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Abstract—In this work, an observer-based controller for an
internal combustion engine is presented. At first, an algorithm for
the estimation of an unknown function of the internal combustion
engine is designed, since it is very difficult to obtain direct
measurements of this variable. This estimator is based on sliding
mode algorithms, providing a finite time and robust estimation,
using only measurements from the velocity of the engine. On
the other hand, with the measured velocity and the estimates
of the other variables, a robust controller is synthesized for
the engine. In order to considerate the actuator dynamics, the
proposed control scheme is based on the master-slave structure,
regarding the controller for the actuator as the slave one. For this
scheme, the backstepping algorithm is used to design the master
controller. Then, the calculated control input signal to the engine
is used as a reference for the throttle actuator which is driven
by a direct current (DC) motor. Thus, a high-order sliding mode
controller is applied to the actuator in order to track the control
input signal and reject perturbations, as the applied mechanical
load, regulating the velocity of the combustion engine. Numerical
simulations show the efficient performance of this proposal.

I. INTRODUCTION

The automotive industry is constantly pursuing to satisfy
the end-user demand of fuel efficient engines along with free
running of the vehicle, almost every modern car is equipped
with on-board diagnostic softwares in their electronic control
units (ECUs) to control and monitor the engine operations.

Therefore several researchers are focused in solving prob-
lems related to the design of the feedback controller in the
major subsystem of a vehicle that enables further improve-
ment via application of modern speed control strategies is a
combustion engine with an electrically driven throttle.

The engine speed control problem has been considered in
several publications [1], [2], [3], [4]. Usually, these controllers
are based on mean value engine models (MVEMs) [5] because
it can describe the behavior of spark ignition (SI) engines [6],
[7]. The MVEMs models describe the time development of the
most important measurable engine variables on time scales a
little larger than an engine cycle [8],[9] . The states of an
SI engine are usually the fuel film flow or mass, the crank
shaft speed and the manifold pressure, each described with a
differential equation driven by a control input: these are the
injected fuel flow, the spark advance and the throttle angle
respectively.

In this work, it is presented a novel approach to the trajec-
tory tracking for then engine velocity driven by a electronic

throttle. This proposal is based on the backstepping technique
[10], combined with high-order sliding modes (HOSM) algo-
rithms [11]. The SM methods are applied with the idea to
drive the dynamics of a system to a sliding manifold, which is
an integral manifold with finite reaching time [12], on which
the closed-loop system motion has desired properties as the
finite time stability and robustness in presence of parameter
variations and external disturbances [13].

Taking advantage of those features, an estimator for an
unknown function of the internal combustion engine and the
pressure in the intake manifold is designed. This design uses
the equivalent control [13] method for observers as is shown
in [14], [15]. Instead the use of relay stabilizing terms, the
so-called generalized super-twisting [16] (based on the super-
twisting algorithm [17]) is applied to drive the estimation error
to zero as proposed by [18].

With the estimates provided by the proposed observer we
apply a backstepping control technique to track a velocity
reference for the engine. Then, the calculated control input
signal to the engine is used as a reference signal for the
actuator, that is controlled by using an HOSM controller. The
HOSM algorithm is applied to the actuator in order that can
track the control input signal, finally regulating the throttle
position of the combustion engine.

II. MEAN VALUE ENGINE MODELS

In this section the mathematical model of the Mean Value
Engine Model (MVEM) of Spark Ignition (SI) is presented
[19].

A. The Crank Shaft Speed State Equation

The crank shaft state equation is derived using straight
forward energy conservation considerations. Energy is inserted
into the crank shaft via the fuel flow. In order to avoid
modeling the cooling and exhaust system losses, the thermal
efficiency of the engine is inserted as a multiplier of the fuel
mass flow. Losses in pumping and friction dissipate rotational
energy while some of the energy goes into the load. Physically
this is expressed as a conservation law: the rate of a change
of the crank shaft rotational kinetic energy is equal to sum of
the power available to accelerate the crank shaft and that of
the load:

ṅe = − (Pf + Pp + Pb)

