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Abstract—In the continuation of authors’ studies
on control and estimation methods for Single-Phase
Induction Motor (SPIM), a new observer-based
controller using High Order Sliding Mode (HOSM)
algorithms is proposed here. This observer-controller
scheme only uses measurements of the rotor speed
and stator currents. The complete scheme is robust to
uncertainties in the rotor resistance, and a bounded
time-varying load torque.
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I. INTRODUCTION

The aim of this paper is to present an observer-
based controller using second order Sliding Mode
(SM) algorithms. The idea of use a second order SM
controller for SPIM was introduced in [1]. Here, using
measurements of currents and rotor speed, the controller
induces a linear stable dynamics on the rotor flux and
speed variables. In addition, the load torque is assumed
as a slowly varying quantity which is estimated, jointly
to the fluxes, using an state observer. No variation on
the rotor resistance was considered in the mentioned
approach.

In this article, a second-order SM observer is designed
to estimate the fluxes. It uses the similarity between
the natural form of the flux and the currents and
the Super-Twisting algorithm structure [2]. Besides, a
robust controller against, both matched and unmatched,
perturbations is synthesized. The controller is calculated
driving the system to the Nonlinear Block Controllable

Form [3] and using quasi-continuous SM [4] surfaces as
in [5].

The use of the proposed method allows to avoid the
estimation of the load torque. In addition, its robustness
permits to overcome the uncertainty due to the rotor
resistance variations, improving the tracking accuracy.

In the following, Section II provides the considered
model of the SPIM. Sections III and IV describe the
proposed observer and controllers, including a detailed
analysis of stability and robustness. The successful
simulations are presented in section V. Finally, in Section
VI the conclusions are given.

II. MATHEMATICAL MODEL FOR THE SPIM

SYSTEM INCLUDING RESISTANCE

VARIATIONS

A. Dynamic Equations

The dynamic model of the SPIM is the unsymmetrical
2-phase induction machine (a, b), in the variables of
circuit elements with a transformation to a stationary
of reference known as (α − β) transformation, [6].
From this representation, the single phase induction

motor scheme, in αβ-axis, with the stator current and
the rotor flux as the state variables, is presented in Fig.
1.

Fig. 1: Single phase induction motor

and its dynamic equations are given by

dωr

dt
=d1d2 (λβriαs − λαriβs)− d2TL

dλαr
dt

=− a3λαr + npωrλβr + a4iαs

dλβr
dt

=− npωrλαr − a3λβr + a4iβs (1)

diαs
dt

=− c1a1iαs + c1c4λαr − c1c3npωrλβr + c1vαs

diβs
dt

=− c2a2iβs + c2c4λβr + c2c3npωrλαr + c2vβs

where λαr and λβr are the rotor magnetic-flux-linkage
components, respectively, iαs and iβs are the stator
current components, respectively, vαs and vβs are the
voltage of the main and auxiliary stator windings,
respectively, ωr is the rotor speed, np is the number
of pole pairs, TL is the load torque, respectively. The
model (1) constants ai and ci, (i = 1, .., 4) depend on the

motor parameters and are given by a1 = Rαs
+

RrL
2
m

L2
r

,
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a2 = Rβs
+

RrL
2
m

L2
r

, a3 = Rr

Lr
, a4 = RrLm

Lr
, c1 = Lr

LαsLr−L2
m
,

c2 = Lr

LβsLr−L2
m
, c3 = Lm

Lr
, c4 = rrLm

L2
r

, d1 = np
Lm

Lr
and

d2 =
np

J ; where Rαs
and Rβs

are the stator resistances,
Lαs

and, Lβs
are the inductances of the stator, Rr and

Lr are the rotor resistance and inductance, respectively,
J is the rotor moment of inertia, and Lm is the mutual
inductance between the main and auxiliary windings.
The load torque TL is assumed to be an unknown and
bounded variable.

In addition, the dynamics of the capacitor are
represented by

dvc/dt = ωXciβs (2)

where Xc is the capacitor reactance and ω = 2πf , with
f being the fundamental frequency. Using the relation
between the voltages vαs and vβs in (1) of the form,

vαs = vs

vβs = n−1vs − vcρ (3)

where the switching parameter ρ is defined by

ρ =

{

1
0

⇒
vβs = n−1vs − vc
vβs = n−1vs

,

being n−1vs as a referred voltage of the main winding
to the auxiliary winding with n = NA/NB, where NA is
the number turns of main winding and NB is the number
turns of an auxiliary winding.

