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SUMMARY 

The present work provides the analysis and continuous development of an artificial intelligence engine 

aimed to audio classification. Chapter 1 presents a background on the different audio-related tasks that 

research community has followed over the years, also states the core hypothesis of this work, and defines 

general and specific objectives to contribute to the enhancement of performance over an end-to-end audio 

embeddings generator. Chapter 2 presents state-of-the-art methods and published works that are mainly 

aimed to the development of audio classification and deep learning as disciplines with enormous potential 

to fulfill. Chapter 3 presents the conceptual framework in which this thesis is based on, split in two main 

sections: audio preprocessing and deep learning techniques. Each of these sections is divided among 

several subsections to represent audio classification process through deep neural networks. Chapter 4 

provides a profound explanation of the audio embeddings generator named AemNet and its components, 

used as object of study which are further detailed in the following subsections. Initial experimentation was 

done over this approach and presented experimental results that suggested an improved performance by 

modifying stages of the neural network architecture. Chapter 5 is the first target application of our AemNet 

adaptation that was submitted to the DCASE 2021 challenge. The details on the challenge and results are 

described in this chapter sections, as well as the methodology followed to present our submission. Chapter 

6 is the second target application and the first aimed to respirational sounds. The ICBHI challenge is 

explained in this chapter sections as well as the methodology and experiments performed to reach a robust 

classifier that distinguishes four different cough anomalies. A paper was created out of the proposed 

solution and presented into the IEEE LA-CCI 2021. Chapter 7 takes leverage on the several previous 

results to fulfill a modern approach such as COVID-19 detection, which data source collection and 

experimentation are described profoundly and experimental results suggest that a residual network 

adaptation named AemResNet, can comply to distinguish COVID-19 patients from cough and breath 

sounds. Finally, the conclusions of all this research and results evaluated in each target applications are 

discussed in chapter 8. 
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RESUMEN 

El presente trabajo estudia el análisis y desarrollo continuo de un modelo de inteligencia artificial orientado 

a la clasificación de audio. El capítulo 1 presenta antecedentes sobre las diferentes tareas relacionadas a 

audio que la comunidad de investigación ha seguido a lo largo de los últimos años, también establece la 

hipótesis central de este trabajo y define objetivos generales y específicos para contribuir a la mejora del 

rendimiento sobre un generador de embeddings de audio de tipo end-to-end. El capítulo 2 presenta los 

métodos de vanguardia y trabajos publicados que se enfocan principalmente al desarrollo de la 

clasificación de audio y el aprendizaje profundo como disciplinas que aún tienen un gran potencial. El 

capítulo 3 presenta el marco conceptual en el que se basa esta tesis, dividido en dos secciones principales: 

preprocesamiento de audio y técnicas de aprendizaje profundo. Cada una de estas secciones se divide en 

varias subsecciones para representar el proceso de clasificación de audio a través de redes neuronales 

profundas. El capítulo 4 brinda una explicación profunda del generador de embeddings de audio llamado 

AemNet y sus componentes, utilizado como objeto de estudio, donde se detalla en las siguientes 

subsecciones. Se realizó una experimentación inicial sobre este enfoque y se presentaron resultados 

experimentales que sugirieron un mejor rendimiento mediante la modificación de las etapas de 

arquitectura de la red neuronal. El capítulo 5 es la primera aplicación objetivo de nuestra adaptación de 

AemNet que se presentó al desafío DCASE 2021. Los detalles sobre el desafío y los resultados se 

describen en las secciones de este capítulo, así como la metodología seguida para presentar nuestra 

propuesta. El capítulo 6 es la segunda aplicación objetivo y el primero en apuntar a los sonidos 

respiratorios. El desafío de ICBHI se explica en las secciones de este capítulo, así como la metodología y 

los experimentos realizados para llegar a un clasificador robusto que distingue cuatro anomalías de tos 

diferentes. Se creó un artículo a partir de la solución propuesta y se presentó en el IEEE LA-CCI 2021. El 

capítulo 7 aprovecha los diversos resultados anteriores para cumplir con un enfoque moderno como lo es 

la detección de COVID-19, cuya recopilación y experimentación de fuentes de datos se describen 

profundamente y los resultados experimentales sugieren que una adaptación de red residual denominada 

AemResNet, puede cumplir la función de distinguir a los pacientes con COVID-19 a partir de tos y sonidos 

respiratorios. Finalmente, las conclusiones de toda esta investigación y los resultados evaluados en cada 

una de las aplicaciones objetivo se discuten en el capítulo 8.  
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1. INTRODUCTION 

Summary: This chapter presents a brief introduction to the core objectives and motivation of this work. 

Section 1.1 breaks down several audio related applications and how audio classification tasks have 

historically taken place through different mathematical and statistical algorithms. Section 1.2 describes 

the motivation of this work and explains the leverage of using end-to-end solutions for audio classification 

engines. Section 1.3 highlights the obstacles for the audio research community when dealing with machine 

learning or deep learning techniques when applied to classification problems. Section 1.4 presents the 

hypothesis of this work that states the possibility to increase the performance of an audio embeddings 

generator by modifying its main trainable feature extraction stages, aiming to new applications such as 

respiratory sounds. Section 1.5 presents the details on the general and specific objectives of this work 

which consist of objectively evaluating the performance of an enhanced audio embeddings generator 

through two main low-level-feature extractions, an adaptation of a residual network, the focal loss 

approach, and its application to different datasets.    
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1.1. Background 
Looking at the recent scientific literature, it can be observed that there has been a large amount of work 

focused on the development of systems that use artificial intelligence (AI). It is not deniable that image 

recognition has become the most popular area for AI and for the development of novel machine learning 

(ML) algorithms and has presented continuously state-of-the-art (SOTA) research peaks and findings. 

Because of this, audio-oriented tasks have mostly leveraged on the techniques developed by the computer 

vision community.  

The use of artificial intelligence in audio related tasks finds its application in several domains: 

• Automatic Speech Recognition (ASR) 

• Natural Language Processing (NLP) 

• Speaker Recognition 

• Source Localization 

• Speech Emotion Recognition 

• Audio Scene and Event Classification (ASEC) 

The technology presented in this work focuses on the audio classification tasks and applications. 

Historically, ASEC has been addressed through several algorithm approaches that comprise different 

audio signal processing and transformations through statistical stochastic processes. In [1], some 

audiovisual sports media was classified between its own speech, music and environmental sounds using 

Mel Frequency Cepstral Coefficients (MFCC) and a Gaussian Mixture Model (GMM) as classifier. 

Reference [2] is based on a K-nearest-neighbor (KNN) approach to perform a similar task of classifying 

environmental sounds from speech on audiovisual data. Also, hidden Markov modeling (HMM) has been 

a widely used approach for several years such as in [3] where is the main approach for audio event 

classification.  

In the latest years, more efficient ASEC uses several ML techniques such as support vector machines 

(SVM), neural networks (NN) and more recently convolutional neural networks (CNNs). In the Detection 

and Classification of Acoustic Scenes and Events (DCASE) Challenge 2020, the top 50 submissions use 

actively deep learning techniques and a wide use of CNN topologies across different tasks. As expected, 

DCASE 2021 edition on Task 1A holds all its submissions with all CNN approaches [4]. Residual 

networks are the most common CNN architecture used in both editions, hence the motivation of this work 

on using this same network as key object of study. 

On the other hand, ASEC end-to-end (e2e) approaches have shown a good performance by implementing 

a trainable feature transformation of audio data, instead of a fixed manual extraction through dedicated 

hardware or software. AclNet [5] is one of many previous e2e proposals aimed to ASEC, which creates 

the base model topology of AemNet [6], an audio embeddings generator and core subject of this research. 
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1.2. Justification 
As mentioned above, computer vision together with NLP are the most popular AI research paths, leaving 

audio-oriented tasks with a long exploration on the way. From audio-oriented tasks, the most studied fields 

are human-speech recognition or ASR, digital signal processing and music tagging and generation [7]. But 

in our daily lives, there are several sounds that differ from speech and music that provide an important 

context for us humans to understand our world; to be precise, there is a wider number of acoustic sound 

types than the fields mentioned before. On recent years, there has been a huge effort by the scientific 

community to develop efficient ASEC models, mostly oriented to highly crowded streets label 

classification, human-like sounds, or in-house potential hazards (e.g., glass breaking, baby crying) [4], [8], 

[9].  

ASEC has taken several turnarounds aiming to new investigation segments such as marine biology (whale-

call classification for sub-populations and biological research) [10], industrial-specific (acoustic signatures 

of machines and equipment to monitor their operational robustness) [11] and healthcare: classification of 

respiratory sounds [12]–[16], assessment of depression and suicide risk using speech analysis [17]. Just 

the DCASE challenge is split in the following tasks: unsupervised anomalous sound detection for 

machines, sound event localization and detection with directional interference, sound event detection and 

separation in domestic environments, few-shot bioacoustics event detection, as well as automated audio 

captioning [4]. Also, current times that show a promising path to keep following such as the analysis of 

COVID-19 diagnosis and classification through an app or web-based audio [18]. 

The audio classification applications mentioned above leads us to ponder about a single audio embedding 

generator, i.e., a mechanism to condense an audio signal into a rich discriminative descriptive vector, that 

can be adapted into several audio classification tasks, and can be easily ported to different platforms, which 

is the main objective of [6]. While this is not the first of its class, it does create a path to keep on researching 

this approach by following a fine-tuning strategy that leads to competitive results on the ASEC application 

we are interested in.  

Hence, the purpose of this work to make further investigation on developing AemNet and evaluate how 

ASEC is a need on modern society; its flexibility on several subjects and on-going work makes this a great 

opportunity to develop SOTA technologies aimed to modern day problems. In this thesis, we analyze the 

usage of deep learning techniques for the development of a flexible e2e convolutional neural network for 

applicability in both to ASEC and relevant modern biomedical problems. 

 

1.3. Problem 
There is an increasing amount of research based on music and speech-based applications. Whenever we 

are dealing with audio classification problems, there is a limited audio data for classification tasks (music, 

natural language processing, voice recognition and ASEC). This is one of several issues that ASEC deals 

with, hence the need to take the most advantage of large available datasets. Compared to computer vision, 

the number of papers and tasks performed by the research community is exceeded greatly against audio 

classification tasks, hence the need to use different techniques for deep learning, such as data 

augmentation, image-like representation of audio and models pretraining.  
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On the other hand, ASEC research community is mostly oriented to the preprocessing audio stage joined 

with a classifier stage, without considering the complexity of the model. SOTA in ASEC states that deep 

learning brings the best performance whenever a preprocessing stage is previously done, and the deeper 

and greater the classifier stage gets, the better results seem to be achieved. The concept that a deeper and 

more complex model brings better results outsides the fact that the ASEC applications are part of our day-

to-day lives, and whenever they are used these are limited to the hardware they are programmed in. For 

instance, the UrbanSound8K [9] dataset was collected through different devices in several places of a city; 

if we were to classify the same classes with new urban sounds, most of the best-performance approaches 

are based on a raw audio handling transformation through a digital signal system and then put through a 

classifier stage in which the complexity may exceed most hardware used for said applications. 

 

1.4. Hypothesis 
An audio embeddings generator [6] can improve its performance through modifications on its low-level 

feature configurations and high-level features, changing its core topology from a VGG-ish to a ResNet18, 

achieving a competitive performance by aiming at healthcare-oriented applications such as respirational 

sounds. When the target application is restricted to a limited model complexity, this same audio 

embeddings generator can be optimized within its feature configurations through deep learning and 

optimization techniques to achieve a robust response to the target application. 

 

1.5. Objectives 

1.5.1 General Objective 
To analyze AemNet and its core features to evaluate its robustness and improve its performance on new 

target applications aimed to ASEC. 

1.5.2. Specific objectives 
1. Understand which low-level-feature extraction configuration shows a better performance for AemNet. 

2. Understand how the high-level-feature stage of AemNet can improve performance when compared to 

conventional deep layers and its convolution operation variants. 

3. Understand how focal loss can support e2e CNN to handle unbalanced datasets.  

4. Contribute to the ASEC research community by submitting an AemNet variant to the DCASE2021 

challenge. 

5. Understand the behavior of AemNet oriented to respiratory sounds on the ICBHI challenge and 

Cambridge University crowdsourced COVID-19 dataset.  
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1.6 Scientific, technological novel or contribution 
This work presents a configurable e2e CNN based on AemNet [6] that addresses different ASEC tasks. 

Through different deep learning and optimization techniques, this resulted into several experimentations 

on AemNet which targeted three main applications: a low-memory size audio embeddings model that 

presents a competitive response on ASEC, a robust performance residual network CNN that classified 

different lung respirational sounds, and a solid contribution to the pandemic research community where 

we address to classify COVID-19 from non-COVID patients using breaths and coughs as input. 
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2.  STATE OF THE ART OR 

TECHNIQUE 

Summary: In this chapter, we address the leading-edge audio classification techniques aimed to several 

applications. Section 2.1 brings an overall explanation of a common audio processing pipeline from a 

WAV file to the desired representation of the audio. The representation of the signal is key to what kind of 

approach is followed; both are explained in following sections. Section 2.2 brings the most recent 

conventional image-like representation of audio along the deep learning techniques performed, how 

robust is their performance, and the motivation of developing computational vision algorithms oriented 

to audio. On the other hand, section 2.3 explains how e2e have shown competitive results against image-

like approaches sometimes outperforming ASEC applications, with all the benefits of keeping a simpler 

model that does not require any external hardware to preprocess raw time-domain signals.  
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2.1 Audio classification overall process 
Preprocessing data is an important stage of any image or sound classification task. We must understand 

what type of preprocessing is performed when a raw audio clip enters on any current SOTA audio 

classifier. SOTA methods for ASEC use deep learning, a variation of deep layer neural networks which 

takes advantage of a significant number of stacked neural layers to provide a better performance than 

conventional neural networks, this is explained profoundly on section 3.3. 

Usually, the overall process of preprocessing audio signals is as follows: 

1. WAV files are resampled to a preferred sample frequency of the user (16 KHz, 44.1 KHz are 

some of the most used sample frequencies chosen by the research community). 

2. Audio processing techniques such as data augmentation, several types of filtering or random noise 

addition. 

3. Transformation of raw time domain audio to a corresponding spectrogram or its equivalent 2-

dimensional form (e.g., MFCC, Mel-spectrogram, filter banks). 

4. With an image-like representation of the corresponding audio, the preprocessing is finished and 

ready to be the input of a standard classifier, SOTA points that most of these approaches are CNN-

based.  

 

2.2 Conventional audio classification approaches 

Pham et al [19] explores three different approaches to form an ensemble of three systems and test each 

individually: log-Mel, Gammatone filter (GAM) and Constant Q Transform (CQT). According to [19], 

the best approach to continue was GAM, in which each audio sample is transformed into a Gammatone 

spectrogram with 128 GAM filters; this output creates an image-like representation vectors of size 

128x128. After some mixup data augmentation [20] these vectors are entered into a VGG-similar network 

for feature embedding learning.  

In [21], the DCASE 2017 dataset is the reference used for unconventional addition to commonly used 

spectrograms. A Harmonic Percussive Source Separation (HPSS) algorithm takes advantage of the 

binaural (2-channel) source audio to decompose these signals into harmonic and percussive components 

and creates a power spectrogram of their combination. The spectrogram operations use a short-time 

Fourier transform (STFT) that analyzes each harmonic or percussive component, based on median filters. 

Several input layers are created before a classifying stage such as the main input HPSS spectrogram of 

both channels, their addition, subtraction and average. Each of these, are entered into a multi-layer 

perceptron and a softmax layer to perform the classification.  

Bai et al [22] uses Mel-frequency filter banks features from certain frame-length and its derivatives. This 

creates a 240-dimensional input to the proposed time-domain neural network (TDNN) that learns 

embedding features and is later connected to a classifier stage also based in CNN.  

