the reader is referred to a more general formulation of the minimax problem in [12]. 
 

2.1.2 Nelder-Meade Algorithm. 

The Nelder-Mead (NM) algorithm is a method used for unconstrained minimization of a 
vector valued function. It is based on heuristic transformations of a simplex; it replaces the vertex 
of the simplex that evaluates to the highest value of the objective function. NM belongs to the 
family of direct search optimization methods. The mathematical details of the algorithm are out of 
the scope of this work. The reader is referred to the original article by J.A. Nelder and R. Mead in 
[13], for a lucid and detailed explanation.  

 
The NM is particularly well suited for both the minimization of the model’s response in 

the minimax formulation and the parameter extraction stage during the space mapping algorithm. 
The main advantage of the NM method is that it does not require the computation of gradients. 
Gradients are computationally expensive. For the particular case of this work, the calculation of 
derivatives for the fine model of the antenna simulation, would result in a prohibitively expensive 
computation. 

 
Due to its popularity all major mathematical packages include a heavily optimized 

implementation of the algorithm. This work uses the method extensively through Matlab™ 
function fminsearch().  
 

2.2. Input Space Mapping. 

The space mapping algorithm is at the heart of this work, specifically the Broyden based 
input version of it. Hence, the method is described in detail in the following chapters and 
implemented in Matlab™, the code is available in appendices A-D. 

 
The powerful idea behind space mapping is the creation of a map between a coarse, not so 

accurate but computationally effective, model and a fine, accurate but computationally expensive, 
model. This allows the designer to find the optimal input parameters for the fine model that 
produce a close enough approximation to an optimal response derived from the coarse model. The 
number of fine model evaluations using this approach is reduced significantly when compared to 
a direct optimization method.  

 
The space mapping has come a long way since its inception in the nineties, the reader is 

referred to the excellent surveys by Bandler et al in [3] and Prof. Rayas in [14]. There are now 
multiple ways to implement the map, i.e. output space mapping, neural space mapping among 
others. This work implements the original Broyden based input space mapping. 
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3. Antenna Optimization Through Input Space 
Mapping Algorithm. 

The core contribution of this work is an antenna optimization algorithm through input space 
mapping. We expand on the literature of antenna optimization through space mapping that started 
with Zhu et al seminal paper [4] in 2007. Notable contributions to the literature include: [5] [6] [7] 
[8].  The algorithm is summarized by Figure 3-1 and Figure 3-2. Each step is described in the 
following sections.  

 
 

 
  

Figure 3-1 Antenna optimization through input space mapping algorithm 1 of 2. 
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Figure 3-2 Antenna optimization through input space mapping algorithm 2 of 2. 
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3.1. The algorithm 

This section describes the antenna optimization through input space mapping in general 
and then proceed to apply it to two different antenna designs in chapters 4 and 5. 

3.1.1 Antenna type 

The first step is to have a target antenna type to design. This is driven by the engineering 
specification based on: size, gain, technology of implementation (wire, PCB, etc.), bandwidth,  
directivity and cost, among others. The focus of this work is on antenna optimization, hence the 
reader is referenced to the extensive literature on antennas for their theory of operation, for 
example [11] and [15],  

 
Designing an antenna is understood to be an iterative process. If one antenna type fails to 

achieve the specifications, then a different antenna type is explored. The antenna optimization 
through input space mapping algorithm simplifies this process as most of the code written for one 
antenna type can be reused and adapted to try a different antenna.  

3.1.2 Figure of merit 

For the purpose of this work, the antenna’s sole figure of merit is considered to be |𝑺𝟏𝟏|. 
Namely, the magnitude in the frequency band of interest of the 𝑆ଵଵ parameters, also known as 
reflection loss. We will also call this the response of the system formulated in equation ( 3-1 ).  

 
 The resonance frequency is the main optimization objective for the purposes of this work. 

The antenna reflection bands are a secondary objective. Even though the optimization problem can 
have some influence over them, they are for the most part predetermined by the antenna response 
waveform, a consequence of the antenna type chosen.  Other antenna responses such as radiation 
pattern and directiveness are also considered a consequence of the antenna type chosen and will 
not be part of the optimization objective function. 

 
 𝑹(𝒙, 𝝋) = |𝑺𝟏𝟏(𝒙)|   ( 3-1 ) 

 

3.1.3 Antenna design parameters. 

The best design parameters are the ones that have the largest effect on the figure of merit 
and that allow the smallest possible number of design parameters for the optimization algorithms. 
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That is, the marginal contribution of a parameter to the figure of merit must be larger than the cost 
(computational or mathematical) of adding that parameter to the model.  

 
Let 𝑹൫𝒙𝒑൯ be the response of the model and 𝒙𝒑  the set of all antenna and simulation 

parameters. The designer selects the disjoint sets 𝒙 and 𝝋 such that  𝒙𝒑 = 𝒙 ∪ 𝝋 . Where 𝒙 =

(𝑥ଵ, 𝑥ଶ, . . ) become the design parameters, that is the inputs to optimization algorithms and 𝝋 =
(𝜑ଵ, 𝜑ଶ, . . ) become exogenous or independent parameters that are necessary to obtain the model’s 
response but are not acted upon by the optimization. We refer to the response of the model as 
𝑹(𝒙, 𝝋) which we shorten to 𝑹(𝒙) for notation convenience, making implicit the effect of the 𝝋 
exogenous parameters in the model.  

 
The vector 𝝋  exogenous parameters can be constrained by other design considerations. A 

common example of this is when an antenna must be designed for a certain printed circuit board 
(PCB) stack-up. In such a case, parameters with large effects on the model response such as relative 
permittivity and loss tangent become independent or exogenous variables of the antenna model. 

 
The fact that 𝝋 parameters are exogenous variables for the model does not mean the 

designer has no effect over them. For example, if the PCB stack-up is not a constrain and can be 
determined by the designer, the designer can perform a parameter exploration and choose a stack-
up such that antenna gain, and dimensions are within a design envelope. Effectively choosing the 
relative permittivity and loss tangent as 𝝋 parameters. However, they are still not modified by the 
optimization problem. 

 
Antenna design parameters are usually the antenna’s geometric dimensions, as they tend to 

have the largest effects on the figure of merit. Not all dimensions will have large effects compared 
to the complexity that they introduce to the model. The designer is advised to do parameter 
explorations with the model to determine the best vector of design parameters 𝒙  for the frequency 
bands of interest.  

 
Finally, we provide the reader with the following design parameter recommendations for a 

successful algorithm implementation: 
 

 Select the least possible design parameters x. We recommend a parameter 
exploration on the antenna resonant frequency of interest and understand the 
contributions of each design parameter. Usually, more than a few design parameters 
create inadequate complexity in the model. We present two antenna design 
examples in which only a couple of design parameters are needed to successfully 
design an antenna using the algorithm.  

 Design parameter selection is often an iterative process. It is better to start with a 
few and add more parameters only if strictly needed. 

 Setting convenient values for the independent parameters 𝝋 is crucial for the 
success of the algorithm. A first order model of the antenna (discussed in detail in 
next section) is a great way to set these values. Again, this is an iterative process, 
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the reader is advised to reconsider and fine-tune the parameters for a successful 
algorithm implementation. 

3.1.4 Fine model. 

Fine models are relatively precise yet computationally expensive models, for which direct 
optimization is prohibitive, or at least inconvenient, for the designer. The fine model is assumed 
to be the most precise representation of the real response of the system available to the designer. 
We consider the antenna optimization successful when the fine response, denoted as 𝑹𝒇(𝒙, 𝝋) or 
𝑹𝒇(𝒙) for short, satisfies the design specifications. We refer the reader to our exposition of antenna 
modelling techniques from chapter 1. 

 
What represents a fine model depends on the context. Coarse and fine models can use the 

same modeling technique with just a mesh adjustment, such as in [4]. We use a different approach 
where the coarse model exploits a 2D MoM modeling technique from Matlab™. And the fine 
model uses 3D finite element analysis (ANSYS™ EM HFSS).  

 
 
Fine models will most likely require drivers from other mathematical software that will 

execute the optimization routines and space mapping. The driver should be sufficiently general in 
its interface for reuse and easiness of adaptation to the iterations of the design, especially during 
the exploratory phase when antenna types and design parameters are determined. This work 
presents a generalized Matlab™ to ANSYS™ EM HFSS driver in appendix D.    

3.1.5 Coarse model. 

Coarse models should be computationally inexpensive yet precise enough to be able to be 
used in space mapping. Examples of coarse models for antenna optimization include closed form 
equations of different orders and coarse mesh MoM models.  

 
Care must be taken so that the coarse response, 𝑹𝒄(𝒙, 𝝋) or 𝑹𝒄(𝒙) for short, has close 

enough magnitudes as the fine response 𝑹𝒇(𝒙, 𝝋) in the frequency bands of interest. This is 
extremely important for the input space mapping part of the algorithm, specifically the parameter 
extraction.  

 
We can exploit the exogenous parameters 𝝋 in order to adjust the magnitude of the 

response, that is have different exogenous parameters for the coarse and fine model 𝝋𝒄 ≠ 𝝋𝒇. This 
implies the coarse and fine models may have, for example, different PCB stack-ups. This is 
illustrated in section 5.4.  The fine model’s PCB stack-up parameters will represent the real system, 
whereas the coarse model exogenous parameters can be artificially set to obtain the desired 
response. This model discrepancy is completely acceptable, as the coarse model in this case is a 
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mere mathematical artifice in the input space mapping algorithm and does not need to represent 
the real system. 

