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Abstract— In this paper, we expose a control function which
allows the semi-global predefined-time stabilization of first-
order vector systems. The predefined-time stability is a stronger
class of finite-time stability that has as main advantage the
settling time as a tunable parameter of the proposed function.
To design that stabilizing function, we use the unit control
principle jointly to the inverse incomplete gamma function. For
the resulting expression, the domain of definition the inverse
incomplete gamma function can be made as large as wanted
with an appropriate parameter selection, and, as consequence,
the attraction domain of the systems. Therefore, we say that
the system exhibits semi-global predefined-time stability. As
an essential feature, the parameter which defines the settling
time bound and those that tune the attraction domain are
independent of each other. Finally, the constructed function
is used to design predefined-time stabilizing controllers which
are robust against vanishing and non-vanishing perturbations.

I. INTRODUCTION

The high performance and the safety are standard
requirements in several problems of control, observation,
and optimization. For those cases, fast responses are,
commonly, an essential specification of the design. The
schemes based on finite-time stability [1]–[5] permit to solve
some applications where is necessary to satisfy those hard
design constraints. However, this finite time is an unbounded
function of the initial conditions of the system. That makes
the response times hard or impossible to calculate.

The elimination of this boundlessness present in the
conventional finite-time approaches emerges as a desired
feature to improve the characteristics of the closed-loop
systems. As a response, there is a class of methods related to
a stronger form of stability called fixed-time stability, where
the settling-time function, is bounded. The references [6]–
[10]. investigate the notion of fixed-time stability.

Although the fixed-time stability concept represents a
significant advantage over finite-time stability, it is often
complicated to find a direct relationship between the tuning
gains and the fixed stabilization time. To overcome the
above, another class of dynamical systems which exhibit the
property of predefined-time stability, have been studied in
[11]–[15]. For this systems, an upper bound of the fixed
stabilization time appears explicitly in their tuning gains.

*This work was supported by CONACyT, México, under grant 252405.
1Department of Electrical Engineering, CINVESTAV-IPN Guadala-

jara, Av. del Bosque 1145 Col. El Bajı́o CP 45019, México.
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Due to its importance, a vector extension of the scalar
semi-global predefined-time stabilizing function [16] is
proposed in this paper. The constructed function involves the
inverse incomplete gamma function, causing this function
to be semi-global. Finally, the stabilizing function is used
to design predefined-time stabilizing controllers which are
robust against vanishing and non-vanishing perturbations.
Simulation examples are included.

II. PRELIMINARIES

This paper is a continuation of the research of the authors
in predefined-time stability, in particular, it stands as an
extension of the reference [16]. As a consequence, since
it contains the essential definitions, this section has similar
contents to others of the author reports, especially to Section
II of the mentioned reference.

A. On finite-time, fixed-time and predefined-time stability

Consider the system

ẋ = f(x;ρ), (1)

where x ∈ Rn is the system state, ρ ∈ Rb represents the
parameters of the system, f : D → Rn is continuous on a
neighborhood D ⊆ Rn of the origin, and f(0;ρ) = 0. The
initial conditions of this system are x0 = x(0) ∈ D.

Definition 2.1 ( [4]): The origin is said to be a finite-time-
stable equilibrium of (1) if it is asymptotically stable and any
solution x(t,x0) ∈ D of (1) reaches the equilibrium point
at some finite time moment, i.e., ∀t ≥ T (x0) : x(t,x0) = 0,
where T : N → R+ ∪ {0}, with N ⊆ D a neighborhood of
the origin, is called the settling-time function.

The origin is said to be a globally finite-time-stable
equilibrium if it is a finite-time-stable equilibrium with N =
D = Rn.

Definition 2.2 ( [10]): The origin is said to be a fixed-
time-stable equilibrium of (1) if it is finite-time-stable and
the settling-time function T (x0) is bounded on N , i.e.
∃Tmax > 0 : ∀x0 ∈ N : T (x0) ≤ Tmax.

The origin is said to be a globally fixed-time stable
equilibrium if it is a fixed-time-stable equilibrium with N =
D = Rn.

Remark 2.1: Note that there are several possible choices
for Tmax; for example, if T (x0) ≤ Tm for a positive number
Tm, also T (x0) ≤ λTm with λ ≥ 1. This motivates the
definition of a set which contains all the bounds of the
settling-time function.