B. Inclusion of Resistance Variations

One of the most important variations during motor
operations is that of the rotor resistance (due to
temperature changes), with respect to the nominal values
Rr0. The real value is

Rr(t) = Rr0 +∆Rr(t),

with ∆Rr(t) an unknown but bounded function of time.

Hence, a10 =
(

Rαs +Rr0
L2

m

L2
r

)

, a20 =
(

Rβs +Rr0
L2

m

L2
r

)

,

a30 = Rr0

Lr
, a40 = Rr0

Lr
Lm and, c40 = Rr0

L2
r
L are the

nominal values of a1(t) = a10 + ∆a1(t), a2(t) = a20 +
∆a2(t), a3(t) = a30 +∆a3(t), a4(t) = a40 + ∆a4(t), and
c4(t) = c40+∆c4(t), respectively. Here, the uncertainties

in the parameters are ∆a1(t) = ∆a2(t) =
L2

m

L2
r
∆Rr(t),

∆a3(t) =
1
Lr

∆Rr(t), ∆a4(t) =
Lm

Lr
∆Rr(t), and ∆c4(t) =

Lm

L2
r
∆Rr(t).

Therefore, the flux and current dynamics of the SPIM

model can be reformulated as follows

dλαr
dt

=− a30λαr + npωrλβr + a40iαs + ℘1(t)

dλβr
dt

=− npωrλαr − a30λβr + a40iβs + ℘2(t)

diαs
dt

=− c1a10iαs + c1c40λαr − c1c3npωrλβr (4)

+ c1vαs + ℘3(t)

diβs
dt

=− c2a20iβs + c2c40λβr + c2c3npωrλαr

+ c2vβs + ℘4(t)

with the unknown terms ℘1(t) = −∆a3(t)λαr +
∆a4(t)iαs, ℘2(t) = −∆a3(t)λβr + ∆a4(t)iβs, ℘3(t) =
∆c4(t)c1λαr − ∆a1(t)c1iαs, and ℘4(t) = ∆c4(t)c2λβr −
∆a2(t)c2iβs.

III. SECOND ORDER SLIDING MODE

OBSERVER FOR ROTOR FLUXES

Having the rotor speed ωr and stator current iαs and
iβs measurements only, in this section a sliding mode
super-twisting observer is designed to estimate the rotor
flux.

A. Observer Design

Consider the following transformation:

λ∗αr = λαr − l1iαs

λ∗βr = λβr − l2iβs (5)

where l1 and l2 are the transformation gains to be
chosen later. Using (5), the flux and current dynamics
(4) are represented in new variables λ∗αr and λ∗βr with
the unknown terms of the form

λ̇∗αr =− l11λ
∗
αr + l12npωrλ

∗
βr + ς11npωriβs + ς12iαs

− ϕ1vαs − l1℘3 + ℘1

λ̇∗βr =− l21λ
∗
βr − l22npωrλ

∗
αr − ς21npωriαs + ς22iβs

− ϕ2vβs − l2℘4 + ℘2 (6)

i̇αs =− ϑ11iαs − ϑ12npωriβs − ϕ3npωrλ
∗
βr + ϕ4λ

∗
αr

+ c1vαs + ℘3

i̇βs =− ϑ21iβs + ϑ22npωriαs + ϕ5npωrλ
∗
αr + ϕ6λ

∗
βr

+ c2vβs + ℘4

where l11 = a30 + l1c1c40, l12 = 1 + l1c1c3, l21 =
a30 + l2c2c40, l22 = 1 + l2c2c3, ς11 = l12l2, ς12 = a40 −
l11l1 + l1c1a10, ς21 = l22l1, ς22 = a40 − l21l2 + l2c2a20,
ϑ11 = c1a10− l1c1c40, ϑ12 = l2c1c3, ϑ21 = c2a20− l2c2c40,
ϑ22 = l1c2c3, ϕ1 = l1c1, ϕ2 = l2c2, ϕ3 = c1c3, ϕ4 = c1c40,
ϕ5 = c2c3, and ϕ6 = c2c40.