On the other hand, the use of MFCCs is also used in [23], [24], which pre-process audio to create a 

logarithmic power spectrum on a nonlinear Mel scale of frequency. The conversion of audio to an image 

comes at a cost of reducing information about the audio by using several transformation parameters. After 

this stage, [23] uses a series of 7 layers along max pooling operations perform the urban sounds 
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classification; whereas [24] has a similar CNN approach to classify rainfall intensity based on the timbre 

of several materials.  

These recent works are just a handful of the latest approaches over the past couple of years regarding the 

SOTA of audio classification. We also observe that the audio-oriented tasks differ from speech recognition 

or music and have a wide variety of applications from urban sounds to rainfall classification, all of them 

using similar image-like approaches when processing raw audio samples. In conclusion, this widely used 

practice of treating an audio as an image is still a common practice to recent ASEC applications and is still 

being developed by researchers worldwide implementing several computer vision techniques. 

 

2.3 E2E approaches 
Approaches known as e2e do not rely on an image-like representation of the audio signal through 

spectrograms or filter banks, these rather use different types of preprocessing techniques applied to raw 

audio samples before entering deep learning architecture solutions. More recently, residual networks have 

been explored for audio-related tasks and have provided satisfactory results into well-known ASEC 

applications. In [25], six different residual block architectures were the object of experimentation over 

UrbanSound8K [9] and ESC-50 [8] datasets in which is observed how the performance is compared among 

different residual blocks configurations. It is concluded how the order of activation function layers and 

batch normalization operations inside the residual block has a direct impact on the performance of the 

CNN. Also, this e2e approach uses common audio techniques such as zero-padding and clipping of the 

raw time-domain samples as preprocessing stage and distinguishes between an audio scaling of maximum 

value and a zero mean standard normalization. On the other hand, [26] evaluates an e2e one-dimensional 

CNN which learns representation directly from the audio signal. Their approach deals with different 

sample lengths and evaluates the performance of GAM filter banks as a one-dimensional input to a multi-

layer CNN topology that uses UrbanSound8K as reference dataset, outperforming several two-

dimensional approaches with much less parameters. The motivation beneath Gammatone filter banks is to 

simulate the physiology behind peripheral auditory processing. This work also used different overlapping 

windows sample on the time-domain audio as means to reach data augmentation benefits maximizing the 

use of information. On [15], the squeeze-and-excitation (SE) and residual blocks are used into the model 

architecture to increase performance on their e2e approach. Raw waveforms are the input to the CNN with 

a small filter size of 2-3 samples in all layers, where the sub-sampling is done by max-pooling (excepting 

the first convolutional layer). The DCASE2017 dataset was used to evaluate the acoustic scene tagging 

performance of this model. This work also presents a deep analysis on several SE block parameters, 

residual blocks, and an ensemble of both, using music and keyword spotting audio datasets. Accuracy and 

F1-score were used as metrics, which also show a competitive performance against Mel spectrogram 

approaches on several of these tasks, sometimes outperforming them, giving a higher confidence to the 

e2e approach development oriented to ASEC applications. These previous works show the potential of 

audio-oriented research when it comes to developing e2e solutions, hence also one of the motivations of 

this work: to develop and improve a high-performance audio embeddings generator oriented to ASEC 

tasks. 
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3. CONCEPTUAL FRAMEWORK 

Summary: In this chapter we address the basics of audio waveform processing explaining the concept of 

an audio waveform and its preprocessing aimed to audio classification tasks. Section 3.1 explains the 

main elements of a signal, the importance of a frequency domain transformation with the Fourier 

transform, and the various representation of audio. Section 3.2 describes the usual processing stages a 

time-domain signal goes through to finally create audio representations in the form of filter banks or 

MFCCs. Finally, Section 3.3 focuses on the deep learning concepts used in all this work, from defining 

why a neural network arrangement is called deep, through the CNN architectures used in this work and 

optimization techniques that improve the portability of an e2e audio embeddings generator. 
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3.1. Audio and signal basics 

To properly break down all elements regarding audio classification, we first need to talk about audio and 

how it is usually handled on classification applications. What us humans usually name as sound is nothing 

but air pressure changes that are propagated through a medium (usually air) and its frequency and intensity 

pressure variations can be represented as a one-dimensional signal over time [27]. 

In physics, a signal has several properties that can be measured and evaluated for different engineering 

purposes. Any signal wave contains a wavelength, amplitude, and a period.  

The amplitude of audio signals is usually measured in represented in decibels (dB) which is a logarithmic 

unit of intensity or magnitude [28], whereas the period is the lapse in seconds (s) taken to the signal to 

complete one single cycle (whenever this signal is periodic). On the other hand, the frequency of an audio 

signal can be calculated as the inverse unit of the period and is defined as the number of cycles a signal is 

repeated per second, using Hertz (Hz) as its unit.  

The frequency of a sound wave is directly associated to human perception [28] or sound pitch. The audible 

range of frequencies for a human is 20 – 20 KHz.  

Sound can be represented and plot in two different domains: analog and digital. Analogically, any signal 

can be measured and analyzed in an oscilloscope where we can observe the temporal behavior of the signal 

over time. We understand that this a continuous function which contains a real value in every point of 

time. Sound can also be represented digitally, usually an analog-digital-converter implemented in a digital 

device samples the sound at certain frequency rate and creates a fixed amplitude value per sample in each 

lapse, depending on the sample frequency. Both approaches of sound handling contain their own pros and 

cons.  

On a deeper level, sound signals are not analyzed in a time-domain basis. Engineers constantly look on 

the intrinsic elements of the audio such as its frequency components. One of the most common 

mathematical transformation to convert a signal from the time domain to frequency is the Fourier 

transform. Fourier transform states that any signal can be decomposed as the addition of different 

sinusoidal signals of different frequencies and amplitudes. Equation 1 expresses the trigonometric Fourier 

transform for continuous periodic signals. Its goal is to solve coefficients for 𝑎0, 𝑎𝑛, and 𝑏𝑛. 

𝒇(𝒙) = 𝒂𝟎 +∑(𝒂𝒏 𝐜𝐨𝐬
𝒏𝝅𝒙

𝑳
+ 𝒃𝒏 𝐬𝐢𝐧

𝒏𝝅𝒙

𝑳
)

∞

𝒏=𝟏

 

Equation 1. The trigonometric Fourier transform for continuous periodic signals. 

Figure 1. Main elements in a temporal signal representation [27]. 
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Signal analysis is a common field in which the Fourier transform is used on its multiple forms (continuous 

or discrete) depending on the preprocessing analysis of interests. 

Whichever method we use for signal analysis, we can represent any real-life sound in a graph which plots 

the magnitude of each frequency point, instead of a time-domain analysis. This visual representation is 

called a spectrum. Spectrums are an alternative way to represent the same signal, and can help to visualize 

the frequency components of a given signal and can be calculated by any of the techniques mentioned 

above or through a more sophisticated way using spectrum analyzers.  

A spectrogram is a visual representation of the frequency spectrum over time. It displays time on the x-

axis and frequency on the y-axis, hence the spectrum of any signal varies over time [27]. For frequency 

magnitude purposes, a different color is defined to plot the intensity of that spectrum at any given point. 

In other words, we are representing sound into an image.  

There are several ways of generating a spectrogram but given the recent needs of audio analysis oriented 

to artificial intelligence, there exists software and programming libraries that already implement all 

mathematical operations needed to properly plot a spectrogram based on raw audio clips.  

 

3.2. Audio pre-processing techniques 
Several applications such as speech recognition or audio classification share the same processing 

techniques. Most of them involve computing filter banks and MFCCs as an input to the proposed machine 

learning or deep learning system. An overall sequence of computing filter banks and MFCCs is described 

in the following subsections. 

3.2.1 Pre-emphasis 
First step for most audio preprocessing is to apply a pre-emphasis filter on the signal so high frequencies 

can stand out. This fulfills to balance the frequency spectrum, avoid numerical problems during Fourier 

transform and may also improve the Signal-to-Noise Ratio (SNR) [29]. 

Figure 2. Frequency components of a time signal inside a lapse [27]. 
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3.2.2 Framing 
After pre-emphasis, the signal is split into several frames, this helps to obtain a good approximation of the 

frequency contours of the signal by joining adjacent frames. Normally the frame size varies from 20 ms 

to 40 ms with 50% ± 10% overlap between consecutive frames [29]. 

3.2.3 Window 
After the framing process, a Hamming window function is applied to each frame. It is expected that the 

Hamming window stage counteracts the assumption that FFT data is infinite, also reducing spectral 

leakage. Equation 2 expresses the mathematics behind the Hamming window. 

𝑤[𝑛] = 0.54 − 0.46 cos(
2𝜋𝑛

𝑁
− 1) ⁡ 

Equation 2. Hamming window function. Where 𝒏⁡𝝐⁡𝟎⁡ < 𝒏 ≤ 𝑵 − 𝟏. 

Figure 4. Hamming Window [29]. 

Figure 3. Temporal and spectral representations of an audio signal [27]. 
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3.2.4 Mel scale 
The Mel scale is a subjective scale of pitches judged by listeners to be equally distant from one to other. 

Figure 5 shows a plot of the Mel scale in which is observed that below 500 Hz the Mel and hertz scales 

coincide; above that, larger intervals are judged by listeners to produce equal pitch increments. The 

reference point between both scales is defined by equating a 1000 Hz tone with a pitch of 1000 Mels [30]. 

 

We can convert between Hertz (f) and Mel (m) using the following equations: 

𝑚 = 2595⁡ log10(1 +
𝑓

700
) 

Equation 3. Conversion from frequency (Hz) to Mels [30]. 

𝑓 = 700⁡(10
𝑚

2595 − 1) 

Equation 4. Conversion from Mels to frequency (Hz) [30]. 

3.2.5 Fourier transform and power spectrum 
An N-point FFT, also called Short-Time Fourier-Transform (STFT), is applied on each frame to calculate 

the frequency spectrum where N is typically 256 or 512. Afterwards, the power spectrum of the output 

FFT is calculated using Equation 5. 

𝑝 =
|𝐹𝐹𝑇(𝑥𝑖)|

2

𝑁
 

Equation 5. Calculation of the power spectrum from the FFT output of the signal. Where 𝒙𝒊 is the 𝒊𝒕𝒉 frame of signal 𝒙 [29]. 

3.2.6 Finite Impulse Response (FIR) decimation filter bank. 
The final step to computing filter banks is applying triangular filters, typically 40 filters, on a Mel-scale 

to the power spectrum to extract frequency bands. Figure 6 represents the filter bank shape as triangular, 

having a response of 1 at the center frequency and decrease linearly towards 0, until it reaches the center 

Figure 5. Mel scale plot against Hertz scale [30]. 
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frequencies of the two adjacent filters where the response is 0. Figure 7 illustrates the output after applying 

the filter bank to the power spectrum of the signal. 

 

Figure 6. Filter bank representative shape response [29]. 

 

Figure 7. Filter bank representation of an audio signal [29]. 

3.2.7 MFCC 
Discrete Cosine Transform (DCT) can be applied to decorrelate the filter bank coefficients and yield a 

compressed representation of the filter banks. Also, applying a sinusoidal filter to the MFCC to de-

emphasize higher MFCCs has claimed to improve performance [29]. 

 

Figure 8. The DCT applied to the filter bank creates a MFCC representation [29]. 

To balance the spectrum and improve the SNR, we can subtract the mean of each coefficient from all 

frames through a mean normalization filter. 
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3.3. Deep learning 
Deep learning is a subset of artificial neural networks which consist of linking multi-layer structures of 

CNNs creating deeper model algorithms. Andrew Ng describes the idea of deep learning as a brain 

simulation that hopes to make learning algorithms much better and easier to use and making revolutionary 

advances in AI [31]. In [32], deep learning is described as computational models that are composed of 

multiple processing layers to learn data representations through multiple abstraction levels. 

3.3.1. CNN architectures 
Visual Geometry Group (VGG): Consists of a simple architecture, using only blocks composed of an 

incremental number of convolutional layers with 3x3 size filters [33]. It also includes max-pooling blocks 

that are spread between convolutional layers, followed by a classification block. It usually comes with a 

number on its name (e.g., VGG-16, VGG-19) that refers to the number of weighted layers each network 

contains. 

Residual Network (ResNet): One of the issues seen commonly in deep learning is the “vanishing 

gradient”, due to the great depth of the network, the gradients from where the loss function is calculated 

easily trend to zero. This phenomenon creates an effect in which the weights are never updating their 

values, therefore, no learning is done [34]. With ResNet, the gradients can skip connections backwards 

from later layers to initial filters.  
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4. UNDERSTANDING AEMNET 

Summary: The purpose of this chapter is to have a proper understanding of what is an audio embeddings 

generator, it describes its main components through several sections. Section 4.1 describes AemNet as a 

general-purpose e2e audio embedding generator that can be adapted to various ASEC applications; 

learning directly from raw audio samples to create an embeddings output tensor which is later input to a 

classifier. Also, it defines each concept of AemNet which are: e2e, audio and embeddings. Section 4.2 

describes the purpose of an e2e model over other approaches, the importance of a low-complexity model 

for real-life scenarios and how can an e2e model achieve comparable results against other works. Section 

4.3 analyzes the AemNet as the main core of this work describing its three main blocks: 1) low-level-

features (LLF) block and its two main configurations, which create an image-like tensor representation 

and can later be the input to the CNN of our preference, 2) high-level-features (HLF) block which follows 

a similar structure to a common computational vision CNN, its features such as the existence of a width-

multiplier and the different types of convolutional operations and finally 3) a classifier layer which varies 

depending on the convolutional operation of the HLF and outputs a softmax response based on the 

embeddings created by the two previous blocks. As well, section 4.4 describes the datasets used to evaluate 

the robustness of the AemNet, the purpose of each dataset and an overall description of them. Section 4.5 

describes the experiments performed over the high-level -features block and the different approaches to 

load a pretrain model into the AemNet, presents results based on the three datasets described in the 

previous section and concludes a final model to keep on using for this work. Finally, section 4.6 explains 

the experimentation done in the low-level-features block of two different configurations, shows a decision 

on which one presents a better performance and the discussion around it.   
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4.1. Audio embeddings generator disambiguation 

AemNet [6] is a general-purpose e2e audio embedding generator that can be adapted to various ASEC 

applications; it learns to extract the required information from raw audio samples and the inner 

convolutional layers compute the most efficient weights to create an embeddings tensor, which becomes 

the input to a classifier layer that uses an activation function to match an audio input to a label correctly.  

The definition of AemNet can also be interpreted as the combination of the concepts explained next: 

End-to-end:  E2E learning is a deep learning topic which takes advantage of deep neural networks, and 

in the past few years, has been a popular technique used for several on-field applications. E2E is 

understood as an integral solution system in which everything is calculated inside the CNN; neural network 

weights are learned by raw input and eventually an output is provided. In the ASEC context, its main 

purpose is to handle audio signals of different lengths directly from the input and achieve an efficient 

classification [26]. 

Audio: In ASEC, all scene and event surroundings that can be taken through a microphone through 

different devices. e.g., street traffic sound, breaking glass, bus driving by, or respiratory sounds.  

Embedding: It refers to the mapping of a categorical variable into continuous values. Its purpose is mainly 

to cluster a variable and represent it as much as possible in a vectorized way [35].  This representation of 

audio signals in its most efficient way helps a CNN to be competitive in different applications.  

For instance, if we were to represent a book through embeddings, we can define that in its more general 

way it can be out of two ways: science or arts. One other feature of books is the year they were published, 

hence: old or recent. Just taking these two features into account, the representation of a book on CNNs 

can easily be represented as a “science-recent” book, or in other words: [1,0] (science) and [0,1] (recent). 

With this, maybe we can add a different book topic that will generate its own embedding representation.  

Pytorch [36] was the framework of choice for our AemNet base code. The rest of the following 

experimentations described in later sections of AemNet and its adaptations leverage most of the code 

already created. 

