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Resumen 

Este trabajo tiene como finalidad el diseño y la implementación embebida de un esquema de 

control para el seguimiento de trayectorias para multi-rotores. Como punto inicial se aborda el 

estado del arte en cuanto a desarrollo de aeronaves de despegue y aterrizaje vertical (VANT), así 

como los tipos de VANT actuales. Con ello definido, el documento describe la problemática sobre 

los esquemas de hardware y software para el desarrollo e investigación en este tipo de dispositivos. 

Así, se propone un esquema de control para estas aeronaves, el cual incluye un doble lazo de 

control que corresponden al control de pose de la aeronave y el control de velocidad de los 

actuadores. 

La propuesta de investigación contempla el modelado matemático del sistema usando 

aproximaciones de ángulos pequeños, lo cual simplifica las ecuaciones de estado al reducir el 

impacto de la matriz de rotación sobre el estado del vehículo. Esta simplificación representa una 

ventaja durante el posterior proceso de diseño de los controladores. Este modelo es validado por 

medio de simulaciones en lazo abierto (sin considerar el controlador) mediante la herramienta de 

simulación Matlab/Simulink. Dicho proceso consiste en definir diversas entradas de velocidad en 

los motores, graficar el comportamiento de los estados del modelo y corroborar que este es el 

esperado en un vehículo real con las mismas entradas definidas. Dado que el modelo a simular 

requiere de los parámetros del sistema, los métodos de obtención de estos son desarrollados ya 

que, comúnmente, dicha información no es proporcionada por los fabricantes de los motores sin 

escobillas o los desarrolladores de las estructuras comerciales para VANTs.  

Una vez validado el modelo dinámico del VANT a controlar, los lazos externo e interno de control 

por retroalimentación de la variable de error son diseñados mediante los esquemas backstepping y 

PID (Proporcional-Integral-Derivativo). Además, la demostración de estabilidad para cada 

esquema de control en lazo cerrado es realizada de dos maneras: de forma algebraica usando el 

teorema de Lyapunov, y de forma numérica mediante resultados en simulación. 

Para la implementación en tiempo real uno de los esquemas de control diseñados es desarrollado 

en un sistema embebido y se realizan experimentos utilizando un VANT comercial con la misma 

configuración contemplada durante el modelado matemático. Además, se describen las 

arquitecturas de hardware y software usadas en el vehículo real para la implementación de los 



 

algoritmos de control y acondicionamiento de las señales obtenidas por los sensores. Los 

resultados de dichos experimentos son reportados y analizados, y las conclusiones obtenidas son 

presentadas. 

Durante el proceso de validación es pertinente el uso de dispositivos de prueba, que de manera 

segura permitan al desarrollador la sintonización de ganancias del sistema para el control eficiente 

de la aeronave. Esto abre la pauta a la consolidación de un sistema completo de validación el cual 

permita la modificación y evaluación de parámetros y nuevas propuestas de investigación, ya sea 

para proporcionar habilidades de inteligencia a dispositivos VANT, características de detección 

de fallos, agregar soporte a nuevas tecnologías, o para el desarrollo de metodologías educativas. 
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Summary 

This dissertation aims to design and implement an embedded control scheme for trajectory tracking 

in multi-rotors. The first objective to tackle is the state of the art about the vertical take-off and 

landing (VTOL) devices, furthermore, the document defines the available VTOL types in the field. 

With the previously mentioned, the thesis defines the problematic about the available hardware 

and software schemes for research and development for unmanned aerial vehicles (UAVs). 

Therefore, a control scheme proposal is described for this type of aircrafts, which includes a nested 

double loop cycle that considers the control of the vehicle and the speed control of the actuators. 

The research proposal considers the hypothesis of small angles approximation, which simplifies 

the mathematical analysis of the system, and the obtaining of a state-space model, by reducing the 

impact of the rotation matrix over the vehicle. The simplification of the model represents an 

advantage during the process of controller design for the system. This model is validated with the 

use of open-loop simulations (without considering the controller) in Matlab/Simulink. Such 

process consists in defining different motor speeds inputs, displaying the behavior of the model 

states and corroborate that the model behavior is the expected when compared with the real system. 

Given that the model requires the parameters of the system during the simulations, the methods 

for obtaining such information are developed since that data is not commonly provided by the 

brushless motors manufacturers or VTOL structures developers. 

Once the dynamic model of the VTOL to control is validated, the external and internal control 

loops with error feedback are designed using the backstepping and PID (Proportional-Integral-

Derivative) schemes. Furthermore, the stability validation for each scheme is developed in two 

ways: by mathematical demonstration using Lyapunov’s theorem, and by numeric results from 

simulation. 

For the real-time implementation, one of the designed control schemes is implemented in an 

embedded system, and numerous experiments are performed using a commercial VTOL with the 

same configuration and motor arrangement considered during the mathematical modeling process. 

Furthermore, the hardware and software architectures used are described for the implementation 

of the control algorithms and for the sensor signal conditioning. The results for the experiments 

are reported and analyzed, and the respective conclusions are presented. 