Jene
+
Huηiṁf

Jene
(1)
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where ne is the crank shaft speed, Je is the moment of inertia
in the rotating parts of the engine, Pf , Pp and Pb are the power
lost to the friction, pumping losses and the load, respectively,
Hu is the fuel burn value, ηi is the thermal efficiency, and ṁf

is the fuel mass flow.
The loss functions Pf and Pp form the load input to the
engine and can be implemented to match a desired operating
scenario. They are usually regressions based on data from
engine measurements and can be modeled by the following
regressions functions:

Pf =0.0135n3
e + 0.2720n2

e + 1.6730ne

Pp =nePm(0.2060ne − 0.9690).
(2)

where Pm is the pressure in the intake manifold. It has been
found convenient to express the load power as the function:

Pb = kbn
3 (3)

where kb is the loading parameter. It is ajusted in such a way
than the engine is loaded to the desired power or torque level
at a given operating point.

The thermal efficiency ηi is also a regression and can be
modeled by the following polynomial:

ηi = 0.55(1− 0.39ne
−0.36)(0.82 + 0.58Pm − 0.39Pm

2). (4)

B. The Fuel Mass Flow Rate

The fuel mass flow rate ṁf is typically determined by
a fuel injection control system which attempts to maintain
a stoichiometric air fuel ratio. It is assumed this ratio is
successfully maintained in the cylinder. Thus, the fuel mass
flow rate ṁf is related to the outflow from the intake manifold
into the cylinders of the engine as follows [9]:

ṁf =
ṁao

λLth
(5)

where ṁao is the air mass flow rate out of the intake manifold
and into the cylinder, Lth is the stoichiometric air/fuel mass
ratio for the Fuel and λ is the air/fuel equivalence ratio.

The third-level of heading follows the style of the second-
level heading.

C. Manifold Pressure State Equation

In the derivation of the manifold pressure state equation,
the common procedure is to use the conservation of air mass
in the intake manifold:

ṁm = ṁai − ṁao (6)

where ṁm is the air mass flow in the intake manifold, ṁai

and ṁao represent mass flow rate in and out of the intake
manifold, i.e. through the throttle valve and into the cylinder,
respectively.

The pressure in the intake manifold Pm can be related to
the air mass in the manifold mm using the ideal gas equation

PmVm = mmRTm (7)

where R is the ideal gas constant, Tm is the intake manifold
temperature and Vm is the intake manifold volume.

Taking time derivatives of (7) and using (6), the intake
manifold pressure equation is obtained of the form

Ṗm =
RTm
Vm

(ṁai − ṁao). (8)

The expressions forms of ṁai and ṁao are described in the
following Subsections.

1) Port Air Mass Flow: The air mass flow ṁao at the intake
port of the engine can be obtained from the speed-density
equation [19] as

ṁao =

√

Tm
Ta

Vd
120RTm

(evPm)ne. (9)

On the other hand, the relation between Pm and the speed ne

is given by [19]

evPm = siPm − yi (10)

where Ta is the ambient temperature, Vd is the engine dis-
placement, the manifold pressure slope si is slightly less than
1 and the manifold pressure intercept yi is close to 0.10;
they are always positive and depend mostly on the crank
shaft speed. Moreover, they should not change much over
the range operating an engine from one engine to another
except for those which are highly tuned. The form of equation
(10) has been known phenomenologically at Ford for many
years but in [19] this equation has been derived from physical
considerations. This means that it can be rapidly applied to
many different engines with basically only a knowledge of
a few physical constants, and this is the advantage of the
derivation above.