Based on (6), and defining λ̂∗αr, λ̂
∗
βr, îαs, and îβs as

the estimates of λ∗αr, λ
∗
βr, iαs, and iβs, respectively, a



nonlinear observer is designed as follows:

˙̂
λ∗αr =− l11λ̂

∗
αr + l12npωrλ̂

∗
βr + ς11npωriβs + ς12iαs

− ϕ1vαs +
k2α
ϕ4

sign
(

ĩαs
)

˙̂
λ∗βr =− l21λ̂

∗
βr − l22npωrλ̂

∗
αr − ς21npωriαs + ς22iβs

− ϕ2vβs +
k2β
ϕ6

sign
(

ĩβs
)

(7)

˙̂iαs =− ϑ11 îαs − ϑ12npωr îβs − ϕ3npωrλ̂
∗
βr + ϕ4λ̂

∗
αr

+ c1vαs + k1α
∣

∣̃iαs
∣

∣

1
2 sign

(

ĩαs
)

+ k3α ĩαs
˙̂iβs =− ϑ21 îβs + ϑ22npωr îαs + ϕ5npωrλ̂

∗
αr + ϕ6λ̂

∗
βr

+ c2vβs + k1β
∣

∣̃iβs
∣

∣

1
2 sign

(

ĩβs
)

+ k3β ĩβs

where ĩαs = iαs − îαs, and ĩβs = iβs − îβs are the
estimation errors of iαs, and iβs, respectively. With
kiα, kiβ > 0 for i = 1, 2, 3.

As a result, the rotor flux estimates λ̂αr and λ̂βr are

obtained as λ̂αr = λ̂∗αr + l1iαs and λ̂βr = λ̂∗βr + l2iβs.

B. Convergence Analysis

Defining the additional the estimation errors λ̃∗αr =
λ∗αr − λ̂∗αr , and λ̃∗βr = λ∗βr − λ̂∗βr. Then, from (7), the
observer error dynamics are obtained on the form

˙̃iαs = −k1α
∣

∣̃iαs
∣

∣

1
2 sign

(

ĩαs
)

− (k3α + ϑ11) ĩαs

+ ϕ4λ̃
∗
αr +∆1α

˙̃
λ∗αr = −

k2α
ϕ4

sign
(

ĩαs
)

+∆2α (8)

˙̃iβs = −k1β
∣

∣̃iβs
∣

∣

1
2 sign

(

ĩβs
)

− (k3β + ϑ21) ĩβs

+ ϕ6λ̃
∗
βr +∆1β

˙̃
λ∗βr = −

k2β
ϕ6

sign
(

ĩβs
)

+∆2β

where ∆1α = −ϑ12npωr ĩβs − ϕ3npωrλ̃
∗
βr + ℘3, ∆2α =

−l11λ̃
∗
αr + l12npωrλ̃

∗
βr − l1℘3 + ℘1, ∆1β = ϑ22npωr ĩα +

ϕ5npωrλ̃
∗
αr+℘4, and ∆2β = −l21λ̃

∗
βr−l22npωrλ̃

∗
αr+l2℘4+

℘2.
Following the Lyapunov approach proposed in [7],

lets assume that |∆1α|, |∆̇1α| < δ1α; |∆2α| < δ2α and
|∆1β |, |∆̇1β | < δ1β ; |∆2β | < δ2β . Then, choosing k1α > 0,

k1β > 0, k2α >
k1αδ2α+ 1

9 δ
2
2α

2( 1
8k1α−δ2α)

k1α, k2β >
k1βδ2β+

1
9 δ

2
2β

2( 1
8 k1β−δ2β)

k1β ,

k3α >
17
8 δ1α−ϑ11, and k3β >

17
8 δ1β−ϑ21; the estimation

error converges to zero in finite time.

IV. SLIDING MODE CONTROLLER DESIGN

Provided that the currents and speed vector are
measured and the rotor flux estimated, the objective here
is to design a SM controller which can effectively track
the desired speed ωref and the module to the square
of the rotor flux φref reference signals by means of the

continuous basic control vs and auxiliary control ρ as a
discontinuous function.