 

During the validation process, the use of test devices is pertinent with the purpose of allowing the 

developer to tune the system controller gains safely. This opens the door to the consolidation of a 

complete validation system that allows the modification and evaluation of new parameters and 

research proposals, with the purpose of adding intelligence abilities to VTOL, providing fault 

detection capabilities, adding support for new technologies, or for developing educational 

methodologies. 
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Introduction 

The drone terminology is commonly used nowadays, and the term involves numerous areas 

and technologies in their implementation. There are multiple classes of unmanned vehicles in 

existence, from hand-launched sub-scale models to full-size long types. Most of them are remotely 

piloted, but there are some others that are operated in certain controlled environments going in a 

gradual progression towards full autonomy. Just as a primary approach, drones in the aerial realm 

are commonly named unmanned aircraft systems (UAS), unmanned aerial vehicles or uninhabited 

air vehicle (UAV), Vertical Take-Off and Landing (VTOL) devices, multi-rotors, or multi-copters, 

just to name a few.  

In the simplest way of view, a UAV is an aircraft with no aircrew, therefore, it is replaced 

by a control computer system and radio-link for remote controllability or inspection. In a more 

realistic manner, it is a complex system that is properly designed and is comprised of a control 

station which serves as a control interface between the operator and the rest of the technology 

involved. In a listed form, the UAV implies the aircraft itself, payloads, support sub-systems, 

communication sub-systems, transport sub-systems, and others. 

There are differences between a drone aircraft and a UAV. While they are normally named 

the same, they are not equal. Drone aircrafts are basically not intelligent devices, which are 

normally launched with a pre-programmed mission, on a pre-programmed course, and a return to 

base; communication is not a feature, and the results of the mission are not obtained until the 

vehicle is recovered at the base. On the other hand, the UAVs have a certain grade of automatic 

intelligence, being capable of communicating with its controller, and normally data return is 

provided along with primary state information such as position, orientation, and altitude. 

Origins of UAV Research and Development 

The idea of a vertical flight aircraft can be traced back in time about 400 century B.C. with 

the Chinese tops, which were basically feathers attached at the end of a stick that was rapidly spun 

between the hands to generate lift and then released for free flight. After that, the first solid 

reference with respect to multi-rotors places at the time of the multidisciplinary Leonardo da Vinci, 
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in 1483. The aerial-screw invention that he wrote in the Codex Atlanticus with the following 

phrase: “I have discovered that a screw-shaped device such as this, if it is well-made from starched 

linen, will rise in the air if turned quickly”, described what has been named the helicopter’s 

ancestor [Leishman-06], [AIAA-18]. 

Several centuries passed until new developments were reached, and it was not until 1783 

that Launoy and his mechanic, Bienvenu, presented a coaxial model of a simple helicopter powered 

by the tension in a crossbow [Lemos-07]. That invention started the stir within the scientific circles 

and in 1786 the French mathematician A. J. P. Paucton published in 1786 the “Theorie de la vis 

D’Archimede”, which is the first scientific paper that talks about the problem of rotating wings. 

Continuing with the development of the VTOL devices, in 1804, Sir George Cayley 

constructed a whirling-arm device, which is one of the first scientific attempts to study the 

aerodynamic forces produced by lifting wings. Later, in the period between 1809 and 1810, he 

published a three-part paper that placed the foundations of modern aerodynamics. 

Fig. I a) Da Vinci’s aerial screw, b) Cayley’s Aerial Carriage. 

On August 22, 1849, Australia launched around 200 balloons against Venice, Italy, and the 

balloons were armed with explosives controlled by timed fuses. This records the first UAV in 

history. The lack of control of the devices caused minimal damage to the city, instead, many of the 

unpiloted balloons blew back towards Australians [RPAV-03]. 

During the time of the early 1860s, Ponton d’Amecourt from France, flew a several of 

small steam-powered helicopter models. Other noticeable VTOL models from that time are the 

design of Bright in 1861, and the twin-rotor steam-driven model of E. Dieuaide in 1877. Within 

that period, in 1874, Wilhelm von Achenbach introduced the idea of a sideward thrusting tail rotor 

that counteracts the torque reaction from the main rotor. In 1869, A. Lodygin developed the 

Russian “electroplane” concept, using a rotor for lift and a propeller for propulsion and control. 

Later, Enrico Forlanini from Italy, build another type of flying steam-driven helicopter model in 

a)  b)  
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1878. 

In 1880, Thomas Alva Edison experimented several small helicopter models in the United 

States, having the most promising results with an electric motor design. His scientific approaches 

proved that both high-efficiency rotors and high-power engines were required for successful flights 

to be achieved. In 1910, he patented a rather cumbersome looking full-scale helicopter concept 

with box-kite-like blades. 

At the year of 1907, the French Paul Cornu constructed a vertical flight machine that carried 

a human off the ground for the first time. The engines that supplied the power to the rotors were 

24-hp gasoline motors and a gear transmission, where each rotor had two blades, and each actuator 

rotated in opposite directions to cancel torque reaction. In the same period, the Breguet brothers 

conducted helicopter experiments by the guidance of Professor Charles Richet, with a quad-rotor 

called Gyroplane No. 1. It carried a pilot off the ground, but it was underpowered with a 40-hp 

motor, never flew completely free and lacked stability and proper control. 

 
a) 

 
b) 

Fig. II a) Cornu’s aircraft, b) Breguet-Richet Gyroplane No. 1. 

In the early 1900s, Igor Ivanovich Sikorsky and Boris Yuryev did some unsuccessful 

experiments due to vibration problems and lacked powerful engines but established the concept of 

the cyclic pitch for rotor control. During that period, several theoretical contributions on the subject 

about aerodynamics were done by professor Zhukovskii, while at the same time, Stefan 

Drzewiecki developed a hybrid momentum/blade element concept and published a book entitled 

“Des Helices Aerinnes Theorie Generale des Propulseurs”. 