Using now (10) the speed-density equation (9) becomes

ṁao =

√

Tm
Ta

Vd
120RTm

(siPm + yi)ne. (11)

2) Throttle Air Mass Flow: The second important equation
is the manifold pressure state equation, which is used to
describe the air mass flow past the throttle plate. This part
of the model based on the isoentropic flow equation for a
converging-diverging nozzle, is given by [19]

ṁai = ṁai1
Pa√
Tm

β1(α)β2(Pr) + ṁai0 (12)

where Pa is the ambient pressure, ṁai1 and ṁai0 are constants,
α is the throttle angle and β1(α) is the throttle plate angle
dependency which can be described by the following function
as an approximation to the normalized open area:

β1(α) = 1− cos(α)− α0

2

2
(13)

where α0 is the fully closed throttle plate angle (radians). The
function β1(α) serves as the function of an area dependent
on the discharge coefficient β2(Pr), and it is defined by the
isentropic flow expression:

β2(Pr) =











1 Pr < Pc
√

1−
(

Pr−Pc

1−Pc

)

Pc ≤ Pr
(14)

where Pr = Pm/Pa, and Pc = 0.4125 is the critical pressure
(turbulent flow).



D. Internal Combustion Engine Model

Using (1-14), the MVEMs state system is obtained of the
following form:

ṅe = −f1(ne, Pm) + b1(ne, Pm)

Ṗm =
RTm
Vm

(f2(n, Pm) + b2(Pm)β1(α))
(15)

where
f1(ne, Pm) =

Pf+Pp+Pb

Jene
,

b1(ne, Pm) =

(

Huηi

√
Tm/TaVd

120JeRTmλLth

)

(siPm + yi),

f2(ne, Pm) = ṁai0 −
√

Tm

Ta

Vd

120RTm
(siPm + yi)ne,

b2(ne, Pm) = ˙mai1
Pa√

Tm
β2(Pr).

E. Throttle Actuator Model

The DC drive dynamics [20], possesses a block structure
controllable [21]:

dα

dt
= ωa

dωa

dt
=
ktia − TL

J
dia
dt

=
−Rdia − λ0ωa + υa

L

(16)

where α, ωa, ia and υa are the position, speed, current and
voltage, respectively,of the throttle drive, TL is the drive load
torque, J is the moment of inertia, L and Rd are the drive
inductance and resistance, respectively, and kt and λ0 are the
torque and e.m.f. constants, respectively.

F. The Complete Model (Engine and Actuator)

A block diagram of the complete closed-loop system is
shown in Fig 1.

pressure
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to unknown

controller

Actuator Actuatorer αr α

ne
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ne

ne

Pm

Pm
φ

υα

Estimator

function

throttle

φ

Engine s0

Engine

Fig. 1. BLOCK DIAGRAM OF CLOSED-LOOP SYSTEM

Now to satisfy the control objective, which is the engine
speed tracking, we define the control error and new state
variables as

x1 = ne − ner, x2 = Pm, x3 = α, x4 = ωa, x5 = ia

where ner and αr is the engine speed and throttle position
references, respectively. Then, using the engine model (15) and

actuator model (16), the complete model system is presented
of the form

ẋ1 = f̄1(x1, ϕ) + b̄1(x1, ϕ)x2

ẋ2 = f̄2(x1, x2) + b̄2(x2)β1(x3)

ẋ3 = x4
ẋ4 = a45x5 − a40TL
ẋ5 = a55x5 − a54x4 + b5υa

(17)

where f̄1(x1, ϕ) = − Pf+Pb

Je(x1+ner)
+ ṅer + ϕyi,

b̄1(x1, ϕ) = −(
Pp

Je(x1+ner)
− ϕsi),

ϕ =

(

Huηi

√
Tm/TaVd

120JeRTmλLth

)

,

f̄2(x1, x2) =
RTm

Vm
( ˙mai0−

√

Tm

Ta

Vd

120RTm
(six2+yi)(x1+nr)),

b̄2(x2) =
RTm

Vm
( ˙mai1

Pa
√

Tm
β2(x2)),

a45 = kt

J , a40 = 1
J , a54 = λ0

L , a55 = R
L and b5 = 1

L

III. CONTROL DESIGN

The control problem is to force the engine speed ne to
track some desired reference ner. To design such controller
we need to estimate certain state and unknown function of the
system. In our case the unknown state is the manifold pressure
x2 and the unknown function is ϕ. Therefore, it is necessary
to design a robust observer to estimate the manifold pressure
x̂2 and function ϕ̂.