 
 The coarse model response 𝑹𝒄(𝒙) waveform should be sufficiently similar to the fine 
model response 𝑹𝒇(𝒙). When modelling antennas, this is very difficult if not impossible to 
achieve, especially at frequencies different from the resonance frequency. This represents a 
different challenge compared to the magnitude mismatch. For antenna optimization, the parameter 
extraction can be constrained to the regions or frequency bands where the waveform is sufficiently 
similar, provided the magnitudes of the responses are already close enough.  

 
The coarse model has 2 main functions in the algorithm: 

 
1. Produce the target response 𝑹𝒄(𝒙𝒄

∗) = 𝑹𝑻 and the optimal design parameters for the 
coarse model 𝒙𝒄

∗..Details are presented in the following section. 
2. Serve as the computationally inexpensive coarse model for the input space mapping 

algorithm. 
 
Creating a coarse model that fulfils the aforementioned duties is a delicate balancing act. 

The designer should analyze and explore the coarse model to understand its sensitivities and 
limitations. An iterative process to find the right coarseness on the model is expected. In the 
author’s experience, proposing such a model is the most challenging task of implementing the 
algorithm.   

3.1.6 Generate input seed. 

Once the fine and coarse models are in place, we need a seed for the design parameters 𝒙.  
This can come from a first order model of the antenna type. The quality of the seed will determine 
a successful convergence of the optimization algorithm; care must be taken to get a high-quality 
seed. Starting with a random seed is not recommended. 

 
There are first order models, usually closed form formulae, for most antenna types. The 

reader is referred to the classic books on the subject [11] [15]. Another option is to use the 
implementation of such equations on commercial software: Matlab™ Antenna toolbox [2] and 
ANSYS™ Electronics Desktop Antenna Toolkit [1] will provide an excellent seed.  

 
Let 𝒙𝒔𝒆𝒆𝒅 be the corresponding design parameters obtained from the first order model. They 

will be used for the coarse model adjustment and as seed for optimization.  

3.1.7 Compare responses and adjust coarse model. 
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Evaluate both the coarse and fine model and obtain their responses, 𝑹𝒄(𝒙𝒔𝒆𝒆𝒅, 𝝋) and, 
𝑹𝒇(𝒙𝒔𝒆𝒆𝒅, 𝝋)  respectively. Compare the magnitudes and waveforms of the responses and adjust 
the coarse model as per the following algorithm.  

 
Let 𝑹𝒄(𝒙𝒔𝒆𝒆𝒅, 𝝋𝒄) be the new coarse model with response’s magnitudes and waveform 

sufficiently similar to the fine model. Note the fine and coarse models’ exogenous parameters may 
be different at this point, 𝝋𝒄 ≠ 𝝋𝒇.  It is unlikely this step is not needed for antenna optimization 
through input space mapping. The authors consider this step of the algorithm the most important 
for the successful implementation of input space mapping.  
 

During the literature survey no numerical methods to evaluate the degree of similarity 
between the magnitudes and waveforms of antenna responses were found. Visual inspection of a 
parameter sweep over the coarse model has given good results. Since this is iterated over the coarse 
model it is not computationally expensive.  
 
 There could be programmatic ways to determine de goodness of the coarse model that do 
not depend on visual inspection, for example the pth-norm between two vectors, which is an 
opportunity for future research and enhancement of this algorithm.  
 

Figure 3-3 Coarse model adjustment for input space mapping 
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3.1.8 Target response from coarse model optimization 

A target response is required for parameter extraction on the space mapping algorithm. 
This is obtained from direct optimization of the coarse model using the minimax formulation in 
equation ( 3-2 ). Note that the constraint  𝒙 ∈ 𝚽 for the optimization problem is optional, but often 
necessary to get the target response 𝑹𝑻. 

 
Engineering specifications for the figure of merit are formulated in the objective function 

represented by equation ( 3-3 ). We propose three specifications: 
 

 
1. Lower reflection band: a band lower or to the left of the reflection band where 

the response should be sufficiently large as to not be a resonance band.  
2. Resonance band: where the response obtains its minimum value, that is the 

antenna radiates the most in this band since its reflection loss is at a minimum. 
3. Higher reflection band: a band higher or to the right of the resonance band where 

the response should be sufficiently large as to not be a resonance band.  
 

 𝒙𝒄
∗ = arg min

𝒙∈𝚽
max{… 𝑒௞(𝒙) … } 

 

( 3-2 ) 

 
 

𝑒௞ = ൞

𝑅௖,௞(𝒙) − 𝑆௥௘௙௟௘௖௧           for all 𝑘 ∈ 𝑰ோ௘௙௟௘௖௧௅  

 𝑆௥௘௦௢௡௔௧௘ − 𝑅௖,௞(𝒙)         for all 𝑘 ∈ 𝑰ோ௘௦௢௡௔௧௘

𝑅௖,௞(𝒙) − 𝑆௥௘௙௟௘௖௧           for all 𝑘 ∈ 𝑰ோ௘௙௟௘௖௧ு

 

 

( 3-3 ) 

 
Where: 

 𝑅௖,௞: is the coarse response at the kth index. Note this is a scalar value, compare to 
the coarse response vector 𝑹𝒄(𝒙). 

 𝑆௥௘௙௟௘௖௧: is the specification value of the response for any of the reflect bands. Aim 
for a number close to 1, yet this is highly dependent on the response waveform of 
the antenna type chosen. 

  𝑆௥௘௦௢௡௔௧௘: is the specification value of the response for the resonate band. Aim for 
a number close to 0, or at least as low as possible. This will be heavily influenced 
by the exogenous parameters 𝝋. It will be an iterative process to find a reasonable 
value for this specification.  

 𝑰ோ௘௙௟௘௖௧௅: is the set of all indexes in the response vector that correspond to the lower 
reflection band.  

 𝑰ோ௘௦௢௡௔௧௘: is the set of all indexes in the response vector that correspond to the 
resonate band.  
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 𝑰ோ௘௙௟௘௖௧ு: is the set of all indexes in the response vector that correspond to the lower 
reflection band.  

 𝑰ோ௘௙௟௘௖௧௅, 𝑰ோ௘௦௢௡௔௧௘ and 𝑰ோ௘௙௟௘௖௧ு are disjoint subsets of the set of all indexes of the 
response vector 𝑹௖ . 

 
The minimax formulation is optimized using Matlab™ implementation of the Nelder-Mead 

algorithm through its fminsearch() function. Evaluation of the optimal input parameters 𝒙𝒄
∗ on the 

coarse model produces the target response 𝑹் as per equation ( 3-4 ) .  
 
 

 𝑹் = 𝑹௖(𝒙𝒄
∗, 𝝋𝒄) ( 3-4 ) 

 
Evaluation of the optimal input parameters in the fine model (𝑹௙൫𝒙𝒄

∗, 𝝋𝒇൯ produces a 
response that is different from the target response. This is represented by equation ( 3-5 )  

 
 ฮ𝑹௖(𝒙𝒄

∗, 𝝋𝒄) − 𝑹௙൫𝒙𝒄
∗, 𝝋𝒇൯ฮ ≫ 0  ( 3-5 ) 

 
If this is not the case, it means both coarse and fine models are too similar. Either the coarse 

model is not coarse enough or the fine model is not fine enough. Hence, they must be adjusted. 
For the algorithm proposed in this work this is never a problem, as the coarse model is based on a 
2D coarse mesh MoM simulation while the fine model is a 3D finite element simulation. However, 
this is an important consideration when both fine and coarse models use MoM simulations with 
different meshes, just as in reference [4]. 

 
Choosing the specifications and frequency bands is an iterative process that includes 

multiple evaluations of the minimax formulation. It is often easier to start with relaxed 
specifications, then tight them up until the optimization algorithm converges to an acceptable 
target response. 

 
 Specifications that are too tight will likely put an unnecessary burden on the optimization 

algorithm. Analogously, frequency bands should start with narrow bands: a thin band around the 
resonant frequency and narrow reflect bands located at the frequency cut-off of interest. Adjust 
accordingly in case multiple resonant frequencies are desired. See Figure 3-4 below: 
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Several iterations are needed for the minimax formulation to yield a desired target response. 

The reader is advised to adjust optimization parameters, exogenous parameters of the coarse 
model, resonance and reflect specifications and the frequency bands of the objective function. The 
diagram in Figure 3-5 below provides an algorithm for this purpose. 
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Figure 3-4 Narrow frequency bands set up for objective function of minimax 
formulation. 
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3.1.9 Broyden based Input Space mapping. 

Once a target response and suitable coarse and fine models have been developed, we 
proceed with the application of the Broyden based input space mapping (BISM), described in detail 
in section 2.2.  

 
The algorithm will produce the space mapping input parameters 𝒙𝑺𝑴

∗  and the fine model 
response 𝑹𝒇(𝒙𝑺𝑴

∗ , 𝝋𝒇) which should be compliant with the engineering specifications of the design. 

YES 

NO 

YES 

START 

𝒙𝒄
∗ = arg min

𝒙∈𝚽
max{… 𝑒௞(𝒙) … } 

Optimization 
converges? 