By the time of 1917-1920, Stephan Petroczy, with the help of Theodore von Kármán and 

Wilhelm Zurovec, built a coaxial helicopter PKZ 2 which introduced the term of redundancy for 

engine failure events. Another significant achievement is that von Kármán provided laboratory test 

results for the rotors, which used oversized propellers. The results agreed on the elementary rotor 

theory in which the thrust and power should increase with the square and cube of motor RPM; 

they also provided the efficiency results for the test, which provided a 60%. 
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a) 

 
b) 

Fig. III a) Petroczy-Kármán-Zurovec PKZE helicopter, b) Theodore Von Kármán PKZ 2 

motor performance measurements. 

By the early 1900s, Emile and Henry Berliner designed and built diverse aircraft but it was 

not until early 1920s that they had some successful tests with a device that had side-by-side rotors. 

The differential longitudinal tilt of the rotor shafts provided yaw control. Their rudimentary piloted 

helicopters attempts are credited as the first helicopter developments in the United States. 

At the time that World War I was running, in 1914, the British military used aerial 

photography in the Battle of Neuve Chapelle to capture around 1,500 sky view maps of the German 

fortifications in the region. In 1917, the United States Navy developed the aerial torpedo, which 

has a guidance method consisting of a primitive calculation. Once the wind speed, wind direction, 

and target distance were determined, the number of revolutions that the engine required to take the 

missile to target were calculated. In airborne, the device was controlled by a small gyroscope, and 

the altitude measured by a barometer [Austin-10]. On their side, the United States Army started 

developing UAV technology in 1916, having successful results by 1918 with the “Kettering Bug” 

which was a self-flying aerial torpedo created by Orville Wright and Charles F. Kettering [Stamp-

13]. 

The British Army began its UAV development in 1914 with the aerial target, which that 

was a radio-controlled pilotless monoplane. Within the same territory, Louis Brennan worked on 

a helicopter concept that solved the torque reaction problem by powering the rotor with propellers 

mounted on the blades, and control was achieved using ailerons inboard of the propellers. The lack 

of stability and control caused the machine to crash on its seventh flight attempt. Later, in 1927, 

the Royal Navy developed a monoplane capable of carrying a several kg. of load. It was fitted with 

a radio control for the launch mode, after which the autopilot controlled the flight to a pre-set 

course. 

The Argentinean Raul Pescara built and attempted to fly coaxial helicopters with biplane-
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type rotors in the 1920s. His Pescara No. 3 had five sets of biplane blades that were mounted 

rigidly to the rotor shaft. He was focused on a completely controlled machine, which was achieved 

through cyclic-pitch changes that were obtained by warping the blades periodically as they rotated, 

achieving the first successful application of the cyclic-pitch theory. The yaw angle was controlled 

by the differential collective pitch between the two rotors. 

Between 1924 and 1930, A. G. von Baumhauer designed and built a single-rotor helicopter 

with a tail rotor for controlling torque reaction. It was very difficult to control due to the 

disconnection between the main and tail rotors. In Austria, the engineer Raoul Hafner designed a 

single-seat helicopter called R-2 Revoplane, and for control, the machine used swashplate for blade 

pitch, which became the standard for providing pitch control in modern helicopters. 

In 1922, a Russian immigrant in the United States, Georges de Bothezat, built one of the 

largest helicopters in history. This machine was a quad-rotor with each of the rotors placed at the 

ends of a cross structure of intersected beams. Regarding control, the device used collective, 

differential collective and cyclic pitch variations, and the blade pitch design was inspired by Boris 

Yuryev’s configuration. At the same time, Etienne Oehmichen from France built a quad-rotor 

machine called Oehmichen No. 2, like Bothezat’s, but with a few additional rotors for control and 

propulsion. In 1924, he made reasonable flights and his device proved perfectly maneuverability 

and stability [Leishman-06]. 

 
a) 

 
b) 

Fig. IV a) Bothezat’s aircraft, b) Oehmichen No. 2. 

Once aerial vehicles were being studied and developed in a more serious manner, UAVs 

started gaining more focus and during World War II the development was initiated once again. 

The next attempts started in 1930, when the United States Navy began experimenting with radio-

controlled aircrafts, resulting in the Curtiss N2C-2 drone by 1937. Reginald Denny, during World 

War II in 1941, created the first remote-controlled aircraft, the Radioplane OQ-2. This was the 

first mass-produced UAV, which was a breakthrough in manufacturing and supply for drones in 
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the militia [O'Donnell-17]. 

It was not until the 1970s that some poor developments were done, and others abandoned 

due to the time limitations for constructions. Some of them were Lockheed Aquila, the MBLE 

Epervier, and the Boeing Gull HALE UAS. Another vehicle developed in that period was the 

Westland Wisp, which was a vertical take-off UAV (VTUAV) designed by the United Kingdom. 

This was one of the first devices adopting the multi-rotor configuration that solved the problems 

of launch and recovery. 

In 1973, Israel developed the Mastiff UAV and the IAA Scout, and later, in 1982 the Israeli 

Air Force used this technology over the Syrian Air Force. Later, the United States created the 

Pioneer UAV Program to fill the gap in the need for inexpensive and unmanned aircraft for 

operations. In 1986, the United States in joint with Israel created the RQ2 Pioneer, which was a 

mid-size reconnaissance aircraft. The previous designs were streamlined form factor vehicles; 

nevertheless, VTOL devices were also developed in the 1980s, being the Canadair CL-227 

VTUAV Sentinel one of them. However, after several phases, the aircraft suffered numerous 

modifications, adopting a streamlined form factor again. Later, the design was reverted to VTOL 

with the CL-327. 