A. Sliding Manifold Design

As first step, the model (α, β) of the SPIM (1) is
transformed, here φ = |ψ|

2
= λ̂2αr + λ̂2βr is the module

to the square of rotor flux. After that, it is defined the
state variables as

x1 =

[

ωr

φ

]

and x2 =

[

iαs
iβs

]

.

Then, the system (1) can be represented in the so-
called Nonlinear Block Control form with perturbation,
[3], which consists of two blocks:

ẋ1 =f1 (φ) +B1

(

λ̂r

)

x2 +D1TL + ℘a(t) (9)

ẋ2 =f2

(

ωr, λ̂r, is

)

+B2u+ ℘b(t) (10)

where f1 (φ) =

[

f11
f12

]

=

[

0
−2a30φ

]

,

B1

(

λ̂r

)

=

[

d1d2λ̂βr −d1d2λ̂αr
2a40λ̂αr 2a40λ̂βr

]

, λ̂r = (λ̂αr , λ̂βr),

D1 =

[

−d2
0

]

, ℘a (t) =

[

0

2℘1 (t) λ̂αr + 2℘2 (t) λ̂βr

]

,

℘b (t) =

[

℘3 (t)
℘4 (t)

]

, f2 =

[

f21 − a10c1iαs
f22 − a20c2iβs

]

,

f21 = c1c40λ̂αr − c1c3ωrλ̂βr
f22 = c2c3ωrλ̂αr + c2c40λ̂βr

, B2 =

[

c1 0
0 c2

]

,

and u =

[

vαs
vβs

]

=

[

vs
n−1vs − vcρ

]

.

Setting the tracking error as z1 = [z11, z12]
T

=
[ωr − ωref (t), φ− φref (t)]

T , and using the block control
technique, [3], the desired value x2des for the virtual
control x2 in the first block (9) is proposed of the form

x2des = B−1
1

(

λ̂r

)

(−f1 (φ)−K0z0 −K1z1 + ν) (11)

where K0 =

[

k01 0
0 k02

]

, K1 =

[

k1 0
0 k2

]

,

ν = [ν1, ν2]
T , ν̇ =







−ka1
ż11+|z11|

1
2 sign(z11)

|ż11|+|z11|
1
2

−ka2
ż12+|z12|

1
2 sign(z12)

|ż12|+|z12|
1
2






, z0 =

[z01, z02]
T , ż0 = z1, and ka1, ka2, k01, k02, k1, k2 > 0.

B. Inducing Sliding Modes

Let the sliding variable z2 defined now as follows

z2 = x2 − x2des (12)



where z2 = [z21, z22]
T
, z21 = iαs − idesαs , z22 = iβs − idesβs ;

with

idesαs =
1

φ

[

λ̂βr
d1d2

(−k1z11 − k01z01 + ν1)

+
λ̂αr
2a40

(2a30φ− k2z12 − k02z02 + ν2)

]

idesβs =
1

φ

[

−
λ̂αr
d1d2

(−k1z11 − k01z01 + ν1)

+
λ̂βr
2a40

(2a30φ− k2z12 − k02z02 + ν2)

]

In the slave loop (iαs, iβs), first, the basic control vs
will be formulated. To induce a sliding mode motion on
the manifold z21 = 0 or iαs = idesαs , the super-twisting SM
control algorithm [2], is applied:

vs = −α1 |z21|
1/2

sign (z21)− α3z21 + u1 (13)

with u̇1 = −α2sign (z21).
And to induce a quasi-sliding mode motion on the

manifold z22 = 0 or iβs = idesβs , the auxiliary control
ρ is designed by means of the switching logic for the
capacitor, chosen as follows

ρ =















1 if z22 > 0 and vc > 0
0 if z22 > 0 and vc < 0
0 if z22 < 0 and vc > 0
1 if z22 < 0 and vc < 0

that results in

ρ = 0.5sign (z22vc) + 0.5. (14)

In order to analyze the stability of the reaching phase
stage, lets substitute the control law (13) in (10). Hence,
the closed-loop system becomes