Adjust: 
 𝑆௥௘௙௟௘௖௧,  𝑆௥௘௦௢௡௔௧௘, 
𝑰ோ௘௙௟௘௖௧௅, 𝑰ோ௘௦௢௡௔௧௘, 

𝑰ோ௘௙௟௘௖௧ு, 𝒙 ∈ 𝚽 or c 

𝑹் = 𝑹𝒄(𝒙𝒄
∗) 

Accept RT? END NO 

Figure 3-5 Minimax formulation Iterations to get a proper target response 
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Otherwise, we need to adjust the models as per the previous sections until we get an acceptable fine 
model response.  

 
The diagram in Figure 3-6 below applies the BISM algorithm to the antenna design case, 

following [14].  
 

 
 The next step is to build an antenna prototype and correlate the simulations with laboratory 
measurements. Given that we are using a 3D finite element simulator as our fine model, a high 
correlation with laboratory measurements is expected. 
 

This is the end of the algorithm; the antenna optimization and design has been completed.  
 

 

Figure 3-6 Broyden based input space mapping algorithm 
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4. Bowtie dipole antenna optimization through space 
mapping. 

In this chapter the implementation of the antenna optimization through input space 
mapping algorithm applied to a dipole bowtie antenna printed on a PCB is presented. Refer to the 
antenna’s characteristics discussed in section 1.5. The coarse and fine models are developed and a 
deep dive on the specifics needed for the successful implementation of the algorithm is provided.  

 
The different characteristics of the antenna responses such as radiation pattern, 2D gain 

shape and our figure of merit waveform, are considered to be a consequence of the antenna type 
selection. Hence, these are not part of the optimization objective.  

 
The objective is to design an antenna with resonance frequency at 1 GHz and reflection 

loss at the resonance frequency that is not greater than -13 dB. 

4.1. Coarse model. 

A coarse mesh Matlab™ MoM is used as the coarse model. The model is built as follows: 
 
 We start by creating a bowtieTriangular Matlab™ object from the Antenna Toolbox [2]. 

It that has the following parameters: length, flare angle, feed location, tilt and tilt axis.  
 

 

Figure 4-1 Geometric parameters for the bowtie antenna 
Matlab™ object. Image taken from [2]. 
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Then we apply a coarse mesh MoM simulation to the bowtieTriangular object. We define 

the mesh parameter m in equation ( 4-1 ). It will enable us to fine-tune the coarseness of the model 
and hence balance its computational demands against its accuracy.  

 
 

𝑚 =
𝜆

𝜂
=

𝑐

𝑓௠௔௫𝜂
 

( 4-1 ) 

 
Where: 
 

o 𝜆 is the minimum wavelength of interest in the simulation.  
o 𝑐 is the speed of light. 
o 𝑓௠௔௫ is the maximum frequency of interest in the simulation. 
o 𝜂 is an arbitrary parameter to modify the mesh edge length in terms of the maximum 

frequency of interest in the simulation.  
 
We choose 2 geometric parameters as our input parameters; the rest are considered 

exogenous parameters.  Namely, the coarse model for the bowtie antenna parameter becomes: 
 

 𝑹𝒄(𝒙𝒄, 𝝋𝒄) = |𝑺𝟏𝟏|   ( 4-2 ) 
 
Where:  
 

o 𝒙𝒄 = (𝑥ଵ, 𝑥ଶ) is the vector of design parameters: 
 𝑥ଵ  - Bowtie’s length in meters  
 𝑥ଶ - Flare angle in radians. 
 See Figure 4-1 . 

o 𝝋𝒄 = (𝜑ଵ, … , 𝜑ହ ) is the vector of exogenous parameters: 
 𝜑ଵ = 0  - Tilt in degrees (no tilt). 
 𝜑ଶ = 𝑥  - Tilt axis (x, y, z). 
 𝝋ଷ = (0,0)  - Feed location in cartesian coordinates in meters.  
 𝜑ସ =  1.9986  - Mesh parameter m. 
 𝜑ହ = 101  - Number of frequency points in the simulation.  

 
Adequate values for  𝜑ସ and 𝜑ହ are determined through a parameter sweep. We get a coarse 

model that is both computationally inexpensive yet accurate at   𝜂 = 1𝑥10ିଷ and 101 frequency 
points.  
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4.2. Input parameter seed. 

Apply Matlab™ antenna toolbox design() function to the bowtie antenna object and get the 
seed in equation ( 4-3 ) then solve for a resonance frequency of 1GHz. This function implements 
a first order model for antenna design which is too coarse to use in our algorithm.  

 
 𝒙𝒔𝒆𝒆𝒅 = (0.0794,

𝜋

2
) ( 4-3 ) 

 
The coarse response at the input seed, 𝑹𝒄(𝒙𝒔𝒆𝒆𝒅, 𝝋𝒄), is shown in Figure 4-2. Note that the 

first order model produces a great seed for the coarse model optimization step. Even though the 
coarse model is not tuned for accuracy, it is still more accurate than the first order model 
implemented in the design() function. This is noted by the fact that the resonance frequency is not 
located at 1GHz when evaluated in the coarse model. The magnitude of the response complies 
with the design specifications.  

 

 
 
  

Figure 4-2 Coarse response at input seed. Note the 
resonance frequency is not located at 1 GHz 
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4.3. Fine model. 

The fine model implementation of a dipole bowtie antenna in Ansys™ EM desktop 2019 is 
presented. We use the Antenna toolkit [1] to generate the antenna’s geometric model.  The toolkit 
uses 7 parameters to build the geometric model: substrate dimension X, substrate dimension Y, 
substrate thickness, port gap width, inner width, arm length and outer width. See Figure 4-3. 
 

 
Two geometric dimensions are chosen as input parameters; the rest are considered 

exogenous parameters.  The fine model for the bowtie antenna becomes: 
 

 𝑹𝒇൫𝒙𝒇, 𝝋𝒇൯ = |𝑺𝟏𝟏|   ( 4-4 ) 

 
Where:  
 

o 𝒙𝒇 = (𝑥ଵ, 𝑥ଶ) is the vector of design parameters: 
 𝑥ଵ - Arm length in meters  
 𝑥ଶ - Outer width in meters. 
 See Figure 4-3 

o 𝝋𝒇 = (𝜑ଵ, … , 𝜑ହ ) is the vector of exogenous parameters: 
 𝜑ଵ = 4𝑥ଶ  - Substrate dimension X in meters.  
 𝜑ଶ = 4𝑥ଵ - Substrate dimension Y in meters.  
 𝜑ଷ =  0.016  - Substrate thickness in meters.  
 𝜑ସ = 0.0001 - Port gap width in meters.  
 𝜑ହ = 0.0001 - Inner width in meters.  
 𝜑଺ = 101 - Number of frequency points in the simulation.  
 𝜑଻ = 4.4 - Substrate relative permittivity. 
 𝜑଼ = 0.02 -  Substrate loss tangent.  

Figure 4-3 Dipole Bowtie antenna geometric 
parameters. Taken from ATK [1]. 
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Even though 𝜑ଵ and 𝜑ଶ are not constants determined exogenously, they are refreshed in 
every iteration of the fine model, they are not considered part of the input parameters. Their only 
purpose is to create a PCB substrate big enough to model the antenna during the simulation. They 
have no significant influence on the response of the antenna other than enabling the simulation to 
run.  

 
The geometric model renders Figure 4-4.  
 

 
The fine response at the input seed, 𝑹𝒇൫𝒙𝒔𝒆𝒆𝒅, 𝝋𝒇൯, is shown in Figure 4-5 below. Note that 

both response magnitude and waveform are sufficiently similar to the coarse model, which is a 
requisite for the rest of the algorithm to work. While optimizing the coarse model this ceased to 
be true. See section 4.4 for details on how this was addressed. 

 

Figure 4-4 Bowtie antenna HFSS geometric Model 
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Figure 4-5 Fine model response at input seed. Note response 
magnitude and waveform. 
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As mentioned in the introduction, other responses from the model such as the antenna 

radiation pattern in Figure 4-6 and the shape of the 2D gain in Figure 4-7 are considered 
consequences of the antenna type selection and are not part of the optimization objectives.  

 

 
  

Figure 4-6 Bowtie dipole antenna 3D gain or radiation 
pattern 

Figure 4-7 Bowtie dipole 2D gain plot 
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4.4. Fine tune coarse model. 

It is imperative for the rest of the algorithm to work that the waveforms and magnitudes of 
the coarse and fine models are sufficiently similar. We recommend an iterative process in every 
step of the algorithm to confirm this is continues to be true.  
 
 In this case, the magnitude of the response of the coarse model matched the fine model 
when evaluated at the seed. However, after several optimization iterations it started to diverge 
significantly. The vector of exogenous parameters did not provide a good way to compensate this 
because the coarse response does not model substrate parameters such as relative permittivity or 
loss tangent. 
 

After several parameter sweeps, we realized the major contributing factor was the flare 
angle magnitude. At values close to 

గ

ଶ
., the magnitudes were similar; they diverged when the flare 

angle deviated from it. 
 
The desired coarse model magnitude is guaranteed by introducing a box constraint to the 

optimization problem, formulated in equation ( 4-5 ). This constraint was implemented in the 
model response as opposed to the optimization algorithm. See code in appendix B. 

 
 87° < 𝑥ଶ < 93° ( 4-5 ) 

 
Figure 4-8 shows the similar magnitudes and waveforms required for successful 

implementation of the algorithm after implementation of the box constraint. 
 