A. Observer Design

Now in this subsection, we will design two observers, one
to estimate the manifold pressure and another to estimate the
unknown function ϕ, both observers will be designed by means
of the sliding mode technique.

1) Manifold Pressure Observer: First, a sliding mode
observer design problem for the manifold pressure x2, is
considered. To solve this problem, the following observer is
proposed:

˙̂x1 = fa(x1, ϕ̂) + fb(x1, ϕ̂)x̂2 + υ1
˙̂x2 = ρf̄2(x1, x̂2) + ρb̄2(x̂2)β1(x3) + υ2

(18)

where x̂1 and x̂2 are the estimates of crank shaft speed x1 and
manifold pressure x2, respectively, fa = (Pf+Pb)/Jex1+ϕ̂yi,
fb = (0.206x1 − 0.969)/Je + ϕ̂si, υ1 and υ2 are the injected
observer inputs [16] selected of the form

υ1 = −k11[|x̃1|1/2sign(x̃1) + µ|x̃1|3/2sign(x̃1)]

υ2 = −k12[1/2sign(x̃1) + 2µx̃1 + 3/2µ2|x̃1|2sign(x̃1)]
(19)

where x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 are the the estimation
errors, µ ≥ 0, k11 > 0 and k12 > 0 are observer gains.

2) Adaptive Sliding Mode Observer to Estimate an Un-
known Function: With the knowledge of the x̂2, we design
an adaptive SM observer to estimate the unknown function ϕ;
the structure of this observer is as follows:

˙̂σ = fc(x1, x̂2) + fd(x̂2)ϕ̂+ v1

˙̂ϕ =
v2

fd(x̂2)

(20)



where σ̂ and ϕ̂ are the estimates of the crank shaft speed x1 and
unknown function ϕ, respectively, fc = (Pf+Pb)+Pb)/Jex1,
fd = yi + six̂2, and v1 e v2 are the observer injected inputs
[16] to be defined later. Now, we define the estimation errors
as σ̃ = x1 − σ̂ and ϕ̃ = ϕ− ϕ̂. The injection observer signals
are chosen as

v1 = −k21[|σ̃|1/2sign(σ̃) + µ1|σ̃|3/2sign(σ̃)]

v2 = −k22[1/2sign(σ̃) + 2µ1σ̃ + 3/2µ2
1|σ̃|2sign(σ̃)]

(21)

we defined µ1 ≥ 0 as a scalar, and k21 e k22 are observer
gains.

B. Engine adaptive backstepping controller design

The system (17) has the strict feedback or block control-
lable form, and the relative degree of the system with respect
to the control error x1 is equal to five. To solve this problem,
we use the obtained estimates x̂2 and ϕ̂.The combination of
the backstepping technique [10], HOSM algorithm [11] and
adaptive SM observer [14], [18] will be implemented in order
to design, first, an adaptive sliding manifold, and then the third
order SM algorithm will be implemented to make this manifold
be attractive. Define z1 = x1, which is the output to be forced
to zero, and setting x̃2 = x2 − x̂2, ϕ̃ = ϕ − ϕ̂, a Lyapunov
function candidate is formed as

V1 =
1

2
z21 . (22)

The time derivative of (22) along the trajectories of (17) is
calculated of the form

V̇1 = z1(f̄1(x1, ϕ) + b̄1(x1, ϕ)x2)

= z1(f̄1(x1, ϕ̂+ ϕ̃) + b̄1(x1, ϕ̂+ ϕ̃)(x̂2 + x̃2)).
(23)

The desired value x2r of the virtual control x2 in the
first block of (17) is selected in order to introduce a desired
dynamics −k1z1 with k1 > 0:

x2r =

(−k1z1 − f̄1(x1, ϕ̂)

b̄1(x1, ϕ̂)

)

. (24)

Now, defining the second error

z2 = x̂2 − x2r (25)

and substituting (24) in (23) yields

V̇1 = −k1z21 + b̄1(x1, ϕ̂)z2z1 + f̄11(x̂2, x̃2)z1ϕ̃ (26)

+ b̄11(x1, ϕ̃)z1x̃2.

where f̄11(x̂2, x̃2) = six̂2 + six̃2− yi and b̄11(x1, ϕ̃) = ϕ̃si−
Pp/Je(x1 − nr).