ż21 = fs − c1α1 |z21|
1/2

sign (z21)− c1α3z21 + c1u1

u̇1 = −α2sign (z21) (15)

with fs = f21 − a10c1i
des
αs −

didesαs

dt + ℘3(t), α1 > 0,
α2 > 0, and α3 > 0 where the term fs, considered as
a perturbation in (15), is bounded by

|fs| ≤ δ1 |z21|+ δ2 (16)

for constants δ1 > 0 and δ2 > 0. Choose the control
gains α1, α2, and α3 in (13) such that α1 > 0, α2 >

c1α1
(δ2c1α1+

1
9 δ

2
2)

2( 1
8 c1α1−δ2)

, and α3 >
17
8 δ1. Then, the state vector

of the closed-loop system (15) reaches the manifold z21 =
0 in finite time [7].
In SM motion on the manifold z21 = 0, the equivalent

value vs,eq [8], of the control vs is calculated as a solution
to ż21 = 0, (15) of the form

vs,eq = c−1
1 fs. (17)

Substituting (17) in the equation (10) yields

ż22 = −a22z22 + f̄22 (z̄)− c2vcρ (18)

where z̄ = [z11, z12, z22]
T , a22 = a2c2 and f̄22 (z̄) =

f22 + c2 (nc1)
−1 fs − a22i

des
βs − didesβs

/

dt+ ℘4(t)
Thus, to analyze the stability of (18) closed-loop by

(14) the following quadratic Lyapunov function candidate
is proposed:

V =
1

2
z222. (19)

In addition, the perturbation g (z̄) is considered
bounded by

∥

∥f̄22 (z̄)
∥

∥ ≤ γ1 ‖z̄‖+ γ2, γ1 > 0, γ2 > 0. (20)

Then, the time derivative of (19) along the trajectories
of (18) is calculated as

V̇ = −a22z
2
22 + f̄22 (z̄) z22 − c2z22vcρ. (21)

Substituting (14) in (21) and using z22vcsign (z22vc) =
|z22vc|, the derivative (21) becomes

V̇ = −a22z
2
22 + f̄22 (z̄) z22 − 0.5c2 (|z22vc| − z22vc)

< −a22|z22|
2 + |f̄22 (z̄) ||z22| (22)

Using now (20) in (22) and adding and subtracting
(α− γ1)β|z22|

2, yields

V̇ ≤ − (a22 − γ1) (1− β) |z22|
2 (23)

where 0 < β < 1, ∀|z22| >
γ2

(a22−γ1)β

Therefore, assuming that a22 > γ1, a quasi-sliding
motion is induced in the vicinity defined by |z22| ≤ δ0,
δ0 = γ2

(a22−γ1)β
.

Finally, to limit the stator currents we propose the
following logic for the sliding variables z21 and z22:

z21 =

{

iαs − idesαs for |iαs| ≤ Imax

iαs for |iαs| > Imax

z22 =

{

iβs − idesβs for |iβs| ≤ Imax

iβs for |iβs| > Imax

where Imax is a maximum admissible current value,
Imax ≈ 3Inom, and Inom is the nominal value of the
current module.
This current limit provides maximum electrical torque

produced by motor during the closed-loop transient
process.

C. Sliding Mode Stability

The dynamics on the set z21 = 0, |z22| ≤ δ0 is given by

ż11 = −k1z11 − k11z01 + ν1 +∆1 (24)

ż12 = −k2z12 − k12z02 + ν2 +∆2 (25)

where ∆1 = −d2TL − ω̇ref (t) and ∆2 =
2℘1 (t) λ̂αr + 2℘2 (t) λ̂βr − φ̇ref (t).



Lets assume that |∆1|, |∆̇1| < ∆+
1 and |∆2|, |∆̇2| <

∆+
2 , with ∆+

1 ,∆
+
2 > 0. Then, regarding Eq. (24), define

ξ11 = z11 and ξ12 = ż11, with dynamics

ξ̇11 = ξ12

ξ̇12 = −k1ξ12 − k11ξ11 − ka1
ξ12 + |ξ11|

1
2 sign (ξ11)

|ξ12|+ |ξ11|
1
2

+ ∆̇1

therefore, if ka1 > ∆+
1 , (ξ11, ξ12) = (0, 0) in finite time [4].