Figure 4-8 Fine and Coarse response at input seed. 
Note the magnitude and waveform similarities required 
for the successful implementation of the algorithm. 
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4.5. Coarse model optimization. 

The target response 𝑹𝒕 from the optimization of the coarse model is obtained. We propose 
the minimax formulation in equation ( 4-6 ) with the objective function in ( 4-7 ). As previously 
noted, a box constrain on the optimization problem is applied to guarantee the desired response 
magnitude. After several iterations, the specific formulation values follow.  

 
We found two conditions that enabled the convergence of the optimization: 
 

1. Encapsulate the bowtieTriangular Matlab™ object in order to convert parameter 
𝑥ଶ to radians from the original degrees. When in degrees the optimization was 
unable to converge. 

2. Add the box constraint to the optimization shown in equation  
 
Let the vector 𝑓௦௪௘௘௣ be 101 frequencies, equally spaced between 0.5 GHz and 1.5 GHz,  

at which the simulation is executed. Let 𝑰௦௪௘௘௣ be the set of all indices of 𝑓௦௪௘௘௣ which correspond 
exactly with the indices of coarse response 𝑹𝒄(𝒙𝒄, 𝝋𝒄). Such that, 𝑰ோ௘௙௟௘௖௧௅  and  𝑰ோ௘௦௢௡௔௧௘ are 
disjoint subsets of 𝑰௦௪௘௘௣ . Then: 

 
 𝒙𝒄

∗ = arg min
𝒙

max{… 𝑒௞(𝒙) … } 

𝑠. 𝑡. 87° < 𝑥ଶ < 93°  
 

( 4-6 ) 

 
 

𝑒௞ = ቊ
𝑅௖,௞(𝒙) − 𝑆௥௘௙௟௘௖௧           for all 𝑘 ∈ 𝑰ோ௘௙௟௘௖௧௅  

 𝑆௥௘௦௢௡௔௧௘ − 𝑅௖,௞(𝒙)         for all 𝑘 ∈ 𝑰ோ௘௦௢௡௔௧௘
 

 

( 4-7 ) 

 
Where: 

  𝑆௥௘௙௟௘௖௧ = −3.1 𝑑𝐵  
 𝑆௥௘௦௢௡௔௧௘ = −9.12  𝑑𝐵    
 𝑰ோ௘௙௟௘௖௧௅  ⊂ 𝑰௦௪௘௘௣,   𝑓௞  ∈  𝑓௦௪௘௘௣ |  𝑓௞  ≤ 0.7 𝐺𝐻𝑧 
 𝑰ோ௘௦௢௡௔௧௘ ⊂ 𝑰௦௪௘௘௣ |  𝑓௞  ∈  𝑓௦௪௘௘௣, 0.95 𝐺𝐻𝑧 ≤ 𝑓௞ ≤ 1.05 𝐺𝐻𝑧: 

  
Note how: 
 

 The resonance band is thin, it contains only a few values around the design 
specification. 

  𝑆௥௘௙௟௘௖௧ &  𝑆௥௘௦௢௡௔௧௘ are loose values compared to the specification, the response 
at the resonance frequency should be -13 dB.  

 We only used a reflect band to the left of the resonance frequency. The response is 
asymmetric around the resonance frequency; it has greater reflection losses at 
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frequencies lower than the resonant frequency.  This modification allowed the 
optimization algorithm to converge to the specification value.  

 
Optimization of the minimax formulation in equation ( 4-6 ) yields the optimal coarse 

response in Figure 4-9. It meets the design specifications: resonance frequency is at 1GHz with 
response lower than -13 dB. This is now the target response as formulated in equation ( 4-8 ). 

 
 𝑹் =  𝑹௖(𝒙௖

∗) ( 4-8 ) 
 

Optimization time 389 seconds 
Objective function evaluations 99 

Iterations of the algorithm 46 
Optimization result 𝒙௖

∗ = (0.0824,1.6174) 
Objective function value 0.411 

Output message 

The current x satisfies the termination criteria 
using TolX of 1.000000e-05  and F(X) satisfies 
the convergence criteria TolFun of 1.000000e-
04 

Figure 4-9 Coarse response at optimal input from minimax 
formulation. This is the target response. 
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Figure 4-10 shows the effect of the minimax formulation on the response, it moved the 
resonant frequency to the design specification of 1GHz.   
 

 
Figure 4-11 shows the fine and target responses evaluated at the coarse optimum input 𝒙௖

∗ . 
The space mapping algorithm will determine a fine response that complies with the design 
specification 

 

Figure 4-10 The minimax formulation moved 
the resonant frequency to the design 
specification of 1 GHz 
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Figure 4-11 Fine response at coarse optimum and target 
response. 
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4.6. Broyden based input space mapping. 

The coarse and fine models’ inputs refer to fundamentally different geometric 
characteristics of the antenna. This requires a translation between inputs in equations ( 4-10 ) and 
( 4-9 ). Equation ( 4-11 ) formulates the translation. It is implemented as a layer that encapsulates 
the fine model.   

 
 𝒙𝒄 = (𝑥௖ଵ, 𝑥௖ଶ)  ( 4-9 ) 

 
o is the vector of design parameters: 

 𝑥௖ଵ: Bowtie’s length in meters  
 𝑥௖ଶ: Flare angle in radians. 
 See Figure 4-1 . 

 
 𝒙𝒇 = (𝑥௙ଵ, 𝑥௙ଶ) ( 4-10 ) 

 
Where: 

 𝑥௙ଵ: Arm length in meters  
 𝑥௙ଶ: Outer width in meters. 
 . See Figure 4-4 

 
 𝒙𝒇 = (𝑥ଵ, 𝑥ଶ) ( 4-11 ) 

Where: 
 𝑥ଵ =

௫೎భ

ଶ
  

 𝑥ଶ = 2𝑥௖ଵcos (
௫೎మ

ଶ
)  

 
A final consideration before the implementation of the space mapping algorithm is how 

to drive 2 different simulators from the same script. This is accomplished by a generalized 
Matlab™ to Ansys™ EM2019 HFSS driver. See details in appendix D. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Matlab antenna optimization through input space mapping 
algorithm script. 

Matlab MoM Coarse 
Model 

Matlab to HFSS Driver 

HFSS finite element 
Fine Model 

Figure 4-12 Space mapping implementation in Matlab 
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 Finally, the implementation of the Broyden based input space mapping algorithm as 
described in Figure 3-6 produces a fine response that complies with the design specification in 
only 4 iterations of the fine model.  
 

 
 

Execution time 1,112 seconds 
Coarse model evaluations 217 

Fine model evaluations 4 
 𝒙ௌெ

∗ = (0.0785,1.6174) 
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Figure 4-13 Fine response at space mapping optimal input that complies with design 
specification. Comparison with fine and coarse response at coarse optimal input. 
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Figure 4-14 Bowtie dipole antenna S11 in dB plot for the 0.5GHz -
1.5GHz band. This is the fine response from HFSS. 
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5. Microstrip Patch Antenna Optimization Through 
Input Space Mapping. 

The implementation of the antenna optimization through input space mapping algorithm 
applied to a microstrip patch antenna printed on a PCB is presented. Refer to the antenna’s 
characteristics discussed in section 1.4. The development of the coarse and fine models is 
discussed and a deep dive on the specifics needed for the successful implementation of the 
algorithm is provided.  

 
We consider different characteristics of the antenna responses such as radiation pattern, 2D 

gain shape and our figure of merit waveform, to be a consequence of the antenna type selection. 
Hence, these are not part of the optimization objective.  

 
Our objective is to design an antenna with resonance frequency at 1 GHz and reflection 

loss at the resonance frequency that is not greater than -13 dB.   

5.1. Coarse model. 

A coarse mesh Matlab™ MoM is used as the coarse model. The model is built as follows: 
 
 We start by creating a patchMicrostrip Matlab™ object from the Antenna Toolbox [2]. It 

has the following parameters: length, width, height, ground plane length, ground plane width and 
feed location, see Figure 5-1 .  
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Then we apply a coarse mesh MoM simulation to the patchMicrostrip object. We define 

the mesh parameter m in equation ( 5-1 ). It will enable us to fine tune the coarseness of the model 
and hence balance its computational demands against its accuracy.  

 
 

𝑚 =
𝜆

𝜂
=

𝑐

𝑓௠௔௫𝜂
 

( 5-1 ) 

 
Where: 
 

o 𝜆 is the minimum wavelength of interest in the simulation.  
o 𝑐 is the speed of light. 
o 𝑓௠௔௫ is the maximum frequency of interest in the simulation. 
o 𝜂 is an arbitrary parameter to modify the mesh edge length in terms of the maximum 

frequency of interest in the simulation.  
 