In more recent progress, in 1990s, miniature and micro UAVs were introduced, and GPS 

and satellite communications freed the UAV limitations of operating within radio tracking range 

or relying on inaccurate onboard navigation systems. Digital flight control systems were designed 

and enabled the UAVs to operate within greater ranges using positional accuracy. 

In the upcoming years, drones are proposed to increase their capabilities by improving their 

efficiency and addressing numerous issues, in order to increase their use for civilian tasks such as 

medicine and package delivery, inspection and maintenance for energy plant facilities, and even 

first aid lifesavers during emergencies [Strickland-18], [CFA-18]. 

Types of Multi-Rotors 

The types of developed multi-rotor UAVs are numerous. The classification used in this 

work is based on its rotor configuration, populsion abilities and added capabilities, having two 

different groups that are defined in the following paragraphs. 
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Vertical Take-Off and Landing (VTOL) Configuration 

This class is also known as rotary-wing UAV or rotorcraft UAV and its advantages are 

hovering capability and high maneuverability, features that are useful in many robotic missions, 

especially in civilian applications. Under this category, different configurations are found like the 

tail rotor, co-axial rotor, tandem rotors, or multi-rotors [Austin-10]. 

Single Rotor 

In this configuration, the weight is counteracted by a small, side-thrusting, tail rotor that 

typically adds about a further 10% onto the main rotor power demands. One of the disadvantages 

of this aircraft is that it is extremely asymmetric in all planes, and that adds more complication and 

complexity to the flight control algorithms. Also important is to mention that the tail rotor is 

relatively fragile and vulnerable to striking ground objects. Nevertheless, this is configuration is 

the most popular by the VTOL UAV manufacturers. 

 

Fig. V Types of VTOL aircrafts 

Tandem Rotor 

Two small rotors are actuating in this configuration, and even if this sub-type is not the 

most appropriate for UAVs, the configuration is more symmetric in control than the single rotor 

and more power efficient. Its small payload volume does not require a long fuselage so that the 

rotors must be mounted on extended pylons, which is not structurally efficient. 
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Co-Axial Rotor 

This configuration is not generally popular due to its greater height, compared to the other 

VTOL configurations. Nevertheless, its advantages include almost perfect aerodynamic symmetry, 

compactness with not vulnerable tail-rotor, power efficiency and versatility for providing 

alternative body designs for different uses, but each using the same power unit, transmission, and 

control sub-systems. Therefore, the control system is not more complex than the one in the typical 

HTOL aircraft. In addition, its response to air turbulence is the lowest from all the VTOL 

configurations, being zero in most of the cases. However, design limitations may modify this 

advantage. 

Compared to the single rotor, testing measurements proved that under the same 

environment and similar situations, the co-axial rotors use less power in hover flight due to the 

less power wasted through swirl energy being left in the rotor downwash. Moreover, the shaft 

between the two rotors contributes to add extra drag in forwarding flight, and this is regarding the 

elimination of the tail rotor drag. 

Multi-Rotor 

Mostly implemented in mini or micro sizes, the goal of this configuration is to remove the 

complication of rotor-head control systems, applying both cyclic and collective pitch changes to 

achieve aircraft control. The main control idea is to have rotor blades all fixed in pitch and to 

achieve thrust changes on each rotor by changing its speed of rotation. The latter is possible by 

having an individually driven electric motor mounted at the rotor head. Thereby, for moving 

forward, the rotational speed of the rear rotors would be increased to rotate the aircraft nose down 

and translate the resulting thrust vector forward. During this operation, the total thrust must be 

increased to prevent the loss of height, and once in forwarding flight, the rotor speeds must be 

harmonized again. 

Regarding the control algorithm, because of the challenging aerodynamic interference 

between rotors, it is extremely complicated. And the latter not being enough, the configuration is 

naturally more gust-sensitive than the other VTOL aircraft and its control response is expected to 

be slower, meaning that it is difficult to achieve control under laboratory conditions, and more 
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problematic under urban operations.  

Hybrid Configuration 

Helicopters have been shown to be the most efficient hover flight aircraft but they are speed 

limited. For achieving a long-range mission, it is necessary to have the aircraft cruise at a higher 

speed for having higher speeds and acceptable response time to target. For that reason, the 

combining of the ability of VTOL and HTOL in a single device is required. Regarding that, various 

attempts of devices have been made for that necessity. 

Convertible Rotor Aircraft  

In this category, the rotors are mounted onto each tip of the main wing of an HTOL, and 

they are positioned in horizontal for vertical flight and tilted 90 degrees for becoming propellers 

for cruise flight. The wing fixed horizontally is still placed in the fuselage. One alternative of this 

is to have the wing, the motor and the rotors to be constructed as an assembly, and that complete 

arrangement to be tilted on the upper fuselage. That is well known as tilt-wing. 

Tilting the engines in either tilt-rotor or tilt-wing configuration requires the engines to be 

operable over a range of 90 degrees, at least, leading with some complications for the fuel and oil 

delivery to the system, but that complication is more acceptable than replacing the engine to a 

fixed location and transfer the drive from there to the tilted-rotor system. 