Definition 2.3 ( [11], [12]): Let the origin be fixed-time-
stable for the system (1). The set of all the bounds of the



settling-time function is defined as:

T = {Tmax ∈ R+ : T (x0) ≤ Tm, ∀x0 ∈ N} . (2)

In addition, the least upper bound of the settling-time
function, denoted by Tf , is defined as

Tf = min T = sup
x0∈N

T (x0). (3)

Remark 2.2: For several applications it could be desirable
for system (1) to stabilize within a time Tc ∈ T which can
be defined in advance as function of the system parameters,
that is Tc = Tc(ρ). The cases where this property is present
motivate the definition of predefined-time stability. A strong
notion of this class of stability is given when Tc = Tf , i.e.,
Tc is the true fixed-time in which the system stabilizes. A
weak notion of predefined-time stability is presented when
Tc ≥ Tf , that is, if well it is possible to define an upper
bound of the settling-time function in terms of the system
parameters, this overestimates the true fixed-time in which
the system stabilizes.

Definition 2.4 ( [15]): For the system parameters ρ and a
constant Tc(ρ) > 0, the origin is said to be

(i) A weakly predefined-time-stable equilibrium for system
(1) if it is fixed-time-stable and the settling-time
function T : N → R is such that

T (x0) ≤ Tc, ∀x0 ∈ N .

In this case, Tc is called a weak predefined time.
(ii) A globally weakly predefined-time-stable equilibrium

for system (1) if it is a weakly predefined-time-stable
equilibrium with N = D = Rn.

(iii) A strongly predefined-time-stable equilibrium for
system (1) if it is fixed-time-stable and the settling-
time function T : N → R is such that

sup
x0∈N

T (x0) = Tc.

In this case, Tc is called the strong predefined time.
(iv) A globally strongly predefined-time-stable equilibrium

for system (1) if it is a strongly predefined-time-stable
equilibrium with N = D = Rn.

Theorem 2.1 ( [15]): Assume there exist a continuous
function V : D → R, real numbers Tc = Tc(ρ) > 0 and
0 < p < 1, and a neighborhood V ⊆ D of the origin such
that:

V (0) = 0

V (x) > 0, ∀x ∈ V \ {0},

and the derivative of V along the trajectories of the system
(1) satisfies

V̇ (x) ≤ − 1

pTc
exp(V (x)p)V (x)1−p, ∀x ∈ V \ {0}.

(4)
Then, the origin is weakly predefined-time-stable for system
(1), and a weak predefined time is Tc. If, in addition, D =
Rn, V is radially unbounded, and (4) holds on Rn \ {0},
then the origin is a globally weakly predefined-time-stable
equilibrium of (1).

Theorem 2.1 characterizes weak predefined-time stability
in a very practical way since the Lyapunov condition
(4) directly involves a bound on the convergence time.
Nevertheless, this condition is not enough to imply strong
predefined-time stability. The following theorem provides
a Lyapunov characterization for strong predefined-time
stability:

Theorem 2.2 ( [15]): Assume there exist a continuous
function V : D → R, real numbers Tc = Tc(ρ) > 0 and
0 < p < 1, and a neighborhood V ⊆ D of the origin such
that:

V (0) = 0

V (x) > 0, ∀x ∈ V \ {0},
sup
x∈V

V (x) =∞,

and the derivative of V along the trajectories of the system
(1) satisfies

V̇ (x) = − 1

pTc
exp(V (x)p)V (x)1−p, ∀x ∈ V \ {0}.

(5)
Then, the origin is strongly predefined-time-stable for system
(1), and the strong predefined time is Tc. If, in addition,
D = Rn, V is radially unbounded, and (5) holds on Rn\{0},
then the origin is a globally strongly predefined-time-stable
equilibrium of (1).

B. On the incomplete gamma function inverse

Recall the definition of the Gamma function:
Definition 2.5 ( [17]): Let a > 0. The Gamma function

is defined as

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt. (6)

Remark 2.3: The Gamma function satisfies Γ(a + 1) =
aΓ(a), which is called the Functional equation. Furthermore,
note that

Γ(1) =

∫ ∞
0

exp(−t)dt = 1.