At the second step, the following Lyapunov candidate
function is formed as

V2 = V1 +
1

2
z22 . (27)

Taking the time derivative of (27) results in

V̇2 = V̇1 + z2ż2
= V̇1 + z2(f̄2(x1, x̂2 + x̃2) + b̄2(x̂2 + x̃2)v(x3)

− ẋ2r). (28)

where v(x3) = β1(x3). To introduce the desired dynamics
−k2z2 for z2, the desired value vr of the virtual control v(x3)
is proposed of the following form:

vr =
−k2z2 − b̄1(x1, ϕ̂)z1 − f̄2(x1, x̂2) + ẋ2r

b̄2(x̂2)
(29)

with k2 > 0, where the derivative ẋ2r can be obtained by
means of a robust exact differentiator proposed in [22].

Setting

z3 = v(x3)− vr

and using (29) in (28) yields

V̇2 = −k1z21 − k2z
2
2 + b̄2(x̂2)z2z3 + f̄21(x1)z2x̃2 (30)

+ b̄22(x3)z2β(x̃2) + f̄11(x̂2, x̃2)z1ϕ̃+ b̄11(x1, ϕ̃)z1x̃2.

where f̄21(x1) = (R/Vm)
√

Tm/Ta(Vd/120R)(x1+nr)si and
b̄22(x3) = (RTm/Vm) ˙mai1(Pa/Tm)v(x3).

To calculate angle reference x3r we put z3 = 0, that means
v(x3r) = vr, and using the expression (13), we have

1− cos(x3r)−
α0

2

2
= vr (31)

Thus,the drive reference angle x3r is calculated as

x3r = cos−1

(

1− vr −
α2
0

2

)

. (32)

Now, the sliding function s0 for the DC drive is formulated as

s0 = x3 − x3r. (33)

Then defining the derivatives

s1 =ṡ0
s2 =ṡ1

(34)

system (17) in the new variables z1, z2, s0, s1 and s2 can be
represented of the form

ż1 = −k1z1 + b̄1(x1, ϕ̂)z2 + f̄11(x̂2, x̃2)ϕ̃+ b̄12(x2, ϕ̃)x̃2

ż2 = −b̄1(x1, ϕ̂)z1 − k2z2 + b̄2(x̂2)s0 + f̄21(x1)x̃2

+ b̄22(x3)β2(x̃2)

ṡ0 = s1
ṡ1 = s2
ṡ2 = fs(x1, x2, x3, x4, x5)− bsu

(35)

where fs is a continuous functions bounded in a admissible
region Ω by

|fs(x1, x2, x3, x4, x5)| ≤ γ0 <∞ (36)

and bs = a45b5.



C. Actuator HOSM controller design

To enforce sliding mode motion on s0 = 0, s1 = 0 and
s2 = 0, we apply the following third-order sliding mode
algorithm:

u = −u0sign[ψ2,3(s0, s1, s2)], u0, β1, β2 > 0

ψ2,3(s0, s1, s2) = s2 + β2
(

|s1|3 + |s0|
)1/6

× sign
(

s1 + β1|s0|2/3sign(s0)
)

(37)

where u0,β1 and β2 are the control gains. The implementation
of the proposed third-order SM controller requires the calcula-
tion of the derivatives s1 and s2. To obtain these derivatives, a
sliding mode exact robust differentiator [11] can be employed.
We use the second-order robust exact differentiator defined by

ξ̇0 = γ0 γ0 = −δ0|ξ0 − s0|2/3sign(ξ0 − s0) + ξ1

ξ̇1 = γ1 γ1 = −δ1|ξ1 − γ0|1/2sign(ξ1 − γ0) + ξ2

ξ̇2 = −δ2sign(ξ2 − γ1)

(38)

where ξ0, ξ1 and ξ2 are the estimates of the sliding variable s0
and its derivatives s1 and s2, respectively, and δi, i = 0, 1, 2,
are the differentiator gains.