Both configurations have been developed successfully, however, the tilt-rotor 

configuration is more efficient during hover while the others during cruise flight but having a 

reduced payload capability. 

 

Fig. VI Types of hybrid aircraft 



INTRODUCTION 

38 

Tilt-Wing-Body Aircraft 

The aircraft under this classification is all rotor convertible, which implies critical 

aerodynamic design for the transition from hover flight to cruise flight. The problem there lies in 

the ability to maintain the airflow over the wing and achieving attitude control, especially for 

longitudinal pitch angle. For addressing that problem, helicopter rotors are commonly used instead 

of propellers for having the cyclic pitch that provides pitch and yaw control. The latter problem 

becomes more difficult when transitioning from cruise flight to hover and landing. 

Ducted Fan Aircraft  

This aircraft encloses the thrust mechanism within the duct. The fans used for propulsion 

have a constrained diameter and high solidity, composed of two contra-rotating elements for 

minimizing the body rotation caused by the torque produced. Collective and cyclic pitch control 

are required on the blades to get thrust resulted by changes in fan rotational speed, and for solving 

the body tilting problem, tilt vanes are used. 

The main problem of this kind of vehicles is the attitude control as the vanes may lack of 

enough force or response to ensure a controllable system. 

Jet-Life Aircraft 

Vehicles under this configuration are suspended in hover flight on one or more high-speed 

jets. Other smaller jets are needed for roll and pitch attitude control. For transitioning from hover 

to forward flight, the jets are rotated backward to provide the element of forward thrust but 

retaining a vertical component until the fixed-wing develops sufficient lift to sustain the aircraft, 

at which the jets are effectively horizontal to provide propulsive force only. 

Since the system is very expensive in the engine and fuel consumption inefficient, this 

aircraft is only suitable for high-speed missions and when vertical take-off and landing is required 

[Nonami-10].  



INTRODUCTION 

 39 

Problem Definition 

Multi-rotor UAV control algorithms are a widely researched topic, nevertheless the 

contributions are commonly provided as mathematical verifications with simulation test cases. The 

need of functional hardware implementation with an embedded software system is crucial for 

verification of control schemes. The previous can provide a hardware test-bench for algorithms 

validation. Furthermore, commercial devices not always provide the electrical and mechanical 

characteristics required to model the system, which creates a conflict when simulating and 

manipulating the model since variable unknowns are not desired in the model. For improving the 

execution, it has been detected that no motor speed feedback is normally received from the control 

schemes found in bibliography. That creates the problem of not knowing the operation status from 

the actuators and may cause situations that the flight control cannot solve. Aiming to address this 

problem, some possible solutions have been found in the bibliography, as the actuator rotation 

frequency reading by optical-reflective sensors [González-Hernández-12], [Niekerk-15], [Adamo-

17], the rotor forces measurement for calculating thrust and local aerodynamics in order to inferred 

estimate velocity [Davis-17]. The actuator rotator frequency measurement requires high-speed 

sensing of the sensor output, and the subsequent conversion to frequency, for that, at least, analog-

to-digital converters are needed, and a time measurement routine is required for knowing the time-

lapse between captures of the toggling. On the other hand, velocity estimation by force sensing 

requires expensive sensing devices that need to be attached to each rotor, and they provide low 

sensitive tracking due to force cancelation by the rotor counterpart, requiring fusing along with the 

inertial measurement unit (IMU) in the aircraft. 

As listed previously, the solutions found are reliable, but they require high computation, 

intrinsic dynamics and numerous and expensive devices attached to each rotor in the multi-rotor 

configuration. 

Solution Proposal 

The present dissertation proposes a methodology for obtaining the dynamical parameters 

of a multi-rotor. These are required for the control design procedure and to simulate the closed-

loop system to validate the controller’s performance. The overall system provides a baseline for 
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future control algorithms implementations or new research approaches. In addition to that, the 

hardware and software are integrated aiming to execute the control algorithms in a real platform 

for verification of the controller. Moreover, this research proposes the addition of a motor control 

loop between the output of the flight controller and the brushless actuators. That methodology 

gives the ability to know the status of the motor by knowing the actual motor speed produced. To 

effectively design the actuator control loop, a model for the actuator must be obtained. This is 

proposed by means of transfer functions by defining the applied voltage as the input and the 

angular speed velocity as the output of the motor. 

In order to achieve the previous purposes, the proposal considers real-time current and 

speed sensors, which are obtained by Hall-effect sensors that provide an analog output for the 

system to be converted into a current value and by optical reflective sensors [González-Hernández-

12] timely tracked for calculating the angular velocity of the actuators. That information feeds the 

system in a double cycle control loop that maneuvers the vehicle. 

This doctoral dissertation is organized as follows: 

Chapter 1 introduces the theoretical foundations of the thesis. This includes the dynamical 

modelling of the vehicle and its actuators, the control schemes used in previous works, the 

embedded implementations of controllers for multi-rotors and their flight modes. Chapter 2 

presents the obtention of the dynamical model of the multi-rotor investigated in this work. Also, it 

describes the procedure utilized to characterize the parameters of the vehicle and its actuators. 