Then, for n ∈ N

Γ(n+ 1) = 1 · 2 · · · · · n = n!.

Hence, the Gamma function can be viewed as an extension
of the factorial function to positive real numbers.

Splitting the integral (6) at a point x ≥ 0, two incomplete
gamma functions are obtained. These incomplete gamma
functions are of great interest in applied mathematics, which
motivates the following definition.

Definition 2.6 ( [17]): Let a > 0 and x ≥ 0. The
incomplete gamma function is defined as

γ(x; a) =

∫ x

0

ta−1 exp(−t)dt, (7)

and the complementary incomplete gamma function is
defined as

Γ(x; a) =

∫ ∞
x

ta−1 exp(−t)dt.



Remark 2.4: Some properties concerning the incomplete
gamma function (7) are:

(i) Clearly, the following decomposition of the Gamma
function (6) is satisfied

Γ(a) = γ(x; a) + Γ(x; a).

(ii) Since the integrand ta−1 exp(−t) is nonnegative
(t ≥ 0), the incomplete gamma functions are also
nonnegative, i.e.,

γ(x; a) ≥ 0 and Γ(x; a) ≥ 0.

(iii) From (i) and (ii), the incomplete gamma function is
bounded above by the Gamma function, i.e.,

γ(x; a) ≤ Γ(a).

Moreover, limx→∞ γ(x; a) = Γ(a) (i.e., y = Γ(a) is an
horizontal asymptote of the function γ(x; a)).

(iv) Note that γ(x; a) = 0 if and only if x = 0. Furthermore,

dγ(x; a)

dx
= xa−1 exp(−x) > 0 for x > 0.

Then, the function γ(·; a) is strictly increasing in [0,∞),
and thus it is injective.

(v) From (iii) and (iv), the incomplete gamma function
γ(·; a) : [0,∞) → [0,Γ(a)) is bijective. Then, there
exists the inverse incomplete gamma function.

Definition 2.7: Let a > 0 and x ≥ 0. The incomplete
gamma function inverse γ−1(·; a) : [0,Γ(a)) → [0,∞), is
defined as the unique function satisfying γ−1(γ(x; a); a) =
x.

Remark 2.5: Some properties of the incomplete gamma
function inverse in Definition 2.7 are:

(i) limx→Γ(a)− γ
−1(x; a) =∞ (i.e., x = Γ(a) is a vertical

asymptote of the function γ−1(x; a)).
(ii) By the inverse function theorem,

dγ−1(x; a)

dx
=

[
dγ(x; a)

dx

]−1

=
exp(x)

xa−1
> 0,

for x ∈ (0,Γ(a)). Thus, the function γ−1(·; a) is strictly
increasing in (0,Γ(a)).

(iii) From (ii), for a > 1,

lim
x→0+

dγ−1(x; a)

dx
=∞.

Example 2.1: For a = 5 the plots of the incomplete
gamma function and its inverse are shown in Fig. 1 and Fig.
2, respectively.
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Fig. 1: Incomplete gamma
function γ(x; 5) (gray solid)
and horizontal asymptote
Γ(5) (black dashed).
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Fig. 2: Incomplete gamma
function inverse γ−1(x; 5)
(gray solid) and vertical
asymptote Γ(5) (black
dashed).
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Properties stated on Remarks 2.4 and 2.5 can be observed
in Fig. 1 and Fig. 2.

For instance, the incomplete gamma function image is the
interval [0,Γ(5)) = [0, 24), it strictly is increasing in [0,∞),
it is bijective and limx→∞ γ(x; 5) = Γ(5) = 4! = 24 (see
Fig. 1).

On the other hand, the incomplete gamma function inverse
domain is the interval [0,Γ(5)) = [0, 24), it is strictly
increasing in (0,Γ(5)), limx→Γ(5)− γ

−1(x; 5) = ∞ and
limx→0+

dγ−1(x;5)
dx =∞ (see Fig. 2).

C. On semi-global predefined-time stable scalar systems

This subsection summarizes the construction on [16].
Definition 2.8 ( [16]): Let m ≥ 1 and 0 < p < 1.