We choose 2 geometric parameters as our input parameters; the rest are considered 

exogenous parameters.  The coarse model for the bowtie antenna parameter becomes: 
 

 𝑹𝒄(𝒙𝒄, 𝝋𝒄) = |𝑺𝟏𝟏|   ( 5-2 ) 
 
Where:  

Figure 5-1 Coarse model parameters for patchMicrostrip object from antenna 
toolbox. Picture taken from [2]. 
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o 𝒙𝒄 = (𝑥ଵ, 𝑥ଶ) is the vector of design parameters: 

 𝑥ଵ- length in meters.  
 𝑥ଶ - width in meters. 
 See Figure 5-1. 

o 𝝋𝒄 = (𝜑ଵ, … , 𝜑ହ ) is the vector of exogenous parameters: 
 𝜑ଵ = 4 - Height in millimeters.  
 𝜑ଶ = 2𝑥ଵ - Ground plane length.  
 𝜑ଷ = 2𝑥ଶ - Ground plane width.  
 𝝋ସ = (0,0) - Feed location in cartesian coordinates in meters.  
 𝜑ହ =  1.9986 - Mesh parameter m. 
 𝜑଺ = 51 - Number of frequency points in the simulation.  
 𝜑଻ = 1 - Substrate relative permittivity. 

 
Adequate values for  𝜑ହ and 𝜑଺ are determined through a parameter sweep. We get a coarse 

model that is both computationally inexpensive yet accurate at   𝜂 = 1𝑥10ିଷ and 51 frequency 
points. Simulation takes a proximately 10 seconds running on a personal computer.  
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5.2. Input parameter seed. 

We apply Matlab™ antenna toolbox design() function to our microstrip patch antenna 
object and get the seed in equation ( 5-3 ) as we solve for a resonance frequency of 1GHz. This 
function implements a first order model for antenna design which is too coarse to use in our 
algorithm.  

 
 𝒙𝒔𝒆𝒆𝒅 = (146,150) ( 5-3 ) 

 
The coarse response at the input seed, 𝑹𝒄(𝒙𝒔𝒆𝒆𝒅, 𝝋𝒄), is shown in Figure 5-2. Note that the 

first order model produces a great seed for our coarse model optimization step. Even though the 
coarse model is not tuned for accuracy, it is still more accurate than the first order model. This is 
noted by the fact that the resonance frequency is not located at 1GHz. The magnitude of the 
response complies with the design specifications.  

 

 

Figure 5-2 Coarse model evaluated at seed from first order model. 
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5.3. Fine model. 

The fine model implementation of a dipole bowtie antenna in Ansys™ EM desktop 2019 is 
presented. The Ansys Antenna Toolkit [1] is used to generate the antenna geometric model.  It 
uses 7 parameters to build the geometric model: patch dimension X, patch dimension Y, substrate 
dimension x, substrate dimension y, substrate thickness, feed width, inset gap, feed length and 
inset distance. See Figure 5-3 

 
 

 
Two geometric dimensions are chosen as the input parameters; the rest are considered 

exogenous parameters.  Namely, the fine model for the microstrip patch antenna becomes: 
 

 𝑹𝒇൫𝒙𝒇, 𝝋𝒇൯ = |𝑺𝟏𝟏|   ( 5-4 ) 

 
Where:  
 

o 𝒙𝒇 = (𝑥ଵ, 𝑥ଶ) is the vector of design parameters: 
 𝑥ଵ - Patch dimension X in millimeters  
 𝑥ଶ - Patch dimension Y in millimeters. 
 See Figure 5-3. 

o 𝝋𝒇 = (𝜑ଵ, … , 𝜑ହ ) - is the vector of exogenous parameters: 
 𝜑ଵ = 4𝑥ଶ - Substrate dimension X in meters.  
 𝜑ଶ = 4𝑥ଵ - Substrate dimension Y in meters.  
 𝜑ଷ =  2 - Substrate thickness in millimeters.  
 𝜑ସ = 0.0001  - Inset distance in meters.  
 𝜑ହ = 0.0001  - Inset gap in meters.  
 𝜑଼ =  0.02 - Feed width in meters 
 𝜑଻ = 1 - Substrate relative permittivity. 
 𝜑଼ = 0.010 - Feed length in meters.  

Figure 5-3 Microstrip patch antenna design parameters. 
Taken from [1]. 
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 𝜑ଽ = 51 - Number of frequency points in the simulation. 
 
Even though 𝜑ଵ and 𝜑ଶ are not constants determined exogenously, they are refreshed in 

every iteration of the fine model, they are not considered part of the input parameters. Their only 
purpose is to create a PCB substrate large enough to model the antenna during the simulation. They 
have no significant influence on the response of the antenna other than enabling the simulation to 
run.  

 
The geometric model renders Figure 5-4.  
 

 
The fine response at the input seed, 𝑹𝒇൫𝒙𝒔𝒆𝒆𝒅, 𝝋𝒇൯, is shown in Figure 5-5. Note that both 

response magnitude and waveform are sufficiently similar to the coarse model after the coarse 
model was adjusted, which is a requisite for the rest of the algorithm to work. We adjusted the 
coarse model substrate to achieve this. See section 4.4 for details on how this was addressed. 

Figure 5-4 Microstrip patch antenna 
geometry model 
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As mentioned in the chapter’s introduction, other responses from the model such as the 

antenna radiation pattern in Figure 5-6 and the shape of the 2D gain in Figure 5-7 are considered 
consequences of the antenna type selection and are not part of the optimization objectives.  

 
 

  

Figure 5-6 Microstrip patch antenna radiation pattern 

Figure 5-5 Fine model response at input seed. 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Frequency in GHz 109

-16

-14

-12

-10

-8

-6

-4

-2

0

dB
(S

11
)

Fine model response at input seed
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Figure 5-7 Microstrip patch antenna 2D 
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5.4. Fine tune coarse model. 

It is imperative for the rest of the algorithm to work that the waveforms and magnitudes of 
the coarse and fine models are sufficiently similar. We recommend an iterative process in every 
step of the algorithm to confirm this continues to be true.  
 
 In this case, we had to adjust the coarse model substrate height to be twice that of the fine 
model to obtain a response with sufficiently similar magnitude. This was determined after several 
parameter sweeps.  The relation is shown in equation ( 5-5 ). 
 
 𝜑௖ଵ = 2𝜑௙ଷ ( 5-5 ) 

 
In Figure 5-8 we show the similar magnitudes and waveforms required for successful 

implementation of the algorithm.  
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Figure 5-8 Fine and coarse model at input seed 
showing similar magnitudes and waveforms. 
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5.5. Coarse model optimization. 

We obtain the target response 𝑹𝒕 from the optimization of the coarse model. We propose 
the minimax formulation in equation ( 5-6 ) with the objective function in ( 5-7 ).. After several 
iterations the specific formulation values follow: 

 
Let the vector 𝑓௦௪௘௘௣ be the 51 frequencies, equally spaced between 0.5 GHz and 1.5 GHz, 

at which the simulation is executed. Let 𝑰௦௪௘௘௣ be the set of all indices of 𝑓௦௪௘௘௣, which correspond 
exactly with the indices of coarse response 𝑹𝒄(𝒙𝒄, 𝝋𝒄). Such that, 𝑰ோ௘௙௟௘௖௧௅ , 𝑰ோ௘௦௢௡௔௧௘ and 
 𝑰ோ௘௙௟௘௖௧ு are disjoint subsets of 𝑰௦௪௘௘௣ . Then: 

 
 𝒙𝒄

∗ = arg min
𝒙

max{… 𝑒௞(𝒙) … } 

 

( 5-6 ) 

 
 

𝑒௞ = ൞

𝑅௖,௞(𝒙) − 𝑆௥௘௙௟௘௖௧           for all 𝑘 ∈ 𝑰ோ௘௙௟௘௖௧௅  

 𝑆௥௘௦௢௡௔௧௘ − 𝑅௖,௞(𝒙)         for all 𝑘 ∈ 𝑰ோ௘௦௢௡௔௧௘

𝑅௖,௞(𝒙) − 𝑆௥௘௙௟௘௖௧           for all 𝑘 ∈ 𝑰ோ௘௙௟௘௖௧ு  

 

 

( 5-7 ) 

 
Where: 

  𝑆௥௘௙௟௘௖௧ = −0.91 𝑑𝐵  
 𝑆௥௘௦௢௡௔௧௘ = −7.95  𝑑𝐵    
 𝑰ோ௘௙௟௘௖௧௅  ⊂ 𝑰௦௪௘௘௣,   𝑓௞  ∈  𝑓௦௪௘௘௣ |  𝑓௞  < 0.99 𝐺𝐻𝑧 
 𝑰ோ௘௦௢௡௔௧௘ ⊂ 𝑰௦௪௘௘௣ |  𝑓௞  ∈  𝑓௦௪௘௘௣, 0.99 𝐺𝐻𝑧 ≤ 𝑓௞ ≤ 1.01 𝐺𝐻𝑧: 
 𝑰ோ௘௙௟௘௖௧௅  ⊂ 𝑰௦௪௘௘௣,   𝑓௞  ∈  𝑓௦௪௘௘௣ |  𝑓௞ > 1.01 𝐺𝐻𝑧 
  

  
Note how: 
 

 The resonance band is thin, it contains only a few values around the design 
specification. 

  𝑆௥௘௙௟௘௖௧ &  𝑆௥௘௦௢௡௔௧௘ are loose values compared to the specification, the response 
at the resonance frequency should be -13 dB.  

 
Optimization of the minimax formulation in equation ( 5-6 )( 4-6 ) yields the optimal coarse 

response in Figure 5-9. It meets the design specifications: resonance frequency is at 1GHz with 
response lower than -13 dB. This is now the target response as formulated in equation ( 5-8 ). 