Moreover, the chapter presents the open loop simulations of the resulting model as a validation of 

its correctness. Chapter 3 describes the control design procedure for the vehicle and for the 

actuators, and the closed-loop system simulations are depicted in Chapter 4. It, also, includes the 

correspondent analysis and discussion on the obtained results. The methodology of the 

implementation of the proposed controller on an embedded system is presented in Chapter 5. In 

addition, the real time experiments are described, and their results are presented and analyzed. The 

conclusions of the overall developed work are outlined in Chapter 6 and the related future work is 

depicted. Finally, this thesis includes 6 appendices. Appendix A shows the internal research reports 

generated during the doctoral studies, and Appendix B lists the publications related with the 

research developed during the same period. Appendix C describes the code used to simulate the 

vehicle and the designed controllers in Matlab. The rest of the appendices describes the code 

generated for the embedded implementation of the proposed controllers for the multi-rotor. 
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1. Theoretical Framework on Multi-Rotors 

Nowadays, multi-rotor UAVs are considered one of the best performing aerial platforms to 

be used for research, development, and daily use applications. This popularity is due because of 

their hovering capacity, stabilization capabilities, as well as their reduced mechanical complexity 

and usually high payload. Most of the late researches focus their efforts in achieving autonomous 

flight, however, flying autonomy is not a straightforward task if the controller of the vehicle is not 

considered. While there are numerous control schemes that do not require the knowledge of the 

vehicle dynamics for maneuvering the aircraft, such as PID, neural networks or fuzzy logic, the 

lack of known parameters makes them more sensitive to faults and errors in the system, or even 

susceptible to disturbances. 

In this chapter the coverage of the multi-rotor body and motor mathematical model analysis 

is addressed, with an initial approach to a four-rotor configuration, that can be later easily scaled 

to another multi-rotor geometry by using the thrust and drag forces combinations matrix 𝑀. 

Moreover, an initial approach analysis of the multiple existing control algorithms is developed to 

exemplify the current state of the art. 

1.1. Mathematical Model of the Vehicle 

The body frame of the multi-rotor UAV is normally a symmetric shape structure that can 

be translated from a point E to a point B, which are usually defined as the origins of the earth fixed 

frame 𝐸𝐸 and the body fixed frame 𝐸𝐵, respectively.  

 

Fig. 1.1 Relative attitude and orientation of the UAV with respect to the fixed frame. 
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In addition, the attitude of the vehicle is equivalent to the relative orientation of frame 𝐸𝐵 

with respect to the inertial frame 𝐸𝐸. These geometrical relationships are depicted in Fig. 1.1. 

With that consideration, the spatial orientation of the body-fixed frame 𝐸𝐵 can be expressed 

in the earth-fixed reference frame EE by a rotation matrix 𝑅 and 𝑃 from {𝐵} to {𝐸} with the 

following transformation and rotation velocity matrices [Luque-Vega-14] 

 𝑅𝐵
𝐸 = [

cos 𝜃 cos 𝜓 sin𝜙 sin 𝜃 cos 𝜓 − cos 𝜙 sin𝜓 sin𝜙 sin𝜓 + cos 𝜙 sin 𝜃 cos 𝜓
cos 𝜃 sin𝜓 cos 𝜙 cos𝜓 + sin𝜙 sin 𝜃 sin𝜓 cos 𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos 𝜓

− sin 𝜃 sin𝜙 cos 𝜃 cos 𝜙 cos 𝜃
] (1-1) 

 𝑃𝐵
𝐸 = [

1 0 −sin 𝜃
0 cos𝜙 sin𝜙 cos𝜃
0 −sin 𝜙 cos𝜙 cos 𝜃

] (1-2) 

where 𝜙, 𝜃 and 𝜓 are the Euler angles. 

Analyzing the dynamics involved in the physical device, the mathematical model can be 

derived according to Newton’s law of motion like an ordinary aircraft. Therefore, the dynamic 

model of the multi-rotor, with x, y, and z as linear movements expressed as a result of roll (𝜙) or 

pitch (𝜃) rotations, can be obtained. Since the same motion laws apply for the different multi-rotor 

configurations, non-linear model design and its control can be applied to any multi-rotor 

configuration as they are obtained using the transformation and rotation matrices (1-1) and (1-2). 

The model is defined as follows [Arellano-Muro-13], [Bouabdallah-05], [Surya-16] 

 

𝜙̈ = 𝜃̇𝜓̇ (
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
) −

𝐽𝑟
𝐼𝑥

𝜃̇Ω +
𝑙

𝐼𝑥
𝑈2

𝜃̈ = 𝜙̇𝜓̇ (
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
) +

𝐽𝑟
𝐼𝑦

𝜙̇Ω +
𝑙

𝐼𝑦
𝑈3

𝜓̈ = 𝜙̇𝜃̇ (
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
) +

𝑙

𝐼𝑧
𝑈4

𝑧̈ = −𝑔 + (cos𝜙 cos 𝜃) (
1

𝑚
)𝑈1

𝑥̈ = (cos𝜙 sin 𝜃 cos𝜓 + sin 𝜙 sin 𝜓) (
1

𝑚
)𝑈1

𝑦̈ = (cos𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓) (
1

𝑚
)𝑈1

 (1-3) 

where 𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 are the moments of inertia of the multi-rotor frame body, 𝐽𝑟 is the total inertia 

of the multi-rotor, Ω is the total angular speed combination generated by the motors, 𝜙, 𝜃, and 𝜓 

are the roll, pitch and yaw angles, 𝑔 is the gravity acceleration, 𝑚 is the total mass of the aircraft, 