 

4.2. Purpose of an E2E model 
Over the years, the advances of improving accuracy trend to make deeper and more complicated networks 

to achieve higher accuracy [37], whereas this is not always the most efficient way to get it. Concepts such 

as latency, speed and size of a model are usually dismissed when creating a CNN by means of achieving 

its best performance, forgetting that the complexity of such models is quite important when they are needed 

on a production level. One of the main objectives of using an E2E system on ASEC applications is its 

deployment on a wide use of hardware systems that use low-power digital signal processors (DSPs) or 

neural-net accelerators. 

The hardware in which such models can be stored can be custom build for specific applications and may 

have several types of accelerators and components within the same chip [38]. Applications in embedded 
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systems such as autonomous driving must consider all these aspects on complexity, speed, and peripherals 

on hardware, to provide an efficient on-time response to avoid collisions on the vehicle.  

At the end, a CNN may always seem extremely fast and efficient when running on the graphic processing 

units (GPUs) where it is trained and validated, quite far from the destination circuit in which this can be 

implemented.  

In conclusion, and E2E model avoids the use of the type of hardware described above such as DSPs for 

image pre-processing on spectral features by implementing its own spectral representation out of 

convolutional layers and comprises the advantage of data-driven learning to fulfill the ASEC task, 

considering the total complexity size of the model, while achieving competitive results [5], [6], [37] 

against other computational vision CNNs oriented to different audio datasets. 

 

4.3. Analysis and breakdown of AemNet 
As mentioned before, the development of this E2E system is the main purpose of this work. AemNet 

comprises three main blocks: low-level features (LLF), high-level features (HLF), and a classifier. 

The combination of these blocks is represented in Figure 9 as the AemNet structure, creating an e2e CNN 

that accepts raw audio samples, and outputs a classification based on the ASEC application target. All 

layer weights in the LLF and HLF can be loaded from a pretrained model or learned on a data-driven 

manner, creating a series of embeddings which finalizes in a classifier with an output specific to the 

number of classes to categorize. Each block is explained in the following subsections. 

 

 

 

4.3.1. Low-level features (LLF) 
The LLF block is the composition of two one-dimensional CNN layers that substitute the spectral feature 

pre-processing stage of common ASEC CNN approaches and its performance is equivalent to a FIR 

decimation filter bank.  As a time-domain audio signal enters to the first layer, the LLF creates an output 

of 128 channels at a frame rate of 10ms after an added max-pool layer [6].  

For instance, if the input to the LLF is a raw audio sample of 10 seconds, this will produce a tensor of size 

[128,1,1000], in which 128 is the number of channels, 1 is the dimension of the audio input and 1000 is 

the number of frames in 10 seconds (10 ms per second, 1000 for 10 seconds). The tunable hyper-

parameters of this stage are the stride number and kernel size of convolutional layer 1 and 2 (S1, K1, S2, 

K2 respectively). These values will be later carried on for experimentation in the following sections. 

Time-domain audio Low-level features

5x1x128 | s=2

3x3x64 | stride 1

5x1x128 | s=1

3x3x128 | stride 1 3x3x256 | stride 1 3x3x512 | stride 1

ClassifierHigh-level features

Transfer learning

Figure 9. AemNet structure showing its core stages: LLF, HLF and Classifier blocks. 
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The LLF block by itself creates its own image-like representation in tensors, which can later be the input 

to the computational vision CNN of our preference, demonstrating that each block can work 

independently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. High-level features (HLF) 
The structure of the HLF block follows a similar structure to a common computational vision CNN. After 

a wide research on both [5], [6], it was found that VGG-like architecture achieves a good performance for 

ASEC applications. VGG topology is previously explained in section 3. The default HLF block of the 

 

Figure 10. LLF stage. 2 linear CNNs act as alternative for image-like representations. 

 

Time-domain audio Low-level features

5x1x128 | s=2

5x1x128 | s=1

Conv + BN + ReLu

Maxpool

Conv + BN

Average pool 

 

Figure 11. HLF block. This block can store any CNN architecture according to the target application. 

 

3x3x64 | stride 1 3x3x128 | stride 1 3x3x256 | stride 1 3x3x512 | stride 1

High-level features
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audio embeddings generator consists of a modified VGG shown in Figure 11, in which the depth and 

channel width are adjusted. An important feature of this block is the existence of a width-multiplier (WM) 

parameter that controls the network width size of the system based on [37]. When VGG-ish HLF is chosen, 

the WM parameter linearly scales the number of output channels from the third to eleventh CNN layer, its 

purpose is to thin a network uniformly at each layer [37]. 

For a given multiplier 𝛼, the number of input channels 𝑀 becomes  𝛼𝑀 and the number of output channels 

𝑁 becomes 𝛼𝑁. 

The HLF block also embraces the concept of Depth 

Wise Separable Convolutions (DWSC / DW) used on 

MobileNet [37] and applied to AemNet. As previously 

explained, the DW approach has the effect of reducing 

computation and model size on an impactful way 

against a standard convolution.  

Because of this, the use of this factorization operation 

on the CNN layers denoted the use of AemNet-DW.  

AemNet-DW implements two additional modifications 

in its LLF block: K1 and K2 were redefined to 33 and 

10 respectively and S1 and S2 to 16 and 2, to speed up 

the training time. As well, the last convolutional and 

average pool layers were reconfigured to produce a 

vector of 512 elements which represent the 

embeddings; this topic is explained extensively in the 

next section. 

It is worth saying that this block acts as independently 

as the previous block, which expects an image-like 

audio representation tensor to train through its layer, 

hence this HLF can be replaced with any other 

computational vision CNN. The experimentation of 

using different HLF blocks is explained in following sections.  

4.3.3 Classifier 
The last layers of the VGG architecture were modified to implement a classifier layer group that outputs 

the number of classes needed to label. This last layer group is the last connected module of the E2E 

topology and can also be modified depending on the HLF configuration we are using. 

There exist two main classifier configurations created for AemNet which are described next: 

 

AclNet-Classifier: Used in VGG-ish architecture using standard convolution operations. Consists of a 

convolutional layer with a dropout of 0.2 that outputs a vector of 1⁡𝑥⁡𝐶; where 𝐶 is the number of classes.  

Followed by a global average pool layer which provides the mean value of each channel to finally provide 

a decisive label to classify. When the standard LLF and HLF blocks are joined with AclNet-Classifier, the 

architecture is referred to as Aemnet. 

 

  

Figure 12. Classifier stage composed by a fully 

connected layer, a dropout operation and a softmax 

N-class NN that outputs a classification output. 

 

Transfer learning

512 
embeddings 
vector

N classes
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AclNetX-Classifier: Used in VGG-ish with DWSC operations, consists of a dropout operation to reduce 

overfitting and a fully connected layer with linear activation function. Unlike the previous architecture, if 

this classifier is used along the standard LLF and HLF blocks, the architecture is referred to as Aemnet-

DW. 

A softmax layer is used as activation function at the output of the AemNet to present normalized output 

values.  

 

4.4. Description of datasets evaluated. 
To give a proper assessment of the AemNet against other E2E solutions, three publicly available datasets 

commonly used to benchmark ASEC models were used: DCASE2013 [4], ESC-50 [8] and Urban 

Sounds8K [9].  

4.4.1. DCASE 2013 
Stowell et al [39] aimed to frame a general-purpose machine listening tasks to benchmark the SOTA and 

reinforce the research community on the ASEC domain. Because of this, a research challenge was 

organized under the auspices of the IEEE Audio and Acoustic Signal Processing Technical Committee: 

the DCASE challenge. This addressed two main objectives: recognizing the general environment or scene 

and detecting and classifying events within them [39]. 

On the DCASE 2013 edition, two main tasks were released regarding the dataset collected in [39]. Task 1 

described a scene classification problem of identifying and classifying acoustic scenes and soundscapes.  

The dataset stores 30-second audio files (WAV, stereo, 44.1 kHz, 16-bit) using binaural headphones 

around London at various times in 2012 [4]. Locations were selected to represent instances of the following 

10 classes:  busy street, quiet street, park, open-air market, bus, subway-train, restaurant, 

shop/supermarket, office, and subway station. 

The submitted algorithms were evaluated with a 5-fold stratified cross validation. The metrics to evaluate 

were the accuracy, standard deviation, and a confusion matrix for each report. It is fair to mention that on 

this 2013 edition, the best performance models used a MFCC approach along a SVM to classify this task, 

showing how the ASEC approaches have changed on recent years moving to CNN-oriented audio 

applications. 

Dataset Num of clips Clip duration (seconds) Folds 

DCASE2013 [4] 200 30 5 

UrbanSound8K [9] 8732 ≤4 10 

ESC50 [8] 2000 5 5 

Table 1. Datasets comparison used in the analysis of AemNet. 
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Figure 13. Overview of an ASEC system [4]. 

4.4.2. ESC-50 
Piczak et all [8] facilitates open research with the Environmental Sound Classification (ESC) dataset by 

contributing with a public available dataset of environmental recordings and presenting a comparison 

between a machine learning approach versus a human accuracy estimate. 

The audio samples were reconverted to a unified format (44.1 kHz, single channel) manually extracted 

from public recordings gathered by the Freesound.org project [40]. The dataset was arranged into 5 cross-

validation folds, ensuring that clips from the same initial source are always contained in a single fold. 

The ESC-50 dataset consists of 2000 labeled environmental sounds, 40 clips per class, keeping an equal 

class balance among them. These are grouped in 5 major categories, each category stores 10 classes. Table 

2 stores the 5 domain main classes and the 10 classes under each. 

Animals 

Natural 

soundscapes & 

water sounds 

Human, non-

speech sounds 

Interior/domes

tic sounds 

Exterior/urban 

noises 

Dog Rain Crying baby Door knock Helicopter 

Rooster Sea waves Sneezing Mouse click Chainsaw 

Pig Crackling fire Clapping Keyboard typing Siren 

Cow Crickets Breathing 
Door, wood 

creaks 
Car horn 

Frog Chirping birds Coughing Can opening Engine 

Cat Water drops Footsteps 
Washing 

machine 
Train 

Hen Wind Laughing Vacuum cleaner Church bells 

Insects (flying) Pouring water Brushing teeth Clock alarm Airplane 

Sheep Toilet flush Snoring Clock tick Fireworks 

Crow Thunderstorm Drinking, sipping Glass breaking Hand saw 

Table 2. ESC-50 disambiguation of 50 classes [41]. 
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4.4.3. UrbanSound8K 
Salomon et all [42] wanted to address one of the main challenges to urban sound research when it comes 

to labeled audio data, hence the creation of UrbanSound, a dataset of 10 low-level urban sound classes: 

air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, 

and street music. Excepting “children playing” and “gunshot”, all other classes were selected as they are 

addressed as urban noise complaints. The collection resulted in a total of 3075 labeled occurrences, 

bringing a total of 18.5 hours of labeled audio segments.  

Since sound source identification is also an element of research, [42] created an additional subset of 4-

seconds audio snippets named UrbanSound8K. It sets a maximum duration limit of 4 seconds, and 

segments longer than 4s are sliced using a sliding window with a hop size of 2 s. A limit of 1000 slices 

per class is set, to promote class distribution balance, resulting in 8732 labeled slices (8.75hours), hence 

the 8K suffix.  

All urban sounds are in WAV format. The sampling rate, bit depth, and number of channels are the same 

as the original file uploaded to Freesound and may vary from file to file [9]. 

One strong recommendation that this dataset states is to use the predefined 10-fold cross validation splits, 

to be completely comparable to previous results in literature, which is the same approach we use to 

evaluate the robustness of AemNet and its respective experiments.  

 

 

Figure 14. Examples of urban sounds that compose the UrbanSound dataset [43]. 

4.5 High-level features experimentation and analysis 
Based on AemNet sand its multiple configurations described in the previous sections, we defined a series 

of experiments to evaluate the robustness of deep learning techniques such as depth-wise convolution and 

transfer learning over three different HLF topologies: a) VGG-ish topology with standard convolution, b) 

VGG-ish with depth-wise-convolution and finally c) ResNet18. To achieve the best performance for each 

topology, pretrained models were loaded and used for all topologies. 

For pre-training purposes, the raw audio from dataset was downsampled to 16 KHz. Random audio clips 

were selected and used in the mini batches in the training stage, whereas complete standardized audio clips 

were used for validation inference. 
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For topologies A) and B) we use the knowledge distillation pretrained model, whereas topology C) used 

a transfer learning approach both from a ResNet18 topology pretrained with AudioSet. Notice how these 

two approaches are different from each other. Details on each pretraining are described below and 

illustrated in Figure 15. 

 

 

Figure 15. Representation of each checkpoint source. Used transfer learning and knowledge distillation. 

First, we need to define what a pretrained model is in this context: whenever we are training our CNN 

model, we save our model weights and optimizer whenever it gets a better metric, normally we save by 

best accuracy, but this metric may vary depending on the experiment and application. In this case, we are 

saving the best epoch of the entire training in a compressed model named “checkpoint.pt” (pt extension 

refers to a PyTorch model save). After the training and validation of the model are done, this checkpoint 

#1 includes all calculated weights of the topology layers at the best epoch of the training.  

Naturally, if the reference is a ResNet18 CNN, all calculated weights would match only with the same 

exact topology. Instead, we can use the knowledge distillation technique to match as close as possible a 

different CNN topology to the pretrained one, hence creating checkpoint #2. 

Checkpoint #1 loads an AemResNet audio embedding generator previously described. This model 

includes a ResNet18 topology in which Adam optimizer with a learning rate (LR) of 5 × 10−4 was used, 

weight decay of 1 × 10−8 , and a mini-batch size of 512 over 80 epochs. Cosine aligned learning rate 

schedule was used. This model led to 11,744,143 number of parameters, with a mean average precision 

(mAP) of 0.3690.  

On the other hand, checkpoint #2 is the result of a previously trained knowledge distillation model of the 

ResNet18 configuration to match a VGG-ish HLF configuration. The VGG-ish CNN trained with an 

Adam optimizer with a learning rate of 5 × 10−4, weight decay of 1 × 10−11, and a mini-batch size of 

256 over 60 epochs. Cosine aligned learning rate schedule was used. This model led to 2,967,130 number 

of parameters, with a mAP of 0.3486.  
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Using checkpoints #1 and #2 as described in Figure 15, we used accuracy as the metric to evaluate the 

performance of three different configurations of AemNet. Let us remember that AemNet is based on a 

VGG-ish HLF with a standard convolutional layer operation, Aemnet-DW is based on the same VGG-ish 

HLF with depth-wise convolutional layer operation and its own classifier, whereas AemResNet is based 

on a HLF-based ResNet18 architecture. We used DCASE2013 and ESC-50 datasets to evaluate these three 

approaches both in a scratch training against a loaded pretrained model performance.  

 

 

 

 

Table 3. Comparison of mean accuracy per AemNet approach. 

These two datasets are divided into 5-fold-like cross validation with an 80/20 split ratio, using 5 different 

random seeds. Results in Table 3 show the average of those 5-fold performance divided by a pretrained 

model and a performance of the topology from scratch training (no checkpoint loaded). 

Results show a clear advantage of using a pretrained model in our CNN for all cases. This is expected 

since transfer learning has been a technique in several works [44]. Addressing the results of these 

experiments based on Table 3, we can conclude the following: 

AemResNet shows the best performance against both AemNet and AemNet-DW. The performance 

difference of the two VGG-ish models against ResNet18 can be explained due to the architecture topology 

properties [45] also reaffirmed by [46] on an evaluation of different computational vision CNNs of 

ResNet18 against different topologies. A pretrained model shows a greater performance against a model 

trained from scratch in all approaches. In cases such as AemNet-DW with DCASE2013 improvement is 

around ~27% in accuracy which shows the great potential of having a pretrained model for future 

references. 

On and overall analysis, the best performance model was an AemResNet pretrained model approach for 

both datasets. As this is an e2e audio embedding generator we also want to look at the model complexity, 

normally computed by number of parameters or multiply-accumulate operations (MACs), which are 

closely related to the topology architecture defined in the HLF of each model. For these approaches, we 

used Pytorch framework to calculate both MACs and number of parameters for each model which resulted 

in Table 4.  

e2e CNN WM Params 

AemNet 2.0 14,158,514 

AemNet-DW 2.0 2,722,429 

AemResNet NA 11,499,442 

Table 4. Model complexity per AemNet architecture. 