 
 𝑹் =  𝑹௖(𝒙௖

∗) ( 5-8 ) 
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Optimization time 694 seconds 

Objective function evaluations 52 
Iterations of the algorithm 20 

Optimization result 𝒙௖
∗ = (140.9,147.5) 

Objective function value -0.0671 

Output message 
The current x satisfies the termination criteria using 
TolX of 1e-03  and F(X) satisfies the convergence 
criteria TolFun of 1e-04 

 
  

Figure 5-9 Coarse model response at optimum from 
minimax formulation. 
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Figure 5-10 Coarse model response at optimum from minimax formulation compared to 
seed. shows the effect of the minimax formulation on the response, it moved the resonant 
frequency to the design specification of 1GHz.  
 
 

 
Figure 5-11 shows the fine and target responses evaluated at the coarse optimum input 𝒙௖

∗ . 
The space mapping algorithm will determine a fine response that complies with the design 
specification 

 
 

Figure 5-10 Coarse model response at optimum 
from minimax formulation compared to seed. 

Figure 5-11 Fine and coarse models compared 
at optimum from minimax formulation. 
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5.6. Broyden based input space mapping. 

A final consideration before the implementation of the space mapping algorithm is how to 
drive 2 different simulators from the same script. This is accomplished by a generalized Matlab™ 
to Ansys™ EM2019 HFSS driver, the code can be found in appendix D.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 Finally, the implementation of the Broyden based input space mapping algorithm as 
described in Figure 3-6 produces a fine response that complies with the design specification in 
only 3 iterations of the fine model. All the responses are shown in Figure 5-12.  
 

Matlab Antenna Optimization Algorithm script. 

Matlab MoM Coarse 
Model 

Matlab to HFSS Driver 

HFSS finite element 
Fine Model 
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Execution  time 1,112  seconds 
Coarse model evaluations 135 

Fine model evaluations 3 
Space Mapping input 𝒙ௌெ

∗ = (141.2,145.8) 
 
 
 

Figure 5-12 Space mapping implementation in Matlab 
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Conclusions. 

This thesis has presented an innovative antenna optimization through Broyden based input 

space mapping algorithm. The algorithm is mathematically formulated and developed in detail for 

each step. We provide recommendations and learnings based on the implemented examples for the 

generalized algorithm.  

 

We have shown that focus on creating an effective coarse model is the key to a 

straightforward implementation of the Broyden based input space mapping algorithm. We provide 

several recommendations on each step and criteria to move forward. The authors show a 

programmatic way to create a parameter sweep in order to find a coarse mesh that is effective for 

space mapping implementation. 

 

 Creating a target response that is sufficiently similar in magnitude and waveform to the 

fine response is fundamental to the successful implementation of the antenna optimization 

algorithm. The authors showed how a minimax formulation with loose engineering specifications 

and thin response bands is enough to obtain an adequate target response.  

 

The authors consider that this work can be extended in the following ways: 

 

 Create a response similarity criterion that is based on the pth-norm of the difference 

of the coarse and fine responses. This work relies on parameter sweeps that can be 

time consuming and computationally expensive. The weakest point of the 

parameter sweep is that it relies on the expertise of the designer on  antenna theory 

and simulation techniques. A pth-norm approach will enable the use of optimization 

techniques and heuristics to fine tune the coarse model regardless of designers 

ability on antenna theory.  

 Formulate and develop a version of the algorithm that implements neuro space 

mapping as in [3] [16]. This will necessarily provide new recommendations at each 
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step of the algorithm. It will introduce robustness to the formulation of the coarse 

response.  

 Formulate and implement versions of the algorithm with different versions of the 

space mapping algorithm, such as output space mapping as in [4] or linear inverse 

input space mapping as in [14]. 

 Develop the application of the algorithm for all the antenna types available in 

Matlab™ and HFSS™ antenna toolboxes. 

 Develop a Matlab™ driver  to other commercial 3D and Multiphysics simulators 

such as Comsole™ for use with the antenna optimization algorithm. 

 Develop and formulate similar specific algorithms for other radio frequency circuits 

such as filters or impedance couplings. 
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Appendix. 
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A. MICROSTRIP PATCH ANTENNA CODE. 

 Matlab™ and Python™ code used to optimize Microstrip Patch Antenna. 
 

 Matlab™ MoM Coarse Model 
 
function S11 = PatchCoarse(x) 
% Usage: S11 = PatchCoarse(x) 
% x: array containing Patch length in meters and patch width in meters. 
% x = [Patch Length in m, Patch Width in meters] 
% S11: returns abs() of S11 parameters of Microstrip patch Antenna for fSweep 
frequency values 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-05-17 
%% Create patch antenna using patchL and patchW  
    patchL = x(1);%m 
    patchW = x(2);%m 
    patchAntenna = patchMicrostrip; 
    patchAntenna.Length = patchL; 
    patchAntenna.Width = patchW; 
    patchAntenna.Height = 4e-3; 
    patchAntenna.GroundPlaneLength = 2*patchL; 
    patchAntenna.GroundPlaneWidth = 2*patchW; 
  
%adjust mesh to create a coarse model 
    fSweep = 500e6:20e6:1.5e9; 
    fmax = max(fSweep); 
    n=1e-3; 
    lambda = physconst('LightSpeed')/fmax; 
    mesh (patchAntenna,'MaxEdgeLength',   lambda/n); 
  
%% Calculate S11 
    S = sparameters(patchAntenna,fSweep); 
    S11 = abs(S.Parameters(:)); 
  
end  
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 Minimax Objective Function 

 
function MaxError = OF_patchCoarseOptim(x) 
% Usage: S11 = OF_bowtieCoarseOptim(x) 
% x: array containing Patch length in meters and  patch width in radians. 
% x = [Patch Length in m, Patch Width in meters] 
% Objective function for Minimax optimization program. Retuns the maximum 
% error as per criteria below. 
% Requires PatchCoarse() 
% Maxerror returns the max of e1 and e2. 
% e1 contains the error for the resonance band. 
% e2 contains the error for the reject band. 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-05-17 
 
% Get coarse reponse 
S11 = PatchCoarse(x); 
  
%% Calculate error functions 
%Problem set up 
S11resonate = 0.4;%aprox -6dB 
S11reflect = 0.9; 
%resonate band freq 
fresonateL = 0.99e+9; 
fresonateH = 1.01e+9; 
%reflect band freq 
freflectH = 1.1e9; 
freflectL = 0.9e9; 
  
e1 = []; %initialize error functions 
e2 = []; %initialize error functions 
  
FP = length(S11); 
f = 500e6:20e6:1.5e9; 
for k = 1:FP 
    if (f(k) >= fresonateL) && (f(k) <= fresonateH) 
        e1n = S11(k) - S11resonate;  
        e1 = [e1 e1n]; 
    elseif (f(k) >= freflectH) || (f(k) <= freflectL) 
        e2n = S11reflect - S11(k);  
        e2 = [e2 e2n]; 
    end 
end 
  
% Obj fn value 
e = [e1 e2]; 
MaxError = max(e); 
  
end  
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 Nelder-Mead Optimization of Minimax objective function  

 
%% optimize coarse model  
tic 
%define constants for optim algo 
    epsf = 1e-4; 
    epsx = 10e-4; 
    epsg = 1e-4; 
    MaxIter = 1e3; 
    MaxfunEval = .5e3; 
     
    algo = 'Nelder-Mead'; 
    objfun ='OF_patchCoarseOptim' ; 
    x = [144e-3 150e-3]; % from microstrip patch antenna calc 
%'PlotFcns',@optimplotfval 
    options = optimset('MaxFunEvals',MaxfunEval,'MaxIter',Max-
Iter,'TolX',epsx,'PlotFcns','optimplotfval'); 
     [Xopt,FunVal,EF,output] = fminsearch(objfun,x,options); 
toc  
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 Fine model  
 
function [Rf] = PatchFine(x) 
% Usage: S11 = PatchFine(x) 
% x: array containing Patch length in meters and  patch width in meters. 
% x = [Patch Length in m, Patch Width in meters] 
% % S11: returns abs() of S11 parameters of Microstrip Patch Antenna for 
fSweep 
% frequency values. Uses MATLAB2HFSS() driver. 
% Requires that HFSSpyScriptTemplate has a valid path to an HFSS script 
% template. 
% Requires that HFSSPath contains  a valid path to ansysedt.exe. 
% Requires valid HFSS parametrized design referenced in HFSSpyScriptTemplate 
% Requires HFSS 19 or later 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-05-17 
  
HFSSpyScriptTemplate = 'HFSSscripttemplate.py'; 
       HFSSPath = '"C:\Program Files\AnsysEM\AnsysEM19.1\Win64\an-
sysedt.exe"'; 
       x = x * 1e3;  
       %convert x to strings for MATLAB driver 
           
            xd = {strcat('"',num2str(x(1)),'mm','"'),... patchL 
                  strcat('"',num2str(x(2)),'mm','"'),... patchW 
               }; 
        %param line location to modify template 
        %Lines =[SubSizeY=21,SubSizeX=39, FlareLegth=57]  
        lines =[21 39]; 
         