𝑥, 𝑦, and 𝑧 are the translational linear movements of the vehicle, and 𝑈1, 𝑈2, 𝑈3, and 𝑈4 the control 

signals for the aircraft. 
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In order to obtain a state space model for system (1-3), the state vector system can be 

defined as follows 

 𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑥10

𝑥11

𝑥12]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜙

𝜙̇
𝜃
𝜃̇
𝜓

𝜓̇
𝑧
𝑧̇
𝑥
𝑥̇
𝑦
𝑦̇]
 
 
 
 
 
 
 
 
 
 
 
 

. (1-4) 

It can be observed that x, y, and z, which corresponds to the linear motion variables of the 

system, are directly affected by the control term 𝑈1. The gyroscopic variables 𝜙, 𝜃 and 𝜓 are the 

results of the rigid rotation in space, dependent on 𝑈2, 𝑈3 and 𝑈4, respectively. 

The relation between the control terms 𝑈1, 𝑈2, 𝑈3 and 𝑈4, and the angular velocities 

𝜔1, … , 𝜔𝑛 of the propellers of the multi-rotor depends on the configuration of the UAV, with 𝑛 as 

the number of rotors of the vehicle. This relation is mathematically formalized with the following 

equation 

 𝑈 = 𝑀Ω2 (1-5) 

where 𝑀 is the matrix of forces and moments generated by the motors. Table 1.1 shows some 

configurations considered in the literature or in commercial versions of quad-rotors and hexa-

rotors, with their corresponding matrix of forces 𝑀 and the arrangement of their motors. The 

vehicle’s  parameters related to matrix 𝑀 are: 𝐶𝑇 is the thrust coefficient, 𝐶𝐷 is the drag coefficient, 

𝜌 is the air density, 𝐷 is the propeller diameter, and 𝐴 is the cross-section of the movement of the 

vehicle. 

It is important to mention that each configuration is constituted of a set of rotors with a 

specific direction of rotation. A subset of the motors must rotate in clockwise (CW) (+) direction 

and the rest in counterclockwise (CCW) (−) direction to nullify the undesired overall gyroscopic 

moment on the vehicle, generated by the motors.  
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TABLE 1.1. MULTI-ROTORS MATRIX OF CONFIGURATIONS WITH MOTOR COMBINATIONS 

FOR QUAD/HEXA-ROTOR. 

Diagram Matrix of forces and motor configuration 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏
0 𝑏 0 −𝑏
𝑏 0 −𝑏 0
𝑑 −𝑑 𝑑 −𝑑

] ,
𝑏 = 𝐶𝑇𝜌𝐷4

𝑑 = 𝐶𝐷𝜌𝐴 2⁄
 

Ω = −𝜔1 + 𝜔2−𝜔3 + 𝜔4       [Bouabdallah-05] 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏
𝑝 −𝑝 −𝑝 𝑝
𝑝 −𝑝 𝑝 −𝑝
𝑑 𝑑 −𝑑 −𝑑

] ,

𝑏 = 𝐶𝑇𝜌𝐷4

𝑝 = 𝑏sin(45°) = 𝑏√2 2⁄

𝑑 = 𝐶𝐷𝜌𝐴 2⁄

   

Ω = −𝜔1 − 𝜔2 + 𝜔3 + 𝜔4                  [ADT-16a] 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏
𝑝 −𝑝 −𝑝 𝑝
𝑞 −𝑞 𝑞 −𝑞
𝑑 𝑑 −𝑑 −𝑑

] ,

𝑏 = 𝐶𝑇𝜌𝐷4

𝑝 = 𝑏sin(52.56°)

𝑞 = 𝑏sin(37.44°)

𝑑 = 𝐶𝐷𝜌𝐴 2⁄

  

Ω = −𝜔1 − 𝜔2 + 𝜔3 + 𝜔4 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏
0 𝑝 𝑝 0 −𝑝 −𝑝
𝑏 𝑞 −𝑞 −𝑏 −𝑞 𝑞

−𝑑 𝑑 −𝑑 𝑑 −𝑑 𝑑

] ,

𝑏 = 𝐶𝑇𝜌𝐷4

𝑝 = 𝑏sin(60°) = 𝑏√3 2⁄

𝑞 = 𝑏sin(30°) = 𝑏 2⁄

𝑑 = 𝐶𝐷𝜌𝐴 2⁄

 

Ω = 𝜔1 − 𝜔2 + 𝜔3 − 𝜔4 + 𝜔5 − 𝜔6  [Baránek-12] 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏
0 −𝑝 −𝑝 0 𝑝 𝑝
𝑏 𝑞 −𝑞 −𝑏 −𝑞 𝑞
𝑑 −𝑑 𝑑 −𝑑 𝑑 −𝑑

] ,

𝑏 = 𝐶𝑇𝜌𝐷4

𝑝 = 𝑏sin(60°) = 𝑏√3 2⁄

𝑞 = 𝑏sin(30°) = 𝑏 2⁄

𝑑 = 𝐶𝐷𝜌𝐴 2⁄

   

Ω = −𝜔1 + 𝜔2 − 𝜔3 + 𝜔4 − 𝜔5 + 𝜔6 [Arellano-Muro-13] 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏
𝑏 −𝑏 −𝑞 𝑞 𝑞 −𝑞
0 0 𝑝 −𝑝 𝑝 −𝑝