 

Mean accuracy 5-fold cross-validation 

 Aemnet Aemnet-DW AemResnet 

Dataset Scratch Pretrained Scratch Pretrained Scratch Pretrained 

DCASE2013 66.67% 75.33% 60.67% 87.00% 68.67% 87.33% 

ESC-50 77.50% 83.10% 72.45% 92.90% 78.65% 94.05% 



40 

 

From Table 4 we can see how WM variable impacts only AemNet and AemNet-DW. WM indicates the 

multiplying factor that linearly scales the number of output channels for [5], [6] and is directly reflected 

in the number of MACs. On the other hand, AemResNet which constitutes a different ResNet18 HLF 

approach does not have a WM.  

We can conclude from Table 3 that even though these 3 models are all based on audio embedding 

generator, we have a great difference among their respective HLF architectures and can be evaluated for 

different experimentation purposes, e.g., AemNet-DW can be used for minor complexity tasks with certain 

limitation of parameters for production/hardware purposes (fitting an entire model into a limited capacity 

drive). Also, AemResNet approach can take advantage of both AemNet and ResNet18 properties to end 

with a high-performance model with a lower complexity than AemNet, analyzed and developed for the 

first time in this work. AemNet is the object of study applied to different tasks and approaches described 

in following chapters.  

 

4.6 Low-level features experimentation and analysis 
Under this same research, we also experimented with the LLF segment of the audio embeddings generator, 

focused more on the kernel size and stride applied at the beginning of the AemNet topology. The LLF 

details are described in section 4.5.3. 

We explored two main types of LLF configurations: 

Configuration 1: A kernel size of 33 x 33 convolutional layer is chosen along a stride of 16.  

Configuration 2: A kernel size of 9 x 9 convolutional layer is chosen along a stride of 4.  

Table 5. Results comparison of LLF configs #1 and #2 based on two datasets. Time is measured in minutes. 

The experiments performed involved two different topologies: AemNet and AemNet-DW. In this case, 

each model had a WM of 1.0. We evaluated the performance of both LLF configurations by its accuracy, 

F1-score (based on precision and recall), and execution time in minutes.  

Each topology was trained without a pretrained model, having both CNNs training from scratch helps to 

evaluate in a cleaner way the performance of both LLF configurations. Both AemNet and AemNet-DW 

used an Adam optimizer with a learning rate of 1 × 10−3, weight decay of 2 × 10−4, mixup data warmup 

of 0.05 and alpha of 0.1 and a batch size of 128 along 600 epochs.   

It is very clear how configuration #2 achieves a better performance in accuracy and F1-score (average of 

precision and recall) compared to configuration #1, at the cost of longer training time, more clearly seen 

in ESC-50 database with a ~20-minute difference between configurations in both topologies. We also 

notice how DCASE2013 database show very few improvements in execution time, this can be explained 

Dataset Mean accuracy 5-folds AemNet 1.0 AemNet-DW 1.0 
  Accuracy F1-score Time Accuracy F1-score Time 

DCASE 2013 LLF config 1 (s1-16, k1-33) 67.00% 66.07% 30 min 55.00% 53.29% 33 min 

DCASE 2013 LLF config 2 (s1-4, k1-9) 67.00% 65.67% 31 min 58.33% 56.15% 33 min 

ESC-50 LLF config 1 (s1-16, k1-33) 76.00% 75.31% 87 min 70.10% 68.73% 125 min 

ESC-50 LLF config 2 (s1-4, k1-9) 79.70% 79.13% 105 min 71.05% 69.71% 143 min 
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to the number of data samples in each dataset, which may be an indication that the execution time would 

increase on a significant number of samples.  

In conclusion, this evaluation shows that the LLF configuration #2 has a better performance and should 

be the main configuration for the following tasks experimentation. Also, notice how execution time is not 

a main factor on deciding between both configurations, since we are training on a discrete environment 

which can later be implemented in hardware, we are trying to provide the best audio classification 

performance, regardless of how long it takes.  
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5. DCASE 2021 

Summary: In this chapter, we explore the implementation of AemNet into a target application based on 

ASEC such as the DCASE2021 challenge. Section 5.1 provides an introduction and motivation of AemNet 

and its variants to participate into the DCASE2021 challenge. Section 5.2 provides the main objective of 

the DCASE challenges and its objectives to the research community. It also provides an insight to the 

dataset of Task 1A and details on its labels and cross-validation splits. Section 5.3 describes the 

methodology followed to train and validate AemNet, also explaining the process of two main optimization 

techniques to decrease the memory size of our approach by maintaining a competitive performance above 

the baseline. Finally, section 5.5 presents the results of our experiments by comparing AemNet metrics 

performance on each optimization stage. The submission released to the DCASE2021 challenge was 

ranked as the 24th best out of 30 submissions sorted by accuracy.    
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5.1 Introduction 
For the 2021 Detection and Classification of Acoustic Scenes and Events challenge (DCASE2021), 

acoustic data were provided to solve different acoustic related tasks. We aimed our proposal to solve Task 

1A, which refers to building a classifying system for urban environment scenes under a certain memory 

size restriction. We are using AemNet-DW as a base model to implement optimization techniques with 

the purpose of lowering the memory size of the CNN.  

 

5.2 DCASE 2021 Task 1A description 
The DCASE2021 data was provided to solve different acoustic related tasks. Historically, the members of 

the organizing committee challenge participants to present their work on different types of tasks. Each 

task can have subtasks such as the one we participated on: Task 1, subtask A (Task 1A).  

AemNet and AclNet are quite familiar with the DCASE challenge [47], so we decided to continue the 

work on the 2021 edition with the very well-known Task 1A. Its goal is to classify a test recording urban 

sound into one of 10 predefined classes corresponding to environment scenes. Task 1A consists of 

classifying data from multiple devices (real and simulated) across several different devices on low-

complexity models [4]. We focused our solution to comply with the system complexity requirements 

stated by the Task 1A.  

Model complexity limit is 128 KB for non-zero parameters, meaning parameters data type have a direct 

impact e.g. 32768 parameters using float32 = 128 KB. There is no hard recommendation on which method 

to minimize the model size.  

This challenge’s dataset consists of 10-second audio recordings obtained in 10 different acoustic scenes 

from 12 major European cities, grouped in three major classes: airport, bus, metro, metro station, park, 

public square, shopping mall, street pedestrian, street traffic, and tram [48]. This acoustic dataset 

comprises audio signals at 44.1 kHz of sampling rate in 24-bit resolution. 

The challenge suggests the usage of a 1-fold arrangement for development as part of this task, with 70% 

for training and 30% for testing. 

Figure 16. DCASE challenge tasks categories [4]. 



44 

 

5.3 Methodology description and techniques used 

Following the guidelines provided by the challenge in Task 1A, we experimented with one low-memory 

implementation pipeline of an audio CNN architecture through two optimization techniques: pruning of 

models using the lottery ticket hypothesis approach, followed by a FP32 to INT8 quantization. These 

techniques to lower the complexity of deep learning models are explained in section 3.3. 

We based our topology on the settings corresponding to the AemNet audio embeddings generator work 

described in [6], using a width multiplier of 0.5, and conventional depth-wise convolution layers. This 

AemNet adaptation, which we refer to as AemNet-DW, was pre-trained with Google AudioSet [49] to 

generate a vector of 512 audio embeddings that are sent to a fully connected layer classifier built with 

ReLU activation functions in a transfer learning manner.  

Our preprocessing stage consisted of taking raw audio data from the Task 1A dataset downsampled to 16 

kHz and fed to the pretrained e2e CNN, where the generated embeddings were used to train the classifier.  

To increase the robustness of the training process, we also used different audio data augmentation 

techniques commonly used in audio processing, such as random noise addition, random cropping of 1-

second of the audio signal, and random gain variation, together with the widely used mixup data 

augmentation technique [20]. During the training, acoustic data were randomly selected to form mini-

batches of training clips. At testing time, we run the inference over each complete audio file. 

 

5.4 Experiments performed 
A search of the optimal parameters was performed by experimenting with several hyperparameters such 

as learning rate, learning rate decay, weight decay and dropout rate. We also explored the flexibility of the 

audio embeddings to dynamically adapt to the application by allowing to adjust its weights during training 

as a percentage of the classifier layer learning rate. 

5.4.1 Pruning phase 
Using AemNet-DW as base model, we ended up with a CNN formed by 319,093 parameters. This base 

model is initially trained and afterwards pruned by 60% through the lottery ticket hypothesis [50] to have 

a final model of 127,637 parameters. We also experimented removing 60% of the parameters by a typical 

pruning scheme, i.e., remove the parameters that are contributing less to the model’s classification 

behavior.  

The lottery ticket hypothesis comes into place when, after identifying the post-pruning weights, a new 

training process is carried out with the original randomly initialized weights values assigned at the initial 

pre-training stage. 

5.4.2 INT8 quantization 
The resulting pruned e2e CNN constitutes a single-precision floating-point format (FP32) base model with 

127,637 trainable parameters, which yields into 498.58 KB of memory size, clearly above the 128 KB 

restriction in the challenge. To decrease the memory size of this model, we applied a straight FP32-to-
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INT8 training-aware quantization based on the methodology described in [51], using the available tool 

accessible in [52], that results in an optimized 124.64 KB e2e audio classification CNN model.  

 

5.5 Results and discussion 
Table 6 shows the performance initially obtained by AemNet-DW before any optimization means to lower 

its complexity. It is observed that this proposal exceeds greatly the DCASE2021 baseline defined on Task 

1A challenge but fails the memory KB restriction. Hence, the following results of AemNet-DW after the 

lottery ticket (LT) 60% pruning show a reduction near to 2.5X of memory size by giving up nearly 2.7% 

of accuracy. Still after pruning, the 498.58KB is still above the maximum restriction the Task 1A states. 

Over the same AemNet-DW LT the quantization we experimented with, shows a memory reduction of 

10X against the original proposal, trading off the accuracy loss of 4.99%.  

In conclusion, by exploring transfer learning, pruning, and quantization to execute neural networks model 

optimization, we were able to successfully construct an e2e audio classification deep learning-based model 

that achieves 56.50% accuracy performance on the DCASE2021 testing dataset, with 124.64 KB of 

memory size. 

  
Table 6. Experimental testing results obtained for our DCASE2021 submission. 

Model Accuracy Params Memory KB Memory reduction Format 

DCASE2021 Baseline 46.40% - 90.00 - - 

AemNet-DW 61.49% 319,093 1246.45 0 FP32 

AemNet-DW LT 58.73% 127,637 498.58 2.5X FP32 

AemNet-DW INT8 56.50% 127,637 124.64 10X INT8 
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6. ICBHI 2017 CHALLENGE 

Summary: In this chapter we present the use of an e2e deep learning based pre-trained audio embeddings 

generator and apply it to the purpose of classification of respiration sounds. With this approach, there is 

no need to pre-compute spectral representations, e.g., MFCC or filter banks, since the classification model 

uses raw audio as the input. We make use of the audio embeddings generator described in chapter IV, 

which classifies the type of respiration sound as defined in the IEEE International Conference on 

Biomedical and Health Informatics (ICBHI) Scientific Challenge released in 2017. Section 6.1 gives a 

brief introduction of respiration sound classification background. Section 6.2 presents the ICBHI 

Scientific Challenge description, purpose and metrics used to evaluate results. Section 6.3 provides an in-

depth explanation of the ICBHI dataset composition and digital format. Section 6.4 breaks down into two 

subsections the pretraining stage of the audio embeddings generator and the experiments performed to 

tune the model to reach an optimal classification based on the F1-score obtained. Transfer learning was 

used to train an audio classifier for sounds of respiratory cycles as defined in the ICBHI 2017 challenge. 

Finally, section 6.5 shows that this e2e model represents a viable alternative to common spectral-based 

classifiers, that are able to achieve a SOTA performance. Overall, this chapter describes the paper 

publication named “Classification of Respiration Sounds Using Deep Pre-Trained Audio Embeddings” 

delivered on the IEEE Latin American Conference on Computational Intelligence on November 2nd, 2021. 
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6.1 Introduction 
The direct analysis of respiration sounds by health professionals provide significant insight to build a 

clinical assessment of different health conditions, e.g., pneumonia, bronchitis, asthma, etc. The typical 

method carried out for this purpose is for a patient to attend the doctor’s office, where an auscultation 

takes place over the chest and the back of the patient looking for characteristic sounds in the respiration 

through a stethoscope. This method is only effective when the patient attends physically to the evaluation, 

with the major constraint that is not subject to objective monitoring over extended periods of time.  

Different automatic and novel methods have been proposed for sound of respiration cycle classification, 

i.e., to identify normal from abnormal respiration that can be associated to different medical conditions. 

The recent methods reported in the literature typically follow an implementation based on deep learning 

technologies. In [12] a recurrent neural network is used for lung sound identification. An ensemble of two 

large deep learning models is used in [13] to enhance performance in the prediction of respiratory 

anomalies. A deep learning architecture was also used in [14] to detect a possible lung disease with the 

classification of respiratory anomalies. A VGG16 convolutional neural network was proposed in [15] 

for automatic classification of respiratory sounds. Another example in the use of deep learning is the 

ensemble of convolutional neural networks proposed in [16] for lung sound classification. 

This work proposes the use of an e2e deep learning-based model to identify normal respiration cycles from 

those showing presence of wheezes, crackles, or both. 

 

6.2 The ICBHI Scientific Challenge  
The ICBHI 2017 Scientific Challenge dataset [53] is an ensemble of 920 recordings from 126 subjects, 

resulting in 6,898 respiration cycles over 5.5 hours; collected independently by two research teams in two 

different countries over several years. These two research teams were the School of Health Sciences, 

University of Aveiro (ESSUA) research team and the Aristotle University of Thessaloniki (AUTH). The 

ESSUA research team recordings were collected at Respiratory Research and Rehabilitation Laboratory 

(Lab3R), ESSUA and at Hospital Infante D. Pedro, Aveiro. These respiratory sounds followed the 

computerized respiratory sounds analysis guidelines for short-term acquisitions, collecting sounds from 

seven chest locations: trachea; left and right anterior, posterior, and lateral. These sounds were collected 

in clinical and non-clinical settings [53]. On the other hand, the AUTH research team acquired respiratory 

sounds at the Papanikolaou General Hospital, Thessaloniki and at the General Hospital of Imathia (Health 

Unit of Naousa), Greece. In this team’s research, sounds were collected sequentially from six chest 

locations, on adult and elderly patients that had chronic obstructive pulmonary disease (COPD) with 

comorbidities (e.g., heart failure, diabetes, hypertension). On the ESSUA collected data, two respiratory 

physiotherapists and one medical doctor annotated the sound files in terms of presence/absence of 

adventitious sounds and identification of breathing phases [53]. For the AUTH acquired data, two 

specialized pulmonologists and one cardiologist performed sound annotations. The sounds discriminated 

where the following: normal (respiratory sound), fine crackles, coarse crackles, wheezing, speech, cough, 

and artifact [53].  
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The first edition of the ICBHI Scientific Challenge consisted in classify, for each respiratory cycle of a 

short recording (10-90s), whether the respiratory cycle contains crackles, wheezes, or crackles and 

wheezes.  

As evaluation metrics, there were two performance measures: average score (AS) and harmonic score 

(HS). AS is the average of sensitivity and specificity, while HS is the harmonic mean of both. Each metric 

calculation is described in Equations 6 and 7.  

𝐴𝑆 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

Equation 6. Average score calculation. 

𝐻𝑆 =
(2⁡ × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁡ × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)
 

Equation 7. Harmonic score calculation. 

 

6.3 Data exploration and processing 
The ICBHI 2017 challenge dataset contains 920 WAV audio files: these vary from 10-90 seconds sampled 

at different frequencies. 90 samples at 4 kHz, 6 at 10 kHz, and 825 at 44.1 kHz. In total, the number of 

patients is 126: 77 adults and 49 children [53]. For experimentation in this work, audio data were processed 

to be single channel with 16 kHz sampling rate, a 16-bit resolution, and standardized in amplitude. 