The complete closed-loop system in new variables is shown
as follows






ż1 = −k1z1 + b̄1(x1, ϕ̂)z2 + f̄11(x̂2, x̃2)ϕ̃+ b̄12(x2, ϕ̃)x̃2
ż2 = −b̄1(x1, ϕ̂)z1 − k2z2 + b̄2(x̂2)s0 + f̄21(x1)x̃2

+b̄22(x3)β2(x̃2)

(39)














ṡ0 = s1
ṡ1 = s2
ṡ2 = fs(x1, x2, x3, x4, x5)− bs(u0

sign [ψ2,3(s0, s1, s2)])

(40)







ξ̇0 = γ0 γ0 = −δ0|ξ0 − s0|2/3sign(ξ0 − s0) + ξ1
ξ̇1 = γ1 γ1 = −δ1|ξ1 − γ0|1/2sign(ξ1 − γ0) + ξ2
ξ̇2 = −δ2sign(ξ2 − γ1)

(41)














































˙̃x1 = fb(x1, ϕ̂)x̃2 − k11[|x̃1|1/2sign(x̃1)

+µ|x̃1|3/2sign(x̃1)]
˙̃x2 = f̄2(x1, x2 − x̂2) + b̄2(x2 − x̂2)β1(x3)

−k12[1/2sign(x̃1) + 2µx̃1 + 3/2µ2|x̃1|2sign(x̃1)]
˙̃σ = fd(x̂2)ϕ̃− k21[|σ̃|1/2sign(σ̃) + µ1|σ̃|3/2sign(σ̃)]

˙̃ϕ = −
(

1
fd(x̂2)

)

k22[1/2sign(σ̃) + 2µ1σ̃

+3/2µ2
1|σ̃|2sign(σ̃)] + fe

(42)

The stability of closed loop system (39)-(42) is outlined in
the stepwise procedure:

Step A) Reaching phase of the projection motion (42).

Step B) The SM robust exact differentiator stability of the
projection motion (41).

Step C) The HOSM stability of the projection motion (40).

Step D) The SM motion stability of (39) on the manifold
x̃2 = ϕ̃ = s0 = 0 and in the vicinity of z1 = 0.

Step A) Introducing the transformation

q = fd(x̂2)ϕ̃ and w = fb(x1, ϕ̂)x̃2 (43)

the subsystem (42) reduces to

˙̃x1 = w − k11[|x̃1|1/2sign(x̃1) + µ1|x̃1|3/2sign(x̃1)]

ẇ = ḟb(x1)x̃2 + fb(x1)χ− k12[1/2sign(x̃1) + 2µ1x̃1

+ 3/2µ2
1|x̃1|2sign(x̃1)]

˙̃σ = q − k21[|σ̃|1/2sign(σ̃) + µ1|σ̃|3/2sign(σ̃)]

q̇ = ḟd(x̂2)ϕ̃+ fefd(x̂2)− k22[1/2sign(σ̃) + 2µ1σ̃

+ 3/2µ2
1|σ̃|2sign(σ̃)]

(44)

where χ = f̄2(x1, x2 − x̂2) + [b̄2(x2 − x̂2)]u(x3), and we
assume that the following inequalities

|ḟb(x1)x̃2 + fb(x1)χ| ≤ C > 0

|ḟd(x̂2)ϕ̃+ fefd(x̂2)| ≤ L > 0
(45)

are satisfied in an admissible region Ω0. Then, there are k11,
k12, k21 and k22 such that the system (42) is finite time
globally stable [16], i.e., its solution converges in finite time
to the origin (x̃1, w) = (x̃1, x̃2) = (σ̃, q) = (σ̃, ϕ̃) = (0, 0).

Step B) To analyze the stability of the robust differentiator
(41), we rely on [11], where it was shown that there exist δi >
0, i = 0, 1, 2, such that the estimates ξ0(t), ξ1(t) and ξ2(t)
converge to the real variables s0(t), s1(t) and s2(t) in finite
time. These estimates are then implemented in controller (37)
instead of the real variables.