The semi-global predefined-time stabilizing function φm,p :
Dm,p ⊂ R→ R is defined as:

φm,p(x) :=

[
γ−1

(
|x| ; 1

mp
+ 1

)] 1
mp

sign(x), (8)

with domain

Dm,p :=

(
−Γ

(
1

mp
+ 1

)
,Γ

(
1

mp
+ 1

))
.

Lemma 2.1 ( [16]): Let m ≥ 1 and 0 < p < 1. The
function φm,p(x) (8) in Definition 2.8 satisfies the condition

dφm,p(x)

dx
=

1

mp
exp(|φm,p(x)|mp) |φm,p(x)|−mp .

Theorem 2.3 ( [16]): Let m ≥ 1, 0 < p < 1 and Tc > 0.
If x0 ∈ Dm,p, the origin of the system

ẋ = − 1

Tc
φm,p(x)

is strongly predefined-time-stable with strong predefined
time Tc.

A further result concerning the scalar semi-global
predefined-time stabilizing function is obtained below. This
will be used in the foregoing.

Let m ≥ 1 and 0 < p < 1 as in Definition 2.8. Note that
the absolute value of the function φm,p(x) is

|φm,p(x)| =
[
γ−1

(
|x| ; 1

mp
+ 1

)] 1
mp

.



Then, using the chain rule the derivative of the above
function is:

d |φm,p(x)|
dx

= sign(φm,p(x))
dφm,p(x)

dx

= sign(x)
dφm,p(x)

dx
. (9)

Now, consider the following function

κm,p(u) :=

[
γ−1

(
u;

1

mp
+ 1

)] 1
mp

, (10)

and notice that |φm,p(x)| = κm,p(|x|).
Using the chain rule again, another expression of the

derivative of the function |φm,p(x)| is

d |φm,p(x)|
dx

=
dκm,p(u)

du

∣∣∣∣
u=|x|

sign(x). (11)

Hence, equating (9) and (11), it yields

dκm,p(u)

du

∣∣∣∣
u=|x|

=
dφm,p(x)

dx

=
1

mp
exp(|φm,p(x)|mp) |φm,p(x)|−mp

=
1

mp
exp

(
γ−1

(
|x| ; 1

mp
+ 1

))
×[

γ−1

(
|x| ; 1

mp
+ 1

)]−1

.

The above analysis is summarized in the following
definition and lemma.

Definition 2.9: Let m ≥ 1 and 0 < p < 1. The function
κm,p :

[
0,Γ( 1

mp + 1)
)
→ R is defined as (10).

Lemma 2.2: Let m ≥ 1 and 0 < p < 1. The derivative of
the function κm,p in Definition 2.9 is

dκm,p(u)

du
=

1

mp
exp

(
γ−1

(
u;

1

mp
+ 1

))
×[

γ−1

(
u;

1

mp
+ 1

)]−1

. (12)

III. SEMI-GLOBAL PREDEFINED-TIME STABILIZING
VECTOR FUNCTION

As an extension of the scalar semi-global predefined-time
stabilizing function and based on the unit control algorithm
[3], [18], we define the vector semi-global predefined-time
stabilizing function as

Definition 3.1: Let m ≥ 1 and 0 < p < 1. The semi-
global predefined-time stabilizing function φm,p : Dm,p ⊂
Rn → Rn is defined as:

φm,p(x) :=

[
γ−1

(
||x|| ; 1

mp
+ 1

)] 1
mp x

||x||
, (13)

with domain

Dm,p :=

{
x : ||x|| < Γ

(
1

mp
+ 1

)}
. (14)

Here, ||·|| stands for the euclidean 2-norm in Rn.

Now, the main result of this paper is stated and proved in
the following theorem.

Theorem 3.1: Let m ≥ 1, 0 < p < 1 and Tc > 0. If
x0 ∈ Dm,p ⊂ Rn, the origin of the system

ẋ = − 1

Tc
φm,p(x) (15)

is strongly predefined-time-stable with strong predefined
time Tc.