The training and validation official split defined by the ICBHI 2017 challenge was strictly followed for 

cross-validation analysis of results and viability, and direct comparison with other published works, where 

60% of the data is used for training, and 40% for validation (60/40 split) to develop our first set of cross-

validation folds. Additionally, as observed in other published works, we developed a second set of 5 

custom folds, which were defined randomly with a split 80% of the data for training, and 20% for 

validation (80/20 split).  

To have a broader understanding on the dataset we are using, we created several pie charts to visualize the 

components of each training and validations splits on a per-class basis. The analysis on the data is shown 

on figures 17 and 18.  
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From Figure 17(a) we observe how the 4 classes 

are clearly unbalanced, more than 50% of the 

dataset corresponds to a single class (“normal”), 

whereas “both” (wheezes and crackles detection) 

corresponds barely to 7% of the total samples 

collection.  

The same class balance is kept on the official split 

proposed by the ICBHI challenge [54] in which 

60% of the complete dataset is used for training 

and 40% for validation.  

From the training samples in Figure 17(b), almost 

50% correspond to the “normal” class, while the 

rest of the classes keep a ±2% from the original 

class balance.  

Validation samples in Figure 17(c) show an 

increase of “normal” class up to 57%, reducing 

“crackles” and “both” classes; “wheezes” class is 

2% increased in this new data split.  

The purpose of this analysis is to understand the 

visible class unbalance problem which might 

directly affect the development of the deep 

learning approach to solve a 4-label classification 

task. To know the precise percentage on a per-

class basis results very helpful when 

implementing class imbalance mitigation 

techniques such as the implementation of 

different loss functions that counter the weight of 

low percentage classes. 

On the other hand, Figure 18 shows the same 

class-balance analysis made for the 80/20 custom 

split. The class-balance in both training and 

validation datasets is kept mostly uniform in all 5 

cross-validation folds. 

(a) 

 

(b) 

(c) 

52.80%27.02%

12.84%

7.34%

Raw complete dataset

Normal Crackles Wheezes Both

49.79%

29.29%

12.13%

8.79%

ICBHI-official training split

Normal Crackles Wheezes Both

57.28%23.64%

13.91%

5.17%

ICBHI-official validation split

Normal Crackles Wheezes Both

Figure 17. Pie charts of ICBHI Scientific Challenge dataset.  A) Distribution of complete dataset. B) Training split distribution.   

C) Validation split distribution. 
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6.4 Audio embedding generator explanation 
The audio embeddings generator described in Section 4 is the baseline reference into the approach 

followed in this new section, where a pre-trained model efficiently generated high quality and robust audio 

embeddings and was successfully implemented in target applications over different benchmark datasets. 

The proposed e2e CNN architecture discussed in this work comprises three main blocks: the LLF block, 

the HLF block that constitute the audio embeddings generator, and a final classification block trained with 

the embeddings generated by the previous two blocks. 

The time-domain waveform is input to the LLF block, that produces an output of 128 channels at frame 

rate of 10ms after an added max-pool layer, from a 16 kHz raw audio input. We observed heuristically 

that 128 channels provide a robust performance on audio classification, while a 10 ms window is used to 

have a good time resolution of the signal. On the sampling frequency 16 kHz is the chosen trade-off value 

between a good quality audio sample and a low complexity model. For 1 second of audio input, the LLF 

produces an output tensor of dimension [128, 1, 100], these convolutional layers act as a trainable 

equivalent of a spectral filter bank feature extraction.  

The HLF block follows a CNN topology like the ones commonly used for image classification. For this 

work, we experimented with a ResNet topology of 18 layers. 

The final block of the e2e CNN acts as a classifier and comprises a dropout (DO) layer to reduce overfitting 

and one fully connected layer with linear activation functions. The input to this classification block is the 

 

52.72%
27.28%

12.64%

7.36%

Custom training split

Normal Crackles Wheezes Both

53.12%
25.94%

13.70%

7.25%

Custom validation split

Normal Crackles Wheezes Both

Figure 18. Distribution of the custom-made folds for the ICBHI dataset (80/20). 
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output of the convolutional layer averaged pooled to produce a vector of fixed size representing 512 audio 

embeddings that represent the input to the classifier.  

6.4.1 Pretraining stage 
The LLF and the HLF blocks that constitute the audio embedding generator are pre-trained using 

AudioSet, a large dataset of manually annotated audio events released by Google [49]. 

Before using this embedding generator model for a specific classification application, the final 

classification block is removed, i.e., the fully connected layer, resulting in a 512-dimensional audio 

embeddings representation as the output. Data augmentation techniques typically used in audio processing 

were also used: random noise addition, random cropping of a segment of the sample audio signal, and 

random gain variation. Additionally, the widely used mixup data augmentation technique [20] was used. 

During the training process, random audio clips were selected and used in mini batches. 

Adam optimizer with a learning rate of 5 × 10−4 was used, with a weight decay of 1 × 10−8 , and a mini-

batch size of 512 over 80 epochs. Cosine aligned learning rate schedule was used. This audio embedding 

was trained using the available unbalanced set and validated with the evaluation set for the 527 classes. 

All experimentation was executed using the Pytorch framework [36]. This audio embedding generator 

model resulted in 11,744,143 number of trainable parameters, with a mAP of 0.3690. 

6.4.2 Experimentation stage 
The training strategy followed for this application is similar to the pre-training of the audio embedding 

generator: Adam optimizer was used with a learning rate of 1 × 10−3, weight decay of 2 × 10−4, mini-

batch size of 64 over 350 epochs, cosine aligned learning rate schedule, and warm up of 35 epochs before 

mixup. It is important to notice that the ICBHI 2017 dataset presents a highly imbalanced number of 

samples per type of respiration cycles, i.e., there is a significantly larger number of normal respiration 

samples compared to the other 3 not normal types of respiration. Due to this issue, a focal loss approach 

was used in the loss function [55], resulting in a more efficient training process. We explored the flexibility 

of the audio embeddings generator to dynamically adapt to respiratory classification by allowing the 

adjustment of its weights during training.  

For both the official and custom split experiments, we focused on the validation dataset class ratio, since 

the deep learning model outcome was based on the cross-validation best model after the training stage. 

Given that premise, we calculated the weights based on the percentage of each class, as shown in Table 7. 

These newly formed weights will be the input to the loss function, which was explicitly chosen to handle 

the class imbalance present in the ICBHI dataset. 

 

Figure 19. AemResNet proposed to solve the ICBHI Scientific Challenge. 
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Class Validation split % Calculated weight (1 - validation %) 

Normal 0.5728 0.4272 

Crackles 0.2364 0.7636 

Wheezes 0.1391 0.8609 

Both 0.0517 0.9483 
Table 7. Weight calculation per class on the ICBHI dataset. 

The focal loss function described in Section X, was the loss function approach to mitigate the class 

imbalance problem in the ICBHI dataset. As described before, the components of gamma and alpha values 

correspond to an exponential value of loss and a weighted vector value based on each class ratio. The 

alpha value is then a vector formed by each class weights as described in Equation 8. Where the suffix 

“w” corresponds to the calculated weight of each class stated in Table 7.  

𝛼 = [𝑁𝑜𝑟𝑚𝑎𝑙𝑤 + 𝐶𝑟𝑎𝑐𝑘𝑙𝑒𝑠𝑤 +𝑊ℎ𝑒𝑒𝑧𝑒𝑠𝑤 + 𝐵𝑜𝑡ℎ𝑤] 

Equation 8. Alpha vector calculation based on each weighted class. 

As for the gamma (γ) value chosen for this task, we performed several experiments to find the best value 

according to the alpha (α) vector already defined. Several experimentations based primarily on seeking 

the best F1-score pointed that 𝛾 = 0.5 was the optimal value for both official and custom splits. Some 

other experimental values were 𝛾⁡𝜖⁡[0,2] based on the works described on [55] in which class imbalance 

is also mitigated by finding the optimal alpha and gamma values. 

Different learning rate values for the LLF and the HLF were utilized as a percentage of the fully connected 

layer learning rate; experiments to find the optimal percentage were evaluated sweeping through different 

values from 10% to 100% in increments of 10%. 

We have observed experimentally this behavior in other applications and hypothesized that there has to 

be an optimal learning rate percentage for the embeddings model, i.e. a smaller learning rate than the one 

used in the last fully connected layer; this is consistent with the differential learning rates observed in other 

works [56], [57], where it is explained that for pre-trained models there is not a need to change significantly 

 

Figure 20. Usage of a learning rate fraction for LLF and HLF blocks on the ICBHI classification. 

 

 

Transfer learning
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the front-end layers at the same rate as the last layers, since these have already learned to do a good 

generalization over rough initial features. 

The model obtained after training the respiration sound classifier using the pre-trained audio embedding 

generator resulted in 11,475,844, which is 2.3% less parameters against the pretrained model described 

above, due to a smaller classifier block with only 4 outputs. Additionally, the number of MACs results in 

1.84×109.  

For the assessment of the performance of the proposed e2e CNN model, Sensitivity, Specificity, and Score 

metrics were followed as explicitly stated for the ICBHI 2017 challenge.  

 

6.5 Results and discussion 
All experimental results over the official and custom validation splits are displayed in this section. Table 

8 shows the impact over the final score validation metric when updating the weights of the audio 

embeddings generator as a percentage of the learning rate used by the classification block. This shows the 

importance of the pretraining stage, updating flexibility during training applied to the pre-trained audio 

embeddings during the transfer learning process, to have a more robust model.  

The last row in Table 8 also shows the performance of an e2e CNN models trained without the use of any 

pre-trained embeddings; over the official split the score results are 0.535 Vs. 0.561, and over the custom 

split the score results are 0.684 Vs. 0.772 for scratch training and transfer learning training, respectively. 

These results evaluate the metrics for the pre-trained deep audio embeddings implemented to the task of 

respiratory sound classification.  

 Official split Custom split 

LR % Sensitivity Specificity Score Sensitivity Specificity Score 

10% 0.289 0.799 0.544 0.678 0.865 0.772 

20% 0.311 0.767 0.539 0.644 0.874 0.759 

30% 0.298 0.786 0.542 0.645 0.868 0.757 

40% 0.289 0.804 0.547 0.641 0.845 0.743 

50% 0.396 0.706 0.551 0.647 0.850 0.749 

60% 0.251 0.870 0.561 0.622 0.859 0.740 

70% 0.382 0.710 0.546 0.606 0.863 0.735 

80% 0.342 0.768 0.555 0.603 0.865 0.734 

90% 0.284 0.790 0.537 0.596 0.865 0.731 

100% 0.387 0.729 0.558 0.594 0.855 0.725 

No TL 0.304 0.765 0.535 0.540 0.828 0.684 

Table 8. Experimental results obtained over the official and custom split on the ICBHI Scientific Challenge. 
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Table 9 shows a comparison of our e2e CNN with the SOTA results reported in recent published works 

[12]–[16]. Not all these works present their results on both the official and a custom split but are considered 

here to present a broader scope on how the proposed e2e CNN model compares to these.  In these results 

it can be observed that generally, the official split tends to have smaller score values than the custom splits; 

this can be explained by the fact that the official split presents a more challenging problem with its 60/40 

data distribution for training and validation. In this case, the e2e CNN used in this work achieved the 

highest score of 0.561 when compared to [14], [15], which is to the best of our knowledge above the SOTA 

reported in the existing literature. Comparison over the custom split is not as straight forward as with the 

official split, since the use of random splits and number of folds for cross-validation will differ for each 

work but gives a clear idea that the e2e CNN is performing competitively. 

A factor that might impact the difference in score results on the custom splits could be explained by the 

difference in the deep learning model complexity, e.g., 11.4 million parameters of the e2e CNN Vs. 39 

million parameters in [16]. Ongoing research for this type of acoustic applications consist of the 

optimization of the HLF block; the ResNet network used here contributes significantly to the 11.4 million 

parameters of the final model; we are addressing the issue of reducing the number of the parameters in the 

model by exploring different topologies that could reduce this number, while maintaining the same or 

better performance. 

The experimental results presented in this work prove that an e2e deep learning approach can be 

successfully used to classify different sounds of respiration cycles such as normal, wheezes, crackles, or 

both. The main characteristic of this approach is that it avoids the need of additional pre-processing steps 

for feature extraction, thus facilitating its portability into an e2e inference engine. With pre-trained deep 

audio embeddings, a respiration sounds classifier model was built through transfer learning that achieved 

a SOTA Score of 0.561 over the official split defined for the ICBHI 2017 challenge dataset. Additionally, 

this model achieved a competitive 0.772 score over custom defined 5-fold random splits. 

  

 Official split Custom split 

Model Sensitivity Specificity Score Sensitivity Specificity Score 

BLSTMDAE[12] - - - 0.720 0.920 0.760 

VGG16[15] 0.280 0.810 0.540 - - - 

C-DNN[14] 0.260 0.680 0.470 0.680 0.900 0.790 

SE-8Cycle[16] - - - 0.694 0.873 0.784 

Ensemble[13] - - - 0.730 0.860 0.800 

Our proposal 0.251 0.870 0.561 0.678 0.865 0.772 

Table 9. Comparison of our proposed AemNet adaptation with other SOTA methods. 
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7. COVID-19 CLASSIFICATION 

Summary: Due to the COVID-19 worldwide pandemic situation, automatic audio classification research 

has been of interest for analysis of respiratory sounds. Several deep learning approaches have shown 

promising performance for distinguishing COVID-19 in respiratory cycles. We explored the usage of 

transfer learning from a pre-trained e2e deep-learning based audio embeddings generator named 

AemResNet, applied to the classification of respiration and coughing sounds into healthy or COVID-19. 

Section 7.1 provides an introductive background of the COVID-19 pandemic and an overview of the 

respiratory classification tasks around it. Section 7.2 describes the composition of Cambridge 

Crowdsourced dataset on respiratory sounds collected to aid diagnosis of COVID-19. Section 7.3 

describes our work focus split into 3 experimental tasks: 1) detection of COVID-19 from a combination of 

breath and cough sounds, 2) detection of COVID-19 from breath sounds only, and 3) detection of COVID-

19 from cough sounds only. Section 7.4 describes how the experimental results obtained over this 

respiratory dataset show that a pre-trained audio embedding generator achieves competitive performance 

compared to the recent published SOTA. Finally, section 7.5 shows the results obtained in this research 

regarding Aemnet aimed to COVID-19 classification based on respiratory sounds. This chapter describes 

the publication named “Detection of COVID-19 in Respiratory Sounds using End-to-End Deep Audio 

Embeddings” presented on the Call for Papers contest celebrated in the 4th International Student 

Conference in Latin America presented through the IEEE EMBS Chapter in Guadalajara, on November 

6th, 2021. In this contest, this paper was awarded 1st place under the “Graduate” category. 
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7.1 Introduction 
Coronavirus (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome 

coronavirus (SARS-CoV-2) virus [58] first detected in Wuhan, China in 2019. On March 2020th, COVID-

19 was declared a pandemic by the World Health Organization (WHO). Most people experience moderate 

respiratory symptoms such as: coughing, fever, and shortness of breath. The first time this novel virus was 

detected was within a cluster of patients with pneumonia of unknown cause. According to the WHO, 15% 

of overall COVID-19 patients present a severe pneumonia [58], which is auscultated by a physician 

listening respiratory sounds through breath and cough. The main purpose of recording respiratory sounds 

is to find a weakness of hypoventilation which can lead to diagnose the patient illness.  

Nowadays, there are several methods proposed to distinguish the respiratory cycles, e.g., identifying a 

shortness of breath mostly related to pneumonia. The implementation of the most recent approaches on 

respiratory sound classification includes a recurrent neural network used for lung sound classification in 

[12], two deep learning ensemble model aimed to predict respiratory anomalies is proposed in [13], a deep 

learning architecture to detect possible lung disease in presented in [14] by classifying respiratory 

anomalies.  