Step C) The stability analysis of the projection motion (40)
is based on [11], where it was shown that there exits a set of
constants u0 > 0, β1 > 0, and β2 > 0 such that the state
vector of the closed-loop sub system (40) converges in finite
time to the third-order SM set

s0 = 0 s1 = 0 s2 = 0 (46)

Step D) The motion on the sliding manifold (46) is defined
by (39) constrained to x̃2 = ϕ̃ = s0 = 0:

ż1 = −k1z1 + b̄1(x1, ϕ̂)z2

ż2 = −b̄1(x1, ϕ̂)z1 − k2z2.
(47)

And the Lyapunov function derivative V̇2 (30) reduces to

V̇2 = −k1z21 − k2z
2
2 < 0. (48)

If we select the control gains as k1 > 0 and k2 > 0, then the
system (47) will be asymptotically stable, that is the control
errors z1(t) and z2(t) tends to zero as t→ ∞.



IV. SIMULATIONS

In this Section, we verify the performance of the proposed
control scheme by means of numeric simulations.

We consider a MVEMs with the following nominal pa-
rameters: Vd = 1.275 L, R = 0.00287, Vm = 0.0017,
I = 480(2π/60)2, Hu = 4300, Lth = 14.67, λ = 1.0,
Tm = 293, Ta = 293, , Pc = 0.4125, Pa = 1.013,
Pr = Pm/Pa, ṁai0 = 5.9403, ṁai1 = 0, si = 0.961,
yi = −0.07. The velocity reference signal increases from 0
to 3 krpm in the first 8 s and then, it remains constant for 8
to 15 s, again increases from 3 krpm to 4 krpm it remains
constant for 15 to 20 s, and finally constant in 4 krpm it
remains constant for 20 to 30 s. In figure 2 shows the output
tracking result of the engine velocity, in figure 3 is presented
the response of the output tracking of the estimation of the
pressure in manifold, and finally the behavior of estimation of
the unknown function is shown in figure 4.
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V. CONCLUSIONS

A SM controller with adaptive observer for internal com-
bustion engine, is designed. The control design was based on

the combination of the backstepping, HOSM control and SM
observer design techniques. The proposed observers provide
the satisfactory estimation of the unmeasured manifold pres-
sure and the unknown plant parameters function. To design
both of them, the High Order Sliding Mode algorithms are
implemented. In particular, this control technique is applied to
ensure the finite time convergence and robustness. This fact is
verified by numerical simulations.

REFERENCES

[1] A. G. Loukianov, S. Dodds, W. Hosny, and J. Vittek, “A robust auto-
motive controller design,” in Control Applications, 1997., Proceedings

of the 1997 IEEE International Conference on, 1997, pp. 806–811.

[2] J. J. Moskwa and J. Hedrick, “Automotive engine modeling for real
time control application,” in American Control Conference, 1987, pp.
341–346.

[3] L. Guzzella and C. Onder, Introduction to Modeling and Control of

Internal Combustion Engine Systems. Springer, 2009.

[4] Q. Ahmed and A. Bhatti, “Second order sliding mode observer for
estimation of si engine volumetric efficiency amp; throttle discharge
coefficient,” in Variable Structure Systems (VSS), 2010 11th Interna-
tional Workshop on, 2010, pp. 307–312.

[5] E. Hendricks and S. Sorenson, “Mean value si engine model for control
studies,” in American Control Conference, 1990, 1990, pp. 1882–1887.

[6] E. Hendricks and T. Vesterholm, “The analysis of mean value si engine
models,” in SAE Technical Paper, 1992.

[7] E. Hendricks and S. Sorenson, “Mean value modelling of spark ignition
engines,” in SAE Technical Paper, no. 900616, 1990.

[8] E. Hendricks, “Mean value modelling of large turbocharged two-stroke
diesel engines,” in SAE Technical Paper, 1989.

[9] R. Rajamani, Vehicle Dynamics and Control, ser. Mechanical Engineer-
ing. Springer, 2012.
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