Proof: Consider the positive definite Lyapunov function
candidate V (x) = ||φm,p(x)||m; its derivative along the
trajectories of system (15) is

V̇ (x) = m ||φm,p(x)||m−1 ∂ ||φm,p(x)||
∂x

[
− 1

Tc
φm,p(x)

]
= −m

Tc
||φm,p(x)||m−1 ∂ ||φm,p(x)||

∂x
φm,p(x). (16)

Note that

||φm,p(x)|| =
[
γ−1

(
||x|| ; 1

mp
+ 1

)] 1
mp

= κm,p(||x||).

Hence, using the chain rule, the derivative ∂||φm,p(x)||
∂x can

be calculated as
∂ ||φm,p(x)||

∂x
=

dκm,p(u)

du

∣∣∣∣
u=||x||

xT

||x||
. (17)

Now, by Lemma 2.2

dκm,p(u)

du

∣∣∣∣
u=||x||

=
1

mp
exp

(
γ−1

(
||x|| ; 1

mp
+ 1

))
×[

γ−1

(
||x|| ; 1

mp
+ 1

)]−1

=
1

mp
exp(||φm,p(x)||mp) ||φm,p(x)||−mp

=
1

mp
exp(V (x)p)V (x)−p. (18)

Finally, replacing (17) and (18) into (16), and noticing that
xT

||x||φm,p(x) = ||φm,p(x)||, it yields

V̇ (x) = − 1

Tcp
exp(V (x)p)V (x)1−p.

From the above and Theorem 2.2, the origin is strongly
predefined-time stable for system (15), with Tc as the strong
predefined time.

Remark 3.1: The semi-global property refers to the fact
that even though the region Dm,p (14) is a proper subset of
Rn, it can be made as large as wanted with an appropriate
selection of the parameters m and p. For instance, for
a given m ≥ 1, select p = 1

rm with r > 1. Thus,
with this selection Dm, 1

rm
= {x : ||x|| < Γ (r + 1)} . Since

the Gamma function (6) grows very fast (even faster than
exponential), so does this region. Furthermore, in the limit
r →∞, Dm, 1

rm
becomes Rn.

Remark 3.2: Note that the time parameter Tc is
completely independent of the parameters m and p.

Remark 3.3: The function ||φm,p(x)|| takes arbitrarily
large values for x near the boundary of the region Dm,p (see
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Fig. 3: Response of the system ẋ = − 1
Tc
φm,p(x − xss) to

several initial conditions.

Remark 2.5, part (i)). Hence, the parameters m and p should
be selected carefully to ensure that x remains far enough of
the points

{
x : ||x|| = Γ

(
1
mp + 1

)}
, i.e., the boundary of

Dm,p.
Remark 3.4: Since predefined-time stability is a stronger

form of finite-time stability, it can only be induced using non-
smooth functions at the origin, due to the lack of uniqueness
of the solutions in backward time once the equilibrium has
been reached. From part (iii) of Remark 2.5, it can be noticed
that the function φm,p(x) is, in fact, non-smooth.

Example 3.1: Consider the system ẋ = − 1
Tc
φm,p(x −

xss), with x ∈ R3, xss = [3 0 − 1]
T , m = 1, p = 1

3
and Tc = 0.1 time units. Fig. 3 shows the trajectories of the
system for several initial conditions. All these trajectories
converge to the equilibrium point xss at least in the strong
predefined time Tc.

IV. ROBUST FIRST-ORDER SEMI-GLOBAL
PREDEFINED-TIME VECTOR CONTROLLERS

To apply the results in section III to robust first-order
controller design, consider the dynamical system

ẋ = u+ ∆(t,x) (19)

with x ∈ D ⊆ Rn, u ∈ Rn and ∆ : R+ × D → Rn.
The objective is to stabilize system (19) at the origin in a
(weak) predefined time Tc, starting from an arbitrary state
x0 = x(0) ∈ D and in spite of the unknown disturbance
∆(t,x).

Theorem 4.1: Let the function ∆(t,x) be considered as
a vanishing perturbation term such that ||∆(t,x)|| ≤ δ ||x||,
with 0 < δ < ∞ a known constant. Selecting the control
input as

u = − 1

Tc
φm,p(x)− kx (20)

with Tc > 0, m ≥ 1, 0 < p < 1, and k ≥ δ. If x0 ∈ Dm,p,
then the origin is weakly predefined-time-stable for system
(19) closed by (20), with Tc as the weak predefined time.