COVID-19 aimed works have taken part on the research community. The work reported in [18] shows the 

efforts on the creation of an Android application aimed to collect different sounds from patients such as 

breath, cough, and speech; with this, they have created a dataset containing more than 459 samples from 

378 patients through a crowdsourced methodology, named Cambridge Crowdsourced dataset. In this 

work, some ML techniques such as SVMs were used as the classifier for COVID-19 detection. In [59], 

the composition of residual network blocks is used to classify COVID-19 based on audio spectrograms 

and motivates to a comprehensive follow-up research. On [60], respiratory audio recordings are treated as 

a visual representation through two different spectrogram configurations and as raw audio, each of these 

samples are inputted into a CNN layer and the output is concatenated and ensembled to classify COVID-

19. Overall, it can be observed how deep learning is currently leading the SOTA when it comes to audio 

classification for COVID-19. 

 

7.2 Cambridge Crowdsourced dataset 
The University of Cambridge launched an application in Android and on a website [61] in which 

participants are asked to fill demographics general information and symptoms check. The dataset comprises 

459 cough and breath samples from 378 users from Web and Android applications until May 2020. These 

data were annotated by experts and the audio samples were carefully checked to guarantee the quality of 

the data that contains only cough and breathing. 

The nature of this dataset is entirely crowdsourced, that means that the ground truth is what the users state 

in terms of symptoms and COVID-19 testing status. Also, the source of this datasets encourages to 

overcome challenges such as different phones and microphones in very different environments.  

The data collection of this dataset is presented in [18], using a web-based app and an Android app. In both, 

the user is asked to input their age and gender as well as a brief medical history. Users then input symptoms 

and record respiratory sounds: they are asked to cough three times, to breathe deeply through their mouth 
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three to five times and to read a short sentence appearing on the screen three times. Finally, users are asked 

if they have been tested for COVID-19, and a location sample is gathered with permission [18]. 

Helped by a large media campaign orchestrated by the University, we were able to crowdsource data from 

many users.  As of 22 May 2020, our dataset is composed of 4352 unique users collected from the web 

app and 2261 unique users collected from the Android app, comprising 4352 and 5634 samples 

respectively. Of these, 235 declared having tested positive for COVID-19: 64 in the web form and 171 in 

the Android app.  

By May 2020, the Cambridge Crowdsourced dataset was composed of 4352 unique users collected from 

the web app and 2261 unique users from the Android app. The analysis for further feature extraction and 

classification in [18] was focused on a curated set of collected data and restricted to use coughs and 

breathing only. 

The way the dataset was categorized is as follows: 

a) Non-COVID: those users with a clean medical history, who had never smoked, had not tested 

positive for COVID- 19, and did not report any symptoms. 298 samples. 

b) Non-COVID with cough: users who meet the same criteria as the non-COVID users but declared 

a cough as symptom; these provided 32 samples. 

c) Asthma with cough: the users who have asthma, had not tested positive for COVID-19, and had 

a cough; these gave us 20 samples. 

 

7.3 Tasks baseline description 
To identify which audio modality (cough or breathing) contributes more to the classification performance, 

we repeated our experiments with three different audio inputs: only cough, only breathing, and combined.  

In [18] the audio modality was also explored to identify which one contributes more to the classification 

performance and created tasks with three different audio inputs: cough, breath, and both. The binary 

classification tasks are described as follows:  

• Task 1: Cough and breath sounds are used to distinguish users who have declared they tested positive 

for COVID-positive from users who have not declared a positive test for COVID-19, have a clean medical 

history, never smoked, have no symptom and were in countries where COVID-19 was not prevalent at the 

time. This task compared 66 users (282 samples or 32% of the audio samples) against 220 users (596 

samples or 68% of the audio samples), respectively.  

• Task 2: Cough sounds are used to distinguish users who have declared they tested positive for COVID-

19 and have declared a cough as a symptom from users who have declared not to have tested positive for 

COVID-19, have a clean medical history, never smoked, were in countries where at the time COVID-19 

was not prevalent and have a cough as a symptom. This task compared 23 users (54 samples which 

represented 63% of the audio samples) against 29 users (32 samples representing 37% of the audio 

samples), respectively.  
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• Task 3: Breath sounds are used to distinguish users who have declared they tested positive for COVID-

19 and have declared a cough as a symptom (COVID-positive with cough), from users who have not 

declared to have tested positive for COVID-19, are from countries where at the time COVID-19 was not 

prevalent, have reported asthma in their medical history and have a cough as a symptom. This task 

compared 23 user (54 samples which represented 73% of the audio samples) and 18 users (20 samples 

representing 27% of the audio samples), respectively.  

The training and test sets were created making sure that samples from the same user appear only in the 

training or test split.  

 

7.4 Experimentation 
The training strategy followed for this application is similar to the pre-training of the audio embedding 

generator: Adam optimizer was used with a learning rate of 1 × 10−3 for Task 1 and Task 2, Task 3 used 

1 × 10−6, weight decay of 1 × 10−8, mini batch size of 32 over 400 epochs, cosine aligned learning rate 

schedule, and warm up of 20 epochs before mixup. 

Due to the restrictions on the training and test sets, both splits present a highly imbalanced number of 

samples per condition, i.e., there is a significantly larger number of healthy breath and cough samples 

compared to the COVID-19 ones (approximately 73% against 27%, respectively.). To mitigate this issue, 

a focal loss approach was used in the loss function [55] for all our experiments, resulting in a more efficient 

training process. We followed the same calculation of weights through the same approach as in Section 

6.4.2 as described in Table 10. 

Task Class Validation split % Calculated weight (1 - validation %) 

Task 1 
COVID-19 0.32 0.68 

Healthy 0.68 0.32 

Task 2 
COVID-19 0.63 0.37 

Healthy 0.37 0.63 

Task 3 
COVID-19 0.73 0.27 

Healthy 0.27 0.73 

Table 10. Percentage distribution per class on the Cambridge Crowdsourced dataset. 

An exhaustive search was executed to find optimal learning rate and dropout values hyperparameters in 

the classifier block; learning rates from 1 × 10−3  to 1 × 10−6  and dropout values from 0.1 to 0.9 were 

explored. 

As described in section 6.5, we also explored the flexibility of the audio embeddings generator to 

dynamically adapt to the current target application by allowing to adjust its weights during training, just 

as represented in Figure 21.  
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Different learning rate values for the LLF and the HLF were utilized as a percentage of the fully connected 

layer learning rate; to fine-tune the model, this percentage was swept through different values from 10% 

to 100% in increments of 10%. The optimal values found for AemResNet across the three different tasks 

can be found in Table 11.  

Task Learning rate Learning Rate % Dropout 

Task 1 1𝑥10−3 80% 0.2 

Task 2 1𝑥10−3 60% 0.2 

Task 3 1𝑥10−6 90% 0.9 

Table 11. Optimal hyper-parameters found for AemResNet per task. 

Since there is no suggested official data split available for training/validation of the developed 

classification models, we randomly defined a set of 5 custom folds with an 80% split data for training, and 

20% for validation (80/20 split). In all 5 folds, the proportion of available healthy and COVID-19 samples 

in maintained in both the training and validation split. 

For a quantitative assessment of the performance of the proposed AemResNet model, Precision, Recall, 

and F1-score metrics were used for better understanding of our proposed implementation. These metrics 

are defined by:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 9. Precision computation based on confusion matrix. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 10. Recall computation based on confusion matrix. 

𝐹1⁡𝑠𝑐𝑜𝑟𝑒 = 2⁡ ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 11. F1-score computation used in this work. 

 

Figure 21. Usage of a learning rate fraction for LLF and HLF blocks on the COVID-19 classification. 
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In Equations 9 and 10, the TP represents the true positives or the number of correctly classified breath 

and/or cough sounds into healthy or covid, FP represents an incorrect classification, and FN represents a 

miss classification. Finally, the F1-score is computed as in Equation 11 to have a single metric that 

represents the performance of our model.  

 

7.5 Results and discussion 
All experimental results obtained with AemResNet are described in Table 12. Our approach is averaged 

over 5-fold random 80/20 splits and is trained and validated for the three tasks. This table also shows how 

the performance obtained by the AemResNet compares to results reported in recent published works that 

benchmark over the same dataset. Although these works present their results based on different metrics, 

we tried to consolidate and compare the performance of our approach as much as possible. 

We computed the F1-score from the SVM system in [18] based on the reported Precision and Recall and 

using Equation 11. From this, it can be observed that AemResNet presents a slightly better F1-score of 

around 3.0% for Task 1, but this difference is more significant for Task 2 (almost 12.0%), and for Task 3 

(> 17.0%). This suggest that AemResNet can generalize better for COVID-19 detection if only one type 

of respiratory sounds is considered, i.e., cough or breath sounds in separate models. 

In this context, the Recall metric represents how accurate are the models at correctly classifying healthy 

and COVID-19 sounds. We found that AemResNet yields better positive classification accuracy in Task 

2 (>16.5%) and Task 3 (>5.6%). However, this was not the case for Task 1, where AemResNet results in 

<4.6% recall. Lastly, we compared our F1-score results to the ones reported in [62], where AemResNet 

felt short to the 1D CNN used in their work, particularly for Task 1 (~17.5%). A major difference here 

could be the use of efficient data augmentation procedures, which would suggest that handling of more 

data would be expected to be beneficial. We believe we could adopt this type of data augmentation to 

increase the robustness of our own e2e model and is part of our ongoing future research. 

 

Figure 22. Confusion matrix on a binary classification application. 
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Overall, the results obtained by AemResNet suggest that the use of the pre-trained deep audio embeddings 

applied to the task of COVID-19 detection is a robust, convenient, and competitive approach by achieving 

a F1-score of 0.7332 for cough and breath sounds combined, 0.8773 for cough sounds, and 0.8654 for 

breath sounds, over the 2020 Cambridge Crowdsourced dataset. The highlighted AemResNet solution is 

the proposed approach in this work.  

  

  Task 1 Task 2 Task 3 

Model Folds Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

AemResNet 5 0.6975 0.7235 0.7332 0.8697 0.8850 0.8773 0.9040 0.8300 0.8654 

Cambridge[18] 10 0.7200 0.6900 0.7047ᵇ 0.8000 0.7200 0.7579ᵇ 0.6900 0.6900 0.6900ᵇ 

Ensemble[16] 3 - 0.7020 - - - - - - - 

1D CNN[26] - - - 0.9078 - - 0.8926 - - 0.8913 

CI-ResNet[62] 10 - 0.7700 - - 0.5350 - - 0.7740 - 

Table 12. Experimental validation results obtained as the 5-fold average of AemResNet compared to other published works. ᵇ F1-

score was computed with Equation 11. 
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8. CONCLUSIONS 

8.1 Conclusions 
The analysis and development of AemNet was the main object of research through all this work. This e2e 

proposal differs from current SOTA audio classification works which depend on dedicated software or 

hardware to pre-process audio samples and transform them to spectral representations, which have shown 

the best performance when inputted to computational vision architectures, these exceed greatly the storage 

capacities of current neural network accelerators. Most of deep learning approaches do not limit their 

model complexity and require additional pre-processing steps for feature extraction at the front-end, 

compared to e2e approaches like AemNet and its respective enhancements like AemResNet, which 

facilitate portability into an inference engine. 

Deep learning techniques such as transfer learning, data augmentation, pruning, quantization and learning 

rate percentage training were key to fulfill and adapt our proposal to the three main applications this work 

targeted which were:  

1. A low-complexity model for acoustic scene classification on the DCASE 2021 Task 1A 

challenge,  

2. A ResNet18 HLF usage of the AemNet aimed to classify respiratory sounds and indicate if cough 

sounds included crackles, wheezes, both or are classified as normal. 

3. ResNet18 HLF usage of the AemNet renamed AemResNet aimed to distinguish breath and cough 

sounds from COVID-19 patients from non-COVID patients through three different tasks.  

The general objective of this work was achieved, by evaluating the performance when changing the core 

elements of AemNet (LLF and HLF) and reconfirmed the robust generalization of audio classification by 

targeting different audio applications such as the DCASE2021 challenge and respiratory sounds 

classification. 

For the specific objectives, we were able to conclude that LLF1 configuration is a better approach against 

LLF2 since the stride values and kernel values sweep deeper into the image-like representation of the 

audio. A ResNet18 improves AemNet performance against a VGG-ish approach in which a residual net is 

preferred when classifying audio. The AemNet adaptation to AemResNet is evaluated with three different 

datasets showing up to 12% accuracy increase against AemNet even with 2.6 million parameters less. 
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Also, we were able to understand how a focal loss approach works to mitigate the class imbalance 

presented mainly in the respiratory sound datasets (ICBHI Scientific Challenge and Cambridge 

Crowdsourced) and leveraged the enhancements this loss contributes against a cross-entropy loss.  

Finally, experimental results show that AemResNet on respiratory sounds presents a high performance in 

two different biomedical applications: distinguish normal coughs against those with anomalies (wheezes, 

crackles, and both) as well as classifying COVID-19 patients through breath and cough samples. The 

research and experimentation of both these applications resulted in two papers: “Classification of 

Respiration Sounds Using Deep Pre-trained Audio Embeddings”[63] presented in IEEE Latin American 

Conference on Computational Intelligence (LA-CCI 2021) and “Detection of COVID-19 in Respiratory 

Sounds using End-to-End Deep Audio Embeddings” [64] in the 4th International Student Conference in 

Latin America Call for Papers contest presented through the IEEE EMBS Chapter in Guadalajara in was 

awarded the first place under the Graduate category. 

8.2 Future work 

As future work, the AemResNet performance can be analyzed further by evaluating the e2e model against 

a spectral representation form with a ResNet18 CNN. This comparison could provide a significant 

measurable variable to understand the tradeoff and impact in performance of an e2e model against a 

conventional audio classification approach. 

Also, AemResNet can take advantage on larger datasets aimed to other biomedical applications, in which 

the e2e portability to inference engines can be a leverage for production.  

There are still certain limits for AemResNet, the model complexity is still composed by a high number of 

parameters and as future work we might research other techniques to reduce the model complexity. On a 

short-term basis, a contribution would be to test the low-complexity techniques described in section 5 

directly to AemResNet and measure its performance on lower memory footprints. 

The low-complexity AemNet performance for the DCASE2021 challenge can certainly be improved, we 

believe we can explore other deep learning techniques like the ones described in other DCASE2021 

submissions to fulfill the needs of the task 1 announced in the site. 

Finally, I encourage the research community to continue the research of AemResNet and apply it to 

modern databases, so its performance can be evaluated and if needed, optimized.  
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Abstract—In this work we present the use of an end-to-end
deep learning based pre-trained audio embeddings generator, and
apply it to the purpose of classification of respiration sounds.
With this approach, there is no need to pre-compute spectral
representations, e.g. MFCC or filterbanks, since the classification
model uses raw audio as the input. Transfer learning was used
to train an audio classifier for sounds of respiratory cycles as
defined in the ICBHI 2017 challenge. The results on this dataset
show that this end-to-end model represents a viable alternative
to more common spectral-based classifiers, while achieving state-
of-the-art performance.

Index Terms—audio classification, deep audio embeddings,
deep learning, transfer learning, respiration sound classification.

I. INTRODUCTION

The direct analysis of respiration sounds by health profes-
sionals provide significant insight in order to build a clinical
assessment of different health conditions, e.g. pneumonia,
bronchitis, asthma, etc. The typical method carried out for this
purpose is for a patient to attend the doctor’s office, where
an auscultation takes place over the chest and the back of
the patient looking for characteristic sounds in the respiration
through a stethoscope. This method is only effective when the
patient attends physically to the evaluation, with the major
constraint that is not subject to objective monitoring over
extended periods of time.