        %Simulate using MATLAB2HFSS driver 
        FineR = MATLAB2HFSS(xd,lines,HFSSPath,HFSSpyScriptTemplate); 
        Rf = FineR(:,2); 
end  
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 Python template for HFSS driver 
 
import ScriptEnv 
ScriptEnv.Initialize("Ansoft.ElectronicsDesktop") 
oDesktop.RestoreWindow() 
oDesktop.OpenProject("C:\Users\emichel\Desktop\personal\mde\CircOpt\Final\HFSS\Patch\Patch.aedt") 
oProject = oDesktop.SetActiveProject("Patch") 
oDesign = oProject.SetActiveDesign("HFSSDesign1") 
oDesign.ChangeProperty( 
 [ 
  "NAME:AllTabs", 
  [ 
   "NAME:LocalVariableTab", 
   [ 
    "NAME:PropServers",  
    "LocalVariables" 
   ], 
   [ 
    "NAME:ChangedProps", 
    [ 
     "NAME:patchL", 
     "Value:="  , "140.9337mm"  
    ] 
   ] 
  ] 
 ]) 
oDesign.ChangeProperty( 
 [ 
  "NAME:AllTabs", 
  [ 
   "NAME:LocalVariableTab", 
   [ 
    "NAME:PropServers",  
    "LocalVariables" 
   ], 
   [ 
    "NAME:ChangedProps", 
    [ 
     "NAME:patchW", 
     "Value:="  , "140.4739mm"  
    ] 
   ] 
  ] 
 ]) 
oProject.Save() 
oDesign.Analyze("1GHz") 
oModule = oDesign.GetModule("ReportSetup") 
oModule.ExportToFile("S Parameter Plot 1", 
"C:/Users/emichel/Desktop/personal/mde/CircOpt/Final/HFSSoutput.csv") 
oProject.Save()  
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 Input Space Mapping 
 
% Usage: Patch Antenna optimization through input space 
% mapping. 
% % Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-05-17 
 %% PatchAntenna 
clear; 
clc; 
format shorteng; 
%% 
%coarse opt 
load('final') 
Xoptc = Xopt';%degrees **must be col vector 
%Initialize B 
B = eye(length(Xoptc)); 
%initialize Xf 
Xf = Xoptc; 
Xccheck = Xoptc; 
%initialize k 
k = 0; 
kmax = length(Xf); 
%initialize EF 
EF = 0; 
%initialize Rt 
Rtarget = PatchCoarse(Xoptc); 
Rtarget = 20*log10(Rtarget); 
Rf = PatchFine(Xf); 
Rfinit = 20*log10(Rf); 
Xc = SPE('PatchCoarse',Rf,Xf); 
f = Xc - Xoptc; 
EF = SMstop(f); 
%% 
    while (EF == 0 && k <= kmax) 
        h = -B\f; 
        Xf = Xf+h; 
        Rf = PatchFine(Xf); 
        Xc = SPE('PatchCoarse',Rf,Xf); 
        f = Xc - Xoptc; 
        EF = SMstop(f); 
        B = B + (f * h')/(h' * h); 
        k=k+1; 
        Xccheck = [Xccheck Xc]; 
    end 
    %% 
         
    RfSM = 20*log10(Rf); 
        %% 
    plot(fSweep,Rtarget,'r--',fSweep,Rfinit,'b--',fSweep,RfSM,'b'); 
     xlabel('Frequency in GHz')  
        ylabel('dB(S11)') 
        title('Space Mapping') 
    legend('Coarse Xopt','Fine Xopt','Fine Xsm','Location','southwest');  
 



 

 62

B. DIPOLE BOWTIE ANTENNA CODE. 

 Matlab™ MoM Coarse Model for Minimax optimization (constrained) 
 
function S11 = BowtieCoarse(x) 
% Usage: S11 = BowtieCoarse(x) 
% x: array containing Bowtie length in meters and  Flare Angle in radians. 
% x = [Bowtie Length in m, FlareAnge in radians] 
% BowtieCoarse introduces a contraint on angle values to help optmization 
% with Nealder mead algorithm, compare to BowtieCoarseSM that has no such 
% contraint.  
% S11: returns abs() of S11 parameters of bowtie Antenna for fSweep frequency 
values 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-10-27 
  
%% Create Bowtie antenna using bowtieL and bowtieAng  
    %x = [0.0794 pi/4];%use to test function 
    bowtieL = x(1);%m 
    bowtieAng = rad2deg(x(2));%convert Flare angle from radians to degrees 
  
   %constrain Flare angle to be between 5 and 175 deg 
   if(bowtieAng < 87) 
       bowtieAng = 87; 
   elseif (bowtieAng > 93) 
       bowtieAng = 93; 
   end 
        
   %% Create antenna object 
    
    bowtieAntenna = bowtieTriangular; 
    bowtieAntenna.Length = bowtieL; 
    bowtieAntenna.FlareAngle = bowtieAng; 
     
%adjust mesh to create a coarse model 
    fSweep = 500e6:10e6:1.5e9; 
    fmax = max(fSweep); 
    n=100e-3; 
    lambda = physconst('LightSpeed')/fmax; 
    %mesh (bowtieAntenna,'MaxEdgeLength',   lambda/n); 
  
%% Calculate S11 
    S = sparameters(bowtieAntenna,fSweep); 
    S11 = abs(S.Parameters(:)); 
  
end  
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 Matlab™ MoM Coarse Model for Space Mapping (unconstrained) 
 
function S11 = BowtieCoarseSM(x) 
% Usage: S11 = BowtieCoarse(x) 
% x: array containing Bowtie length in meters and  Flare Angle in radians. 
% x = [Bowtie Length in m, FlareAnge in radians] 
% BowtieCoarseSM has no constraints for Flare Angle, compare to 
% BowtieCoarse that has Flare angle constraints. 
% S11: returns abs() of S11 parameters of bowtie Antenna for fSweep frequency 
values 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-10-27 
  
%% Create Bowtie antenna using bowtieL and bowtieAng  
   % x = [0.0794 pi/4];%use to test function 
    bowtieL = x(1);%m 
    bowtieAng = rad2deg(x(2));%convert Flare angle from radians to degrees 
  
   %make sure Flare angle is between 5 and 175 deg 
   if(bowtieAng < 5) 
       bowtieAng = 87; 
   elseif (bowtieAng > 170) 
       bowtieAng = 170; 
   end 
        
   %% Create antenna object 
    
    bowtieAntenna = bowtieTriangular; 
    bowtieAntenna.Length = bowtieL; 
    bowtieAntenna.FlareAngle = bowtieAng; 
     
%adjust mesh to create a coarse model 
    %fSweep = 0.9e9:5e6:1.1e9; 
    fSweep = 500e6:10e6:1.5e9; 
    fmax = max(fSweep); 
    n=100e-3; 
    lambda = physconst('LightSpeed')/fmax; 
    %mesh (bowtieAntenna,'MaxEdgeLength',   lambda/n); 
  
%% Calculate S11 
    S = sparameters(bowtieAntenna,fSweep); 
    S11 = abs(S.Parameters(:)); 
  
end  
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 Minimax Objective Function 
 
function MaxError = OF_bowtieCoarseOptim(x) 
% Usage: S11 = OF_bowtieCoarseOptim(x) 
% x: array containing Bowtie length in meters and  Flare Angle in radians. 
% x = [Bowtie Length in m, FlareAnge in radians] 
% Objective function for Minimax optimization program. Retuns the maximum 
% error as per criteria below. 
% Requires BowtieCoarse() 
% Maxerror returns the max of e1 and e2. 
% e1 contains the error for the resonance band. 
% e2 contains the error for the reject band. 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-10-27 
  
%% Get S11 parameter from Bowtie Coarse model 
S11 = BowtieCoarse(x); 
  
  
%% Calculate error functions 
%Problem set up 
S11resonate = 0.35;%aprox -6dB 
S11reflect = 0.7; 
%resonate band freq 
fresonateL = 0.95e+9; 
fresonateH = 1.05e+9; 
%reflect band freq 
freflectH = 0.7e9; 
freflectL = 0.51e9; 
  
e1 = []; %initialize error functions 
e2 = []; %initialize error functions 
  
FP = length(S11); 
f = 500e6:10e6:1.5e9; 
for k = 1:FP 
    if (f(k) >= fresonateL) && (f(k) <= fresonateH) 
        e1n = S11(k) - S11resonate;  
        e1 = [e1 e1n]; 
    elseif (f(k) >= freflectH) || (f(k) <= freflectL) 
        e2n = S11reflect - S11(k);  
        e2 = [e2 e2n]; 
    end 
end 
  
% Obj fn value 
e = [e1 e2]; 
MaxError = max(e); 
  
end  
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 Nelder-Mead Optimization of Minimax objective function 
 
%% optimize coarse model  
tic 
%define constants for optim algo 
    epsf = 1e-5; 
    epsx = 1e-5; 
    epsg = 1e-5; 
    MaxIter = 1e3; 
    MaxfunEval = 1e3; 
%     
    objfun ='OF_bowtieCoarseOptim' ; 
     
     
    Xseed = [0.0794 pi/2]; % from matlab antenna design tool 
%'PlotFcns',@optimplotfval 
    options = optimset('MaxFunEvals',MaxfunEval,'MaxIter',Max-
Iter,'TolX',epsx); 
     [Xopt,FunVal,EF,output] = fminsearch(objfun,Xseed,options); 
     output.message 
  toc  

 Seed for Nelder mead optimization. 
 % Seed 
         design(bowtieTriangular,1e9)  
     
    ans =  
     
      bowtieTriangular with properties: 
     