Proof: Consider the positive definite Lyapunov function
candidate V (x) = ||φm,p(x)||m. Following similar steps to
that in the proof of Theorem 3.1, its derivative along the
trajectories of system (19) closed by (20) is

V̇ (x) = m ||φm,p(x)||m−1 ∂ ||φm,p(x)||
∂x

[
− 1

Tc
φm,p(x)−

kx+ ∆(t,x)

]
= − 1

Tcp
exp(V (x)p)V (x)1−p−

1

p
ψ(x)

xT

||x||
[kx−∆(t,x)] ,

with ψ(x) = ||φm,p(x)||m−1
exp(V (x)p)V (x)−p > 0 for

all x ∈ Dm,p.
Furthermore, using the Cauchy-Schwarz inequality, the

above becomes

V̇ (x) ≤ − 1

Tcp
exp(V (x)p)V (x)1−p−

1

p
ψ(x)

[
k ||x|| −

∣∣xT∆(t,x)
∣∣

||x||

]
≤ − 1

Tcp
exp(V (x)p)V (x)1−p−

1

p
ψ(x)

[
k ||x|| − ||x|| ||∆(t,x)||

||x||

]
≤ − 1

Tcp
exp(V (x)p)V (x)1−p−

1

p
ψ(x) ||x|| [k − δ]

≤ − 1

Tcp
exp(V (x)p)V (x)1−p.

From the above and Theorem 2.1, the origin is weakly
predefined-time stable for system (19) closed by (20), with
Tc as a weak predefined time.

Example 4.1: Consider the system ẋ = − 1
Tc
φm,p(x −

xss) − k(x − xss) + ∆(t,x − xss), with x ∈ R3, xss =
[3 0 − 1]

T , m = 1, p = 1
3 and Tc = 0.1 time

units. The perturbation term is chosen as ∆(t,x − xss) =
sin(||x−xss||)√

3
[1 1 1]

T (recall that |sin(||x||)| ≤ ||x||). Fig.
4 shows the trajectories of the system for several initial
conditions. All these trajectories converge to the equilibrium
point xss at least in the strong predefined time Tc.

Theorem 4.2: Let the function ∆(t,x) be considered as a
non-vanishing bounded perturbation such that ||∆(t,x)|| ≤
δ, with 0 < δ <∞ a known constant. Selecting the control
input as

u = − 1

Tc
φm,p(x)− k x

||x||
(21)

with Tc > 0, m ≥ 1, 0 < p < 1, and k ≥ δ. If x0 ∈ Dm,p,
then the origin is weakly predefined-time-stable for system
(19) closed by (21), with Tc as the weak predefined time.

Proof: Similar to the proof of Theorem 4.1.
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Fig. 4: Response of the system ẋ = − 1
Tc
φm,p(x − xss) −

k(x− xss) + ∆(t,x− xss) to several initial conditions.
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Fig. 5: Response of the system ẋ = − 1
Tc
φm,p(x − xss) −

k (x−xss)
||x−xss|| + ∆(t,x− xss) to several initial conditions.

Remark 4.1: The controller (21) in Theorem 4.2 contains
a discontinuous term to cancel the effect of the non-vanishing
perturbation term.

Example 4.2: Consider the system ẋ = − 1
Tc
φm,p(x −

xss) − k (x−xss)
||x−xss|| + ∆(t,x − xss), with x ∈ R3, xss =

[3 0 − 1]
T , m = 1, p = 1

3 and Tc = 0.1 time
units. The perturbation term is chosen as ∆(t,x − xss) =
sin(t)√

3
[1 1 1]

T (recall that |sin(t)| ≤ 1). Fig. 5 shows the
trajectories of the system for several initial conditions. All
these trajectories converge to the equilibrium point xss at
least in the strong predefined time Tc.

V. CONCLUSION

A vector semi-global predefined-time stabilizing function
is proposed in this paper as an extension of the scalar
semi-global predefined-time stabilizing function and based
on the unit control algorithm. As an important remark, the
predefined-time parameter could be defined independently
of the other controller parameters. Finally, the constructed
function was used to design predefined-time stabilizing

controllers, robust against vanishing and non-vanishing
perturbations. Simulation examples were included.
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