Different automatic and novel methods have been proposed
for sound of respiration cycle classification, i.e. to identify
normal from abnormal respiration that can be associated to
different medical conditions. The recent methods reported in
the literature typically follow an implementation based on deep
learning technologies. In [1] a recurrent neural network is
used for lung sound identification. An ensemble of two large
deep learning models is used in [2] to enhance performance
in the prediction of respiratory anomalies. A deep learning
architecture was also used in [3] to detect a possible lung
disease with the classification of respiratory anomalies. A
VGG16 convolutional neural network was proposed in [4]
for automatic classification of respiratory sounds. Another
example in the use of deep learning is the ensemble of
convolutional neural networks proposed in [5] for lung sound
classification.

This work proposes the use of an end-to-end (e2e) deep
learning based model to identify normal respiration cycles
from those showing presence of wheezes, crackles, or both.
Section II describes the technology used for deep learning
audio classification; Section III presents details on the method-
ology and the experimentation followed; Section IV presents
the experimental results obtained and a discussion around
them; and finally, Section V presents the conclusions drawn
from this work.

II. END-TO-END AUDIO EMBEDDINGS GENERATION

This work presents the use of a deep learning pre-trained
audio embeddings generator constructed with e2e convolu-
tional neural network (CNN): this means that the model takes
a raw time-domain waveform as input instead of typically used
spectral representations. This approach results attractive when
considering deployment of the inference model in dedicated
hardware, since its input is based on raw audio without any
additional elaborated pre-processing. The use of this type of
deep e2e audio embeddings technology has been described in
detail in [6], where pre-trained models efficiently generated
high quality and robust audio embeddings that were suc-
cessfully implemented in target applications through transfer
learning [7] over different benchmark datasets. The proposed
e2e CNN architecture discussed in this work comprises three
main blocks as seen in Fig. 1: the low-level feature block
(LLF), and the high-level feature block (HLF) that constitute
the audio embeddings generator, and a final classification
block trained with the embeddings generated by the previous
two blocks.

The LLF block is engineered to extract meaningful and
discriminating features, and replaces the typically used spectral
feature extraction in audio classification. Details of this block
are shown in Table I, where there are two 1-dimensional
strided convolutional layers (Conv), each followed by a batch
normalization (BN) layer and a ReLU activation function. The
time-domain waveform is input to the LLF block produces an
output of 128 channels at frame rate of 10ms after an added
max-pool layer, from a 16 kHz raw audio input. We observed
heuristically that 128 channels provide a robust performance
on audio classification, while a 10 ms window is used to have a
good time resolution of the signal. On the sampling frequency,

cagalind
Textbox
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Fig. 1. E2E CNN architecture. The LLF and the HLF blocks are pre-trained with a large dataset to generate audio embeddings, and the classifier layer is
trained by means of transfer learning.

16 kHz is the chosen trade-off value between a good quality
audio sample and a low complexity model. For 1 second of
audio input, the LLF produces an output tensor of dimension
[128, 1, 100]; these convolutional layers act as a trainable
equivalent of a spectral filterbank feature extraction.

The output of the LLF block results in an image-like tensor
that represents the input to the HLF block. The HLF block
follows a CNN topology similar to the ones commonly used
for image classification. For this work, we experimented with
a ResNet topology of 18 layers [8], detailed in Table II.

The final block of the e2e CNN acts as a classifier, and
comprises a dropout (DO) layer to reduce overfitting and
one fully connected layer with linear activation functions.
The input to this classification block is the output of the
convolutional layer averaged pooled to produce a vector of
fixed size representing 512 audio embeddings that represent
the input to the classifier. The use of this average pool layer
allows arbitrary lengths of audio inputs without the need to
modify the parameters of the network model. A softmax layer
is used at the output to present normalized output values.

III. METHODOLOGY AND EXPERIMENTS

The LLF and HLF blocks described in the previous section
were pre-trained on a large set of audio data. The resulting
pre-trained model is then subsequently fine-tuned over a given
audio classification application e.g. classification of respiratory
cycles sounds, by means of transfer learning.

A. Pre-Training of the LLF and the HLF

The LLF and the HLF blocks that constitute the audio
embedding generator are pre-trained using AudioSet, a large
dataset of manually annotated audio events released by Google

TABLE I
LOW LEVEL FEATURES ARCHITECTURE

Layer Stride Out Channels Kernel Size
Conv1+BN+ReLU 16 64 33x1
Conv2+BN+ReLU 2 128 5x1
Maxpool1 1 128 5x1

TABLE II
HIGH LEVEL FEATURES AND CLASSIFICATION BLOCKS ARCHITECTURE

Layer Stride Out Channels Kernel Size
Conv3+BN+ReLU 1,1 64 3x3
Maxpool2 2,2 64 3x3
Conv4+BN+ReLU 1,1 64 3x3
Conv5+BN 1,1 64 3x3
Conv6+BN+ReLU 1,1 64 3x3
Conv7+BN 1,1 64 3x3
Conv8+BN+ReLU 2,2 128 3x3
Conv9+BN 1,1 128 3x3
Conv10+BN+ReLu 1,1 128 3x3
Conv11+BN 1,1 128 3x3
Conv12+BN+ReLU 2,2 256 3x3
Conv13+BN 1,1 256 3x3
Conv14+BN+ReLu 1,1 256 3x3
Conv15+BN 1,1 256 3x3
Conv16+BN+ReLU 2,2 512 3x3
Conv17+BN 1,1 512 3x3
Conv18+BN+ReLu 1,1 512 3x3
Conv19+BN 1,1 512 3x3
Avpool1 1 512 1x1
DO+Linear+Softmax - N* -
* Number of outputs defined by the number of audio classes.

[9]. This dataset contains 2.1 million samples corresponding
to 5.8 thousand hours of recordings, representing 527 different
audio classes. Before using this embedding generator model
for a specific classification application, the final classification
block is removed, i.e. the fully connected layer, resulting in
a 512-dimensional audio embeddings representation as the
output.

For the pre-training of audio embedding generator on Au-
dioset, the dataset’s single channel raw audio downsampled to
16 kHz was used, with additional standardization in amplitude
(subtracting the mean and dividing by the standard deviation of
the audio signal). Data augmentation techniques typically used
in audio processing were also used: random noise addition,
random cropping of a segment of the sample audio signal,
and random gain variation. Additionally, the widely used
mixup data augmentation technique [10] was used. During the
training process, random audio clips were selected and used in
mini-batches. During validation, complete standardized audio



segments were used for inference.
Adam optimizer with a learning rate of 5e-4 was used,

with a weight decay of 1e-8, and a mini-batch size of 512
over 80 epochs. Cosine aligned learning rate schedule was
used. This audio embedding was trained using the available
unbalanced set and validated with the evaluation set for the 527
classes. All experimentation was executed using the Pytorch
framework [11]. These audio embedding generator model
resulted in 11,744,143 number of trainable parameters, with a
mean average precision (mAP) of 0.3690.

B. End-to-End CNN for classification of respiration sounds

The pre-trained audio embedding generator was used to
train a respiration sound classifier using the commonly used
transfer learning technique. For this purpose, the ICBHI
2017 challenge dataset [12] was used. This dataset is an
ensemble of 920 recordings from 126 subjects, resulting in
6,898 respiration cycles over 5.5 hours. These data were
annotated by experts to include normal, crackles, wheezes, and
a combination of wheezes and crackles respiration sounds. For
experimentation in this work, audio data were processed to be
single channel with 16kHz sampling rate, a 16 bit resolution,
and standardized in amplitude. Initially, the challenge defined
4 different tasks; this work focuses only in the development
of a classifier for the classification of 4 different respiration
sounds as noted above (normal, crackles, wheezes, both).

The training strategy followed for this application is similar
to the pre-training of the audio embedding generator: Adam
optimizer was used with a learning rate of 1e-3, weight decay
of 2e-4, mini-batch size of 64 over 350 epochs, cosine aligned
learning rate schedule, and warm up of 35 epochs before
mixup. It is important to notice that the ICBHI 2017 dataset
presents a highly imbalanced number of samples per type of
respiration cycles, i.e. there is a significantly larger number of
normal respiration samples compared to the other 3 not normal
types of respiration. Due to this issue, a focal loss approach
was used in the loss function [13], resulting in a more efficient
training process.

We explored the flexibility of the audio embeddings gen-
erator to dynamically adapt to the respiration classification
application by allowing to adjust its weights during training.
Different learning rate values for the LLF and the HLF were
utilized as a percentage of the fully connected layer learning
rate; experiments to find the optimal percentage were evaluated
sweeping through different values from 10% to 100% in
increments of 10%.

The training and validation official split defined by the
ICBHI 2017 challenge was strictly followed for cross-
validation analysis of results and viability, and direct com-
parison with other published works, where 60% of the data
is used for training, and 40% for validation (60/40 split).
Additionally, as observed in other published works, a set of 5
custom folds were defined randomly with a split 80% of the
data for training, and 20% for validation (80/20 split).

The model obtained after training the respiration sound
classifier using the pre-trained audio embedding generator

TABLE III
EXPERIMENTAL RESULTS OBTAINED OVER THE OFFICIAL AND CUSTOM

SPLIT OF THE ICBHI 2017 CHALLENGE DATASET

Official Split Custom Split
LR% * Sens Spec Score Sens Spec Score

10% 0.289 0.799 0.544 0.678 0.865 0.772
20% 0.311 0.767 0.539 0.644 0.874 0.759
30% 0.298 0.786 0.542 0.645 0.868 0.757
40% 0.289 0.804 0.547 0.641 0.845 0.743
50% 0.396 0.706 0.551 0.647 0.850 0.749
60% 0.251 0.870 0.561 0.622 0.859 0.740
70% 0.382 0.710 0.546 0.606 0.863 0.735
80% 0.342 0.768 0.555 0.603 0.865 0.734
90% 0.284 0.790 0.537 0.596 0.865 0.731
100% 0.387 0.729 0.558 0.594 0.855 0.725

No TL** 0.304 0.765 0.535 0.540 0.828 0.684
* Learning rate % used by the embedding model
**No transfer learning used, model trained from scratch

resulted in 11,475,844, which is 2.3% less parameters due to a
smaller classifier block with only 4 outputs. Additionally, the
number of multiply-accumulate operations (MACs) results in
1.84×109.

For the assessment of the performance of the proposed e2e
CNN model, Sensitivity, Specificity, and Score metrics were
followed as explicitly stated for the ICBHI 2017 challenge.
These metrics are defined by:

Sensitivity =
TPc+ TPw + TPb

Nc+Nw +Nb
, (1)

Specificity =
TPn

Nn
, (2)

In Equations (1) and (2), the TP represents the true positives
or the number of correctly classified respiration cycles, and
N represents the total number existing samples; these counts
are defined for each one of the respiration sound classes: n
for normal, c for crackles, w for wheezes, and b for both
crackles and wheezes. Finally, the computation of the Score is
obtained as the average between the Sensitivity and Specificity.
The experimental results obtained based on the metrics defined
above are presented in the following section.

IV. RESULTS AND DISCUSSION

All experimental results over the official and custom vali-
dation splits are displayed in this section. Table III shows the
impact over the final score validation metric when updating the
weights of the audio embeddings generator as a percentage of

TABLE IV
COMPARISON OF THE PROPOSED E2E CNN WITH OTHER SOTA METHODS

Official Split Custom Split
Model Sens Spec Score Sens Spec Score
BLSTMDAE [1] * * * 0.720 0.920 0.760
SP+SE VGG16 [4] 0.280 0.810 0.540 * * *
C-DNN [3] 0.260 0.680 0.470 0.680 0.900 0.790
SE-8Cycle [5] * * * 0.694 0.873 0.784
Ensemble [2] * * * 0.730 0.860 0.800
e2e CNN * 0.251 0.870 0.561 0.678 0.865 0.772
* Approach proposed in this work.



the learning rate used by the classification block. This shows
the importance of considering this updating flexibility during
training applied to the pre-trained audio embeddings during
the transfer learning process, in order to have a more robust
model.

We have observed experimentally this behavior in other
applications and hypothesized that there has to be an optimal
learning rate percentage for the embeddings model, i.e. a
smaller learning rate than the one used in the last fully
connected layer; this is consistent with the differential learning
rates observed in other works [14], [15], where it is explained
that for pre-trained models there is not a need to change
significantly the front-end layers at the same rate as the
last layers, since these have already learned to do a good
generalization over rough initial features. The results in Table
III support this idea.

In this work we used transfer learning as an attempt to
increase the respiration sound classification performance. The
last row in Table III also shows the performance of an
e2e CNN models trained without the use of any pre-trained
embeddings; over the official split the score results are 0.535
Vs. 0.561, and over the custom split the score results are 0.684
Vs. 0.772 for scratch training and transfer learning training,
respectively. These results show the convenience and benefit of
the use of the pre-trained deep audio embeddings implemented
to the task of respiration sound classification application.

Table IV shows a comparison of our e2e CNN with state-of-
the-art (SOTA) results reported in recent published works [1]–
[5]. Not all these works present their results on both the official
and a custom split, but are considered here to present a broader
scope on how the proposed e2e CNN model compares to these.
In these results it can be observed that generally, the official
split tends to have smaller score values than the custom splits;
this can be explained by the fact that the official split presents
a more challenging problem with its 60/40 data distribution
for training and validation. In this case, the e2e CNN used in
this work achieved the highest score of 0.561 when compared
to [3], [4], which is to the best of our knowledge above the
SOTA reported in the existing literature. Comparison over the
custom split is not as straight forward as with the official split,
since the use of random splits and number of folds for cross-
validation will differ for each work, but gives a clear idea that
the e2e CNN is performing competitively.

A factor that might impact the difference in score results on
the custom splits could be explained by the difference in the
deep learning model complexity, e.g. 11.4 million parameters
of the e2e CNN Vs. 39 million parameters in [5]. Ongoing
research for this type of acoustic applications consist on the
optimization of the HLF block; the ResNet network used
here contributes significantly to the 11.4 million parameters of
the final model; we are addressing the issue of reducing the
number of the parameters in the model by exploring different
topologies that could reduce this number, while maintaining
the same or better performance.

V. CONCLUSION

The experimental results presented in this work prove that
an e2e deep learning approach can be successfully used to
classify different sounds of respiration cycles such as normal,
whezzes, crackles or both. The main characteristic of this
approach is that it avoids the need of additional pre-processing
steps for feature extraction, thus facilitating its portability
into an e2e inference engine. Through the use of pre-trained
deep audio embeddings, a respiration sounds classifier model
was build through transfer learning that achieved a SOTA
Score of 0.561 over the official split defined for the ICBHI
2017 challenge dataset. Additionally, this model achieved a
competitive 0.772 score over custom defined 5-fold random
splits.
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Abstract— Due to the COVID-19 worldwide pandemic 

situation, automatic audio classification research has been of 

interest for analysis of respiratory sounds. Several deep learning 

approaches have shown promising performance for distinguishing 

COVID-19 in respiratory cycles. In this work we explored the usage 

of transfer learning from a pre-trained end-to-end deep-learning 

based audio embeddings generator named AemResNet, applied to 

the classification of respiration and coughing sounds into healthy 

or COVID-19. We experimented with the publicly available large-

scale Cambridge Crowdsourced dataset of respiratory sounds 

collected to aid diagnosis of COVID-19. Our presented work 

focuses into 3 experimental tasks: 1) detection of COVID-19 from 

a combination of breath and cough sounds, 2) detection of COVID-

19 from breath sounds only, and 3) detection of COVID-19 from 

cough sounds only. The experimental results obtained over this 

respiratory dataset show that a pre-trained audio embedding 

generator achieves competitive performance compared to the 

recent published state-of-the-art. 

Keywords—audio classification, cough sounds, COVID-19 

detection, deep learning, respiratory sounds, transfer learning. 

I. INTRODUCTION 

Coronavirus (COVID-19) is an infectious disease caused 
by the severe acute respiratory syndrome coronavirus (SARS-
CoV-2) virus [1] first detected in Wuhan, China in 2019. On 
March 2020th, COVID-19 was declared a pandemic by the 
World Health Organization (WHO). Most people experience 
moderate respiratory symptoms such as: coughing, fever, and 
shortness of breath.  The first time this novel virus was 
detected was within a cluster of patients with pneumonia of 
unknown cause. According to the WHO, 15% of overall 
COVID-19 patients present a severe pneumonia [1], which is 
auscultated by a physician listening respiratory sounds 
through breath and cough. The main purpose of recording 
respiratory sounds is to find a weakness of hypoventilation 
which can lead to diagnose the patient illness.  