            Length: 0.0794 
        FlareAngle: 90 
              Tilt: 0 
          TiltAxis: [1 0 0] 
              Load: [1×1 lumpedElement]  
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 Fine model  

 
function [Rf] = BowtieFine(x) 
% Usage: S11 = BowtieFine(x) 
% x: array containing Bowtie length in meters and  Flare Angle in radians. 
% x = [Bowtie Length in m, FlareAnge in radians] 
% % S11: returns abs() of S11 parameters of bowtie Antenna for fSweep 
% frequency values. Uses MATLAB2HFSS() driver. 
% Make sure HFSSpyScriptTemplate has a valid path to an HFSS script 
% template. 
% Make sure HFSSPath contains  a valid path to ansysedt.exe. 
% Requires HFSS 19 or later 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-10-27 
      %% 
       %x = [0.08 90]; %[BowtieLength FlareAngle] used to test module 
        
       HFSSpyScriptTemplate = 'HFSSscripttemplate.py'; 
       HFSSPath = '"C:\Program Files\AnsysEM\AnsysEM19.3\Win64\an-
sysedt.exe"'; 
        
       % convert Bowtie L from coarse model to Arm Length for fine model. 
       x(1) = x(1)/2; 
       % convert flare angle from coarse model to outer width for fine model  
       x(2) = 2 * x(1) * cos(x(2)/2); % meters 
       % round to 4 digits (tenths of milimiters) 
       x = round(x,4); 
       %convert x to strings for MATLAB driver 
           
            xd = {strcat('"',num2str(x(1)),'meter','"'),... patchL 
                  strcat('"',num2str(x(2)),'meter','"'),... patchW 
               }; 
        %param line location to modify template 
        %Lines =[SubSizeY=21,SubSizeX=39, FlareLegth=57]  
        lines =[21 39]; 
         
        %% Simulate using MATLAB2HFSS driver 
        FineR = MATLAB2HFSS(xd,lines,HFSSPath,HFSSpyScriptTemplate); 
        Rf = FineR(:,2);%return mag(S11) in column vector 
end  
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 Python template for HFSS driver
 
import ScriptEnv 
ScriptEnv.Initialize("Ansoft.ElectronicsDesktop") 
oDesktop.RestoreWindow() 
oDesktop.OpenProject("C:/Users/emichel/Desktop/HFSS/tesis/Bowtie/Bowtie_ATK1.aedt") 
oProject = oDesktop.SetActiveProject("Bowtie_ATK1") 
oDesign = oProject.SetActiveDesign("Bowtie_ATK") 
oDesign.ChangeProperty( 
 [ 
  "NAME:AllTabs", 
  [ 
   "NAME:LocalVariableTab", 
   [ 
    "NAME:PropServers",  
    "LocalVariables" 
   ], 
   [ 
    "NAME:ChangedProps", 
    [ 
     "NAME:Arm_Length", 
     "Value:="  , "0.0392meter"  
    ] 
   ] 
  ] 
 ]) 
oDesign.ChangeProperty( 
 [ 
  "NAME:AllTabs", 
  [ 
   "NAME:LocalVariableTab", 
   [ 
    "NAME:PropServers",  
    "LocalVariables" 
   ], 
   [ 
    "NAME:ChangedProps", 
    [ 
     "NAME:Outer_Width", 
     "Value:="  , "0.0542meter"  
    ] 
   ] 
  ] 
 ]) 
oProject.Save() 
oDesign.Analyze("ATK_Solution") 
oModule = oDesign.GetModule("ReportSetup") 
oModule.ExportToFile("Return Loss", "C:/Users/emichel/Desktop/Bowtie/HFSSoutput.csv") 
oProject.Save()  
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 Input Space Mapping 

 
%%test space mapping algo 
%% Bowtie Antenna 
clear; 
clc; 
format shorteng; 
%% 
%coarse opt 
load('Bowtie') 
Xoptc = Xopt';%degrees **must be col vector 
%Initialize B 
B = eye(length(Xoptc)); 
%initialize Xf 
Xf = Xoptc; 
Xccheck = Xoptc; 
%initialize k 
k = 0; 
kmax = 4;%length(Xf); 
%initialize EF 
EF = 0; 
%initialize Rt 
Rtarget = BowtieCoarseSM(Xoptc); 
Rtarget = 20*log10(Rtarget); 
Rf = BowtieFine(Xf); 
Rfinit = 20*log10(Rf); 
Xc = SPE('BowtieCoarseSM',Rf,Xf); 
f = Xc - Xoptc; 
EF = SMstop(f); 
%% 
    while ( EF == 0 && k <= kmax)% 
        h = -B\f; 
        Xf = Xf+h; 
        Rf = BowtieFine(Xf); 
        Xc = SPE('BowtieCoarseSM',Rf,Xf); 
        f = Xc - Xoptc; 
        EF = SMstop(f); 
        B = B + (f * h')/(h' * h); 
        k=k+1; 
        Xccheck = [Xccheck Xc]; 
    end 
    %% 
         
    RfSM = 20*log10(Rf); 
        %% 
    plot(fSweep,Rtarget,'r--',fSweep,Rfinit,'b--',fSweep,RfSM,'b'); 
     xlabel('Frequency in GHz')  
        ylabel('dB(S11)') 
        title('Space Mapping') 
    legend('Coarse Xopt','Fine Xopt','Fine Xsm','Location','southwest');  
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C. SPACE MAPPING ANCILLIARY CODE. 

 Matlab™ code needed by space mapping implementation in appendixes A and B. 
 

 Parameter extraction 
 
function xspe = SPE(R,Rt,x0) 
% Usage:  xspe = SPE(R,Rt,x0 
% Statistical (optional, comment/uncomment lines 20 to 35) parameter extrac-
tion 
% R: Response from Space mapping. 
% Rt: Target response 
% requires that R and Rt are the same array size, 
% x0: seed for optmization program. 
% xspe: returns parameter extraction input. 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-05-17 
  
    %initialize parameters for optimization 
    epsx = 1e-3; 
    MaxIter = 1e3; 
    MaxfunEval = 3; 
    options = optimset('MaxFunEvals',MaxfunEval,'MaxIter',Max-
Iter,'TolX',epsx); 
     
    %create objective function for param extraction 
     PE = @(x)norm((feval(R,x)- Rt)); 
     xspe = fminsearch(PE,x0,options); 
  
    %initialize parameters for statistical parameter extraction control loop 
    epsPE = 1e-2;%Acceptable PE error 
    Na = 2;%max attempts to escape poor local min 
    alpha = 1e-4;%set 0<alpha<1 
    x0sz = size(x0); 
    r = 2.*rand(x0sz) - 1;%ranom vector with values between -1 and 1 
    k = 0; 
      
    %Check if it is trapped in a local min 
      
    while ((norm((feval(R,xspe)- Rt),Inf) / norm(Rt/Inf)) > epsPE) && (k < 
Na) 
     
        x0 = x0 .* (ones(x0sz) + alpha.*r); 
        xspe = fminsearch(PE,x0,options); 
        k=k+1; 
    end 
  
end  

  



 

 70

 
 Stop criteria 

 
function EF = SMstop (f) 
% Usage:  EF = SMstop (f) 
% Stop criteria for input at iteration for coarse model is sufficiently  
% similar to target input (from coarse optimization). 
% f: array from Space mapping algorithm containing the difference between  
% the input at the iteration and Xoptc. 
% EF: returns exit function 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-05-17 
    EF = 0; 
    epsf = 1e-4; 
    if(norm(f) < epsf) 
        EF = 1; 
    end 
  
end  
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D. MATLAB™ TO HFSS DRIVER. 

 Generalized MATLAB™ to HFSS driver used by both Antenna implementations. A 
template for each specific problem is required.  
 
function [Response] = MATLAB2HFSS(x,lines,HFSSPath,HFSSpyScriptTemplate) 
% Usage: [Response] = MATLAB2APLAC(x,lines,APLACPath,templateName) 
% x: cell array contraining strings as elements to pass parameters to 
template 
% lines: integer array contaning line numbers to pass parameters,  
% make sure it is the same length as x 
% HFSSpath: path to HFSS exe (ansysedt.exe). Requires HFSS 19 or later 
% HFSSpyScriptTemplate:name of python script, use .py file. 
% Response: reads  and returns contents of HFSSoutput.csv 
% Author: Eduardo Michel md710644@iteso.mx 
% Last Update: 2019-05-25 
  
%% hfss commnad line mode 
    %hfss python script 
    lenx = length(x); 
  
    %% define python script 
    %read template and store in cell array, template must be in same 
directory 
    hfssstr = fileread(HFSSpyScriptTemplate); 
    hfssf = regexp(hfssstr, '\n', 'split'); 
  
    %% Write parameters on file using x and target lines 
    for k = 1:lenx 
        hfssf{lines(k)} = strcat(hfssf{lines(k)},32,x{k},32,13); %adding 
ASCII chars 32 = space 13 = CR 
    end 
    %% Write file for hfss python script 
     
    fid = fopen('HFSSpyScript.py','w'); 
    fprintf(fid,'%s\n', hfssf{:}); 
    fclose(fid); 
  
    %% Run HFSS 
        system(strcat(HFSSPath,32,'-RunScriptAndExit',32,'HFSSpyScript.py')); 
        %Read HFSS output 
        Response = csvread('HFSSoutput.csv',1,0); 
        %clean up HFSS output file 
         delete HFSSoutput.csv 
  
end 
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