Establishing a finite time sliding mode for the constraint
z11 = 0 despite of the perturbation ∆1.
With the same analysis for the Eq. (25), the existence

of a finite time sliding mode for the constraint z12 = 0
despite of the perturbation ∆2 is demonstrated.

V. NUMERICAL SIMULATION RESULTS

In order to verify the effectiveness and efficiency
of the proposed observer-based controller, numerical
simulations are conducted using the Euler integration
method with a time step ts = 1× 10−3.
Parameters and data of the SPIM are as follows, [6]:

H.P. = 0.25, Vs = 110 V, f = 60 Hz, np = 2, n =
NA/NB = 1.18, rαs = 2.02 Ω, rβs = 5.13 Ω, rr = 4.12
Ω, Lm = 0.1772 H, Lαs = 0.1846 H, L′

βs = 0.1833
H, Lr = 0.1828 H, J = 0.0146 Kg-m2, Imax = 15 A,
Crun = 35 µF.
The controller gains are adjusted as k1 = k2 = 500,

k01 = k02 = 30, ka1 = ka2 = 5, α1 = 36, and α3 = 1 the
gains for the transformation are l1 = l2 = 0.01, finally
the gains for the super-twisting observer are k1α = 195,
k1β = 140, k3α = k3β = 7000, k2α = k2β = 0.02,
respectively.
For the simulation purposes, the initial conditions

of the state variables are selected to zero. Tracking
performance is verified for the two plant outputs: driving
the square of rotor flux φ to a constant reference φref =
0.15, and for ωr a speed profile, ωref , is proposed as
follows:

1) The SPIM starts on repose with the reference speed
on 100 rad/sec.

2) At the first second, a change of the speed reference
– in ramp form – from 100 rad/sec to 120 rad/sec,
is presented.

3) Finally, at 4 seconds, a change of the speed
reference – in negative ramp form – from 120
rad/sec to 100 rad/sec, is presented.

In addition, the system is subject to disturbances.
These disturbances are introduced as follows:

1) The SPIM starts on repose with a load torque of
0.5 + 0.1 sin(2.5t) N-m.

2) At 2 seconds, a 30% increase in the value of the
rotor resistance is presented.

The rotor speed tracking response is depicted in Fig.
2 which shows a good performance under the change of

the speed reference at t = 1, 4 sec., i.e. the speed tracking
effect is achieved almost totally after 0.087 sec.
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Fig. 2: Rotor speed ωr and reference ωref .

The Figure 3 presents the module to the square of the
rotor flux φ response; the module is maintained over the
given reference.
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Fig. 3: Module to the square of rotor flux φ.

Errors of rotor flux are shown in Fig. 4, and they are
zero.

The electromagnetic torque response is depicted in Fig.
5, showing that the torque has a high value 20 N-m during
the interval [0, 0.088] sec. This high value ensures a fast
response of the speed (see Fig.2).

The result of the change in the value of the rotor
resistance is shown as well, the typical oscillatory
components of the second harmonic appear in the steady
state due to the asymmetry of the auxiliary winding
and main winding, see Figures 2, 3, and 5. However, the
amplitude of these components has small values.
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Fig. 4: Error of rotor flux in axis frame α β.
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Fig. 5: Electromagnetic torque Te.

On the other hand, the stator currents (see Fig. 6) are
in the appropriate range during the start (0 < t < 0.2)
that corresponds to a desired control algorithm.
Finally, in Fig. 7, the responses of the voltages are

presented, where vαs as the super-twisting SM control
and vβs as the discontinuous SM control.

VI. CONCLUSIONS

A control scheme based on the block control technique,
quasi-continuous SM surfaces and second order SM
super-twisting algorithm, was proposed to track the rotor
angular speed ωr and module to the square of rotor flux
φ. In addition, a nonlinear second order SM observer was
designed to estimate the rotor flux. Besides, the stability
conditions of the closed-loop system with the proposed
observer-based control was derived.
The simulation results have shown a robust

performance of the designed controller with respect to
the perturbations caused by the load torque. Moreover,
the proposed controller ensures the constraints on the
stator current.
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Fig. 6: Stator currents in axis frame α β.
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Fig. 7: Stator control voltages of axis α β.
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