Nowadays, there are several methods proposed to 
distinguish the respiratory cycles, e.g., identifying a shortness 
of breath mostly related to pneumonia. The implementation of 
the most recent approaches on respiratory sound classification 
includes a recurrent neural network used for lung sound 
classification in [2], two deep learning ensemble model aimed 
to predict respiratory anomalies is proposed in [3], a deep 
learning architecture to detect possible lung disease in 
presented in [4] by classifying respiratory anomalies. A 

VGG16 CNN for automatic classification of respiratory 
sounds was proposed in [5] also by means of deep learning. 

As well, COVID-19 aimed works have taken part on the 
research community. The work reported in [6] shows the 
efforts on the creation of an Android application aimed to 
collect different sounds from patients such as breath, cough, 
and speech; with this, they have created a dataset containing 
more than 459 samples from 378 patients through a 
crowdsourced methodology, named Cambridge 
Crowdsourced dataset. In this work, some machine learning 
(ML) techniques such as Support Vector Machines (SVM) 
were used as the classifier for COVID-19 detection. In [7], the 
composition of residual network blocks is used to classify 
COVID-19 based on audio spectrograms and motivates to a 
comprehensive follow-up research. On [8], respiratory audio 
recordings are treated as a visual representation through two 
different spectrogram configurations and as raw audio, each 
of these samples are inputted into a CNN layer and the output 
is concatenated and ensembled to classify COVID-19. 
Overall, it can be observed how deep learning is currently 
leading the state-of-the-art (SOTA) when it comes to audio 
classification for COVID-19. 

In this work we propose the use of an end-to-end (e2e) 
deep learning-based model to identify healthy breath and/or 
coughing sounds from COVID-19 ones. We have arranged 
our work as follows: Section II describes the methodology 
followed for the implementation of the deep learning audio 
classification of healthy vs COVID-19 sounds; Section III 
presents a clear explanation on the experimental setup; 
Section IV presents the experimental results obtained and the 
discussion around them; and finally, Section V presents the 
conclusions drawn from this work. 

II. METHODOLOGY 

A deep learning approach for detection of COVID-19 
respiratory sounds presented in this work, based on an end-to-
end (e2e) convolutional neural network (CNN); this means 
that no additional audio spectral representation is needed since 
the time-domain signals are the input to the neural network 
architecture. This approach seems optimal when considering 
the dedicated hardware limitations for inference deployment. 
The core of this work is an ongoing effort of the e2e audio 
embeddings generator described in previous published works 
[9]–[12], where pre-trained models are created through an 
available large audio dataset, that efficiently generate robust 
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audio embeddings aimed for different audio scene and events 
classification. The proposed e2e CNN architecture is named 
AemResNet, and it comprises three main blocks as seen in Fig 
1: the low-level feature block  (LLF) that acts as a front-end 
learnable feature extraction module, the high-level feature 
block (HLF) that is trained to become a deep learning-based 
audio embeddings generator, and a final classification block 
that is trained with the audio embeddings output by the HLF. 

The purpose of the LLF block is to discriminate and 
extract features based purely from raw audio; this block 
replaces the visual representation of audio through 
spectrograms commonly used in most audio classification 
tasks. In Fig 1, the details of this block are described, where 
we find two 1-dimensional (1D) strided convolutional layers 
(Conv), each followed by a batch normalization layer (BN) 
and a ReLu activation function. The 16 kHz time-domain 
audio waveform inputted to the LLF block is converted to 128 
channels using a time window resolution of 10ms after an 
added max-pool layer. For each second of audio input, the 
LLF block creates a [128, 1, 100] dimension tensor which act 
as a trainable correspondent to a spectral filterbank feature 
extraction. These signal handling values were chosen since we 
have observed heuristically that results in efficient 
development of CNNs for audio classification tasks. The 
sampling frequency of the audio signal is an important 
variable which can be set to a higher value that might result in 
a better audio quality, at the cost of increasing the model 
complexity (number of parameters and size). From this, we 
have found that 16 KHz is a good tradeoff between audio 
quality for classification and low complexity aimed to the 
purpose of deployment as mentioned before for e2e audio 
classification solutions.  

The output of the LLF block creates an image-like tensor 
that is the direct input to the HLF block. The HLF block is 
built as a CNN architecture which is the most common 
approach for computational vision. For AemResNet, we set 
this HLF stage with a ResNet topology of 18 layers [13]. 
Details for this ResNet are also shown in Fig 1. The output of 
its last convolutional layer is average pooled to produce a 
vector of 512 audio embeddings that represent a condensed 
representation of the audio sample. This average pool layer 
brings flexibility when dealing with different lengths of audio 
inputs, while maintaining the same parameters of the 
architecture. 

The last stage of the AemResNet acts as a classifier, which is 
the composition of a dropout layer (DO) to reduce overfitting 
and a fully connected layer with linear activation functions. At 
the last part of this block, a SoftMax layer is used at the output 

to present the normalized values based on the number of 
classes specified. 

III. EXPERIMENTATION 

AemResNet was pre-trained over a large set of audio data, 
this resulted in a pre-trained model that is later fine-tuned 
based on the audio classification task such as COVID-19 
diagnosis based on respiratory sounds. All experimentation 
was executed using the Pytorch framework [14]. 

A. Pre-Training stage 

Both LLF and HLF stages are pre-trained using AudioSet, 
a large dataset of manually annotated audio events released by 
Google [15], containing 2.1 million samples equivalent to 5.8 
thousand hours of recordings in which 527 different audio 
classes were labeled. Before using this embedding generator 
model for a specific classification application, the final 
classification block is removed, i.e. the fully connected layer, 
resulting in a 512-dimensional audio embeddings 
representation as the output. AemResNet used Audioset as 
pretraining as follows: the single channel raw audio is 
downsampled to 16 KHz, it is then standardized in amplitude 
by subtracting the mean and dividing it by the standard 
deviation of the signal. As well, data augmentation techniques 
such as random noise addition, random segment cropping of 
the audio sample, random gain variation and the widely used 
mixup data augmentation technique. During the training stage, 
a batch of audio clips were selected randomly into the form of 
mini batches to train the model. For validation, the complete 
standardized audio clips were used for inference. 

Adam optimizer with a learning rate of 5x10⁻⁴ was used, 
with a weight decay of 1x10⁻⁸, and a mini batch size of 512 
over 80 epochs. Cosine aligned learning rate schedule was 
used. This audio embedding was trained using the available 
unbalanced set and validated with the evaluation set for the 
527 classes. This audio embedding generator model resulted 
in 11,744,143 number of trainable parameters, with a mean 
average precision (mAP) of 0.3690 over the AudioSet 
evaluation data, and it is the exact same one used in [12].  

TABLE I.  OPTIMAL HYPER-PARAMETERS FOUND FOR 

AEMRESNET PER TASK. 

Task Learning Rate Learning Rate % Dropout 

Task 1 1x10-3 80 0.2 

Task 2 1x10-3 60 0.2 

Task 3 1x10-6 90 0.9 

 

 

Fig. 1. AemResNet archictecture. The LLF and HLF blocks are pretrained with a large dataset to generate audio embeddings, and the classifier layer is trained 

by means of transfer learning. 



 

 

B. End-to-End CNN for COVID-19 detection 

The pre-trained audio embedding generator was used to 

train a COVID-19 classifier using the commonly adopted 

transfer learning technique [16]. For this purpose, the 

Cambridge Crowdsourced dataset described in [6] was used 

as the target application data. The University of Cambridge 

launched an application in Android and on a website [17] in 

which participants are asked to fill demographics general 

information and symptoms check. The dataset comprises 459 

cough and breath samples from 378 users from Web and 

Android applications until May 2020. These data were 

annotated by experts and the audio samples were carefully 

checked to guarantee the quality of the data that contains only 

cough and breathing. As a preprocessing step, audio data was 

processed to be single channel with 16kHz sampling rate on a 

16-bit resolution, and standardized in amplitude. Both web 

and Android app sources were used as samples for   

experimentation, and followed the authors proposal in [6] into 

three different experimental tasks: 

 

• Task 1. Cough + breath sounds are used to classify 
COVID-19 vs healthy samples from 66 user (282 
samples which represented 32% of the audio samples) 
and 220 users (596 samples representing 68% of the 
audio samples), respectively. Where COVID-19 
samples included patients with and without cough or 
symptoms against healthy patients that have not 
reported symptoms as well as a clean medical history.  

• Task 2. Cough sounds are used to classify  
COVID-19 vs healthy samples from 23 user (54 
samples which represented 63% of the audio samples) 
and 29 users (32 samples representing 37% of the 
audio samples), respectively. Where COVID-19 
samples included patients that reported cough as a 
symptom, and healthy patients that presented cough 
as well but have a clean medical history. 

• Task 3. Breath sounds are used to classify healthy vs 
COVID-19 samples from 23 user (54 samples which 
represented 73% of the audio samples) and 18 users 
(20 samples representing 27% of the audio samples), 
respectively. Where COVID-19 samples included 
patients that reported cough as a symptom, and 
healthy patients that presented cough as well but have 
declared asthma in their medical history. 

The training strategy followed for this application is similar to 
the pre-training of the audio embedding generator: Adam 
optimizer was used with a learning rate of 1x10-3 for Task 1 
and Task 2, Task 3 used 1x10-6 , weight decay of 1e-8, mini 
batch size of 32 over 400 epochs, cosine aligned learning rate 
schedule, and warm up of 20 epochs before mixup. It is 
important to notice that the Cambridge Crowdsourced dataset 

presents a highly imbalanced number of samples per 
condition, i.e. there is a significantly larger number of healthy 
breath and cough samples compared to the COVID-19 ones 
(approximately 73% against 27%, respectively.). Due to this 
issue, a focal loss approach was used in the loss function [18] 
for all of our experiments, resulting in a more efficient training 
process.  

An exhaustive search was executed to find optimal 
learning rate and dropout values hyperparameters in the 
classifier block; learning rates from 1x10-3 to 1x10-6 and drop 
out values from 0.1 to 0.9 where explored. Additionally, as 
observed in previous works [9], [12], we also explored the 
flexibility of the audio embeddings generator to dynamically 
adapt to the current target application by allowing to adjust its 
weights during training. Different learning rate values for the 
LLF and the HLF were utilized as a percentage of the fully 
connected layer learning rate; to fine-tune the model, this 
percentage was swept through different values from 10% to 
100% in increments of 10%. The optimal values found for 
AemResNet across the three different tasks can be found in 
Table I. 

Since there is no suggested official data split available for 
training/validation of the developed classification models, we 
randomly defined a set of 5 custom folds with a split 80% 
of the data for training, and 20% for validation (80/20 split). 
In all 5 folds, the proportion of available healthy and COVID-
19 samples in maintained in both the training and validation 
split. The model obtained after training the healthy vs and 
COVID-19 classifier using the pre-trained audio embedding 
generator resulted in 11,473,282 which is 2.3% less  
parameters due to a smaller classifier block with only 2 
outputs. Additionally, the number of multiply-accumulate 
operations (MACs) results in 1.84×10⁹. 

For a quantitative assessment of the performance of the 
proposed AemResNet model, Precision, Recall, and F1-score 
metrics were used for better understanding of our proposed 
implementation. These metrics are defined by: 

𝑷𝒓𝒆𝒄 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1), 𝑹𝒆𝒄 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2), 𝑭𝟏 = 2 ×

𝑃𝑟𝑒𝑐 × 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐+ 𝑅𝑒𝑐
 (3). 

In Equations (1) and (2), the TP represents the true 
positives or the number of correctly classified breath and/or 
cough sounds into healthy or covid, FP represents an incorrect 
classification, and FN represents a miss classification. Finally, 
the computation of the F1-score comptured as in (3) to have 
a single metric that represents the performance of our model. 
The experimental results obtained based on the metrics 
defined above are presented in the following section. 

IV. RESULTS AND DISCUSSION 

All experimental results obtained with our proposed 
AemResnet model implementation, using the custom 5-fold 
random 80/20 splits, are analyzed in this section. To 
efficiently increase the robustness in the detection of COVID-

TABLE II. EXPERIMENTAL VALIDATION RESULTS OBTAINED AS THE AVERAGE ACROSS 5 FOLDS FOR AEMRESNET COMPARED TO OTHER 

PUBLISHED WORKS.  ᵃ APPROACH PROPOSED IN THIS WORK ᵇ F1-SCORE COMPUTED WITH EQUATION (3). 

  TASK 1 TASK 2 TASK 3 

Model Folds Precision Recall F1 Precision Recall F1 Precision Recall F1 

AemResNeta 5 0.6975 0.7235 0.7332 0.8697 0.8850 0.8773 0.9040 0.8300 0.8654 

SVM [16] 10 0.7200 0.6900 0.7047ᵇ 0.8000 0.7200 0.7579ᵇ 0.6900 0.6900 0.6900ᵇ 

Ensemble [17] 3 - 0.7020 - - - - - - - 
1D CNN [18] - - - 0.9078 - - 0.8926 - - 0.8913 

CI-ResNet[19] 10 - 0.7700 - - 0.5350 - - 0.7740 - 

 



 

 

19 in respiratory sounds, we leveraged on the use of transfer 
learning for better performance. Table II presents the 
performance results of our approach averaged over the defined 
5 folds, trained and validated for Task 1, Task 2, and Task 3; 
this table also shows how the performance obtained by the 
AemResNet compares to results reported in recent published 
works that benchmark over the same dataset [6]–[8], [19]. 
Although these works present their results based on different 
metrics, we made an effort to consolidate and compare the 
performance of our approach as much as possible.  

 We computed the F1-Score from the SVM system in [6] 
based on the reported Precision and Recall and using Equation 
(3). From this, it can be observed that AemResNet presents a 
slightly better F1-Score of around 3.0% for Task 1, but this 
difference is more significant for Task 2 (almost 12.0%), and 
for Task 3 (> 17.0%). This suggest that AemResNet can 
generalize better for COVID-19 detection if only one type of 
respiratory sounds is considered, i.e., cough or breath sounds 
in separate models.  

 Looking at the Recall results, we can compare with the 
works presented in [6] and [8]. In this context, the Recall 
metric represents how accurate are the models at correctly 
classifying healthy and COVID-19 sounds. We found that 
AemResNet yields better positive classification accuracy in 
Task 2 (>16.5%) and Task 3 (>5.6%).  However, this was not 
the case for Task 1, where AemResNet results in <4.6% 
Recall. Lastly, we compared our F1-score results to the ones 
reported in [19], where AemResNet felt short to the 1D CNN 
used in their work, particularly for Task 1 (~17.5%). A major 
difference here could be the use of efficient data augmentation 
procedures, which would suggest that handling of more data 
would be expected to be beneficial. We believe we could 
adopt this type of data augmentation to increase the robustness 
of our own e2e model and constitutes part of our ongoing 
research. Overall, the results obtained by AemResNet suggest 
that the use of the pre-trained deep audio embeddings applied 
to the task of COVID-19 detection is a robust, convenient, and 
competitive approach. 

V. CONCLUSION 

The experimental results presented in this work prove that 
AemResNet can be applied to classify breath and cough 
sounds into healthy or COVID-19 samples, with comparable 
results to the existing SOTA reported in the literature. The 
attractive characteristic of this e2e approach is that it avoids 
the need of additional pre-processing steps for feature 
extraction at the front-end, thus facilitating its portability into 
an inference engine. Through the use of pre-trained deep audio 
embeddings generator, a COVID-19 detection classifier 
model was build through transfer learning that achieved a F1-
score of 0.7332 for cough and breath sounds combined, 
0.8773 for cough sounds, and 0.8654 for breath sounds, over 
the 2020 Cambridge Crowdsourced dataset. 
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