−𝑑 𝑑 −𝑑 𝑑 𝑑 −𝑑

] ,

𝑏 = 𝐶𝑇𝜌𝐷4

𝑝 = 𝑏sin(60°) = 𝑏√3 2⁄

𝑞 = 𝑏sin(30°) = 𝑏 2⁄

𝑑 = 𝐶𝐷𝜌𝐴 2⁄

    

Ω = 𝜔1 − 𝜔2 + 𝜔3 − 𝜔4 − 𝜔5 + 𝜔6         [ADT-16a] 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏
𝑞 𝑏 𝑞 −𝑞 −𝑏 −𝑞
𝑝 0 −𝑝 −𝑝 0 𝑝
𝑑 −𝑑 𝑑 −𝑑 𝑑 −𝑑

] ,

𝑏 = 𝐶𝑇𝜌𝐷4

𝑝 = 𝑏sin(60°) = 𝑏√3 2⁄

𝑞 = 𝑏sin(30°) = 𝑏 2⁄

𝑑 = 𝐶𝐷𝜌𝐴 2⁄

  

Ω = −𝜔1 + 𝜔2 − 𝜔3 + 𝜔4 − 𝜔5 + 𝜔6      [Surya-16] 
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The sign of each coefficient of 𝑀 is obtained from the analysis of the CW and CCW motor 

rotations when placed at each of the coordinate axis. The analysis depends on the orientation 

defined for the Cartesian plane in the UAV, and on the IMU sensor orientation in the controller 

board. For instance, the three linear movements and three rotations of the aircraft can be obtained 

following Fig. 1.2. Roll is generated by increasing the speed in motors 1 and 3 and decreasing it 

in 2 and 4, or vice versa, to get the other direction. Pitch is obtained by increasing motor speed in 

2 and 3 and decreasing it in 1 and 4, or vice versa, to get the other direction. Yaw is obtained by 

increasing the speed in 1 and 2 and decreasing it in 3 and 4, or vice versa. It is worth to note that 

this motion generation corresponds exclusively to the motor and frame configuration shown in the 

figure. 

 

Fig. 1.2 Linear and rotational motion generation for a quad-rotor. 

From a control design point of view, equation (1-5) can be used to relate the output of the 

actuators (𝜔1, … , 𝜔𝑛) to the inputs of the vehicle (𝑈1, 𝑈2, 𝑈3 and 𝑈4). Hence, to determine the 

references for the actuators, the term Ω must be solved from which results of the form 

 Ω = √𝑀−1𝑈. (1-6) 

For the cases where matrix 𝑀 is not square, it is impossible to obtain a unique solution for 

the system as it is composed of fewer unknowns than equations. Nonetheless, a workaround to 

obtain a suitable solution can be implemented by means of the Moore-Penrose pseudo-inverse. 

Considering a non-square m (rows) by n (columns) matrix, and if 𝑚 ≥ 𝑛, then 𝑀+ = (𝑀𝑇𝑀)−1𝑀𝑇 

satisfies the pseudo-inverse, if 𝑚 ≤ 𝑛, then 𝑀+ = 𝑀𝑇(𝑀𝑀𝑇)−1 satisfies the pseudo-inverse 

[MacAusland-14]. 

In order to obtain a more concise expression for the dynamical model of the system, the 

following equalities are defined 
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 𝑎1 =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
, 𝑎2 = −

𝐽𝑟
𝐼𝑥

, 𝑎3 =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
, 𝑎4 =

𝐽𝑟
𝐼𝑦

, 𝑎5 =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
 (1-7) 

 𝑏2 =
𝑙

𝐼𝑥
, 𝑏4 =

𝑙

𝐼𝑦
, 𝑏6 =

𝑙

𝐼𝑧
, 𝑏8 = (cos𝑥1 cos 𝑥3)(

1

𝑚
) (1-8) 

 𝑓2 = 𝑥4𝑥6𝑎1 + 𝑥4𝑎2Ω, 𝑓4 = 𝑥2𝑥6𝑎3 + 𝑥2𝑎4Ω, 𝑓6 = 𝑥4𝑥2𝑎5, 𝑓8 = −𝑔 (1-9) 

 𝑢𝑥 = (cos 𝑥1 sin 𝑥3 cos 𝑥5 + sin 𝑥1 sin 𝑥5)

𝑢𝑦 = (cos 𝑥1 sin 𝑥3 sin 𝑥5 − sin 𝑥1 cos 𝑥5)
 (1-10) 

which, in combination with (1-3) and (1-4), results in a simplified state-space model given by 

[Bouabdallah-05] 

 𝑋̇ = 𝑓(𝑋,𝑈) =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑥2

𝑓2 + 𝑏2𝑈2

𝑥4

𝑓4 + 𝑏4𝑈3

𝑥6

𝑓6 + 𝑏6𝑈4

𝑥8

𝑓8 + 𝑏8𝑈1

𝑥10

𝑢𝑥(
1

𝑚
)𝑈1

𝑥12

𝑢𝑦(
1

𝑚
)𝑈1 ]

 
 
 
 
 
 
 
 
 
 
 
 

. (1-11) 

At this point, a complete dynamical system for the vehicle is defined and the controller 

design process can be developed. Depending on the flight mode to execute in the vehicle, the 

variables to control are selected. In this work, trajectory and stabilize flight mode controllers are 

deployed using different control approaches. [Fan-17], [Duc-15]. 

1.2. Dynamical Model of the Actuators 

The motors attached to the aircraft are brushless direct current (BLDC) electric motors 

driven by electronic speed controllers (ESC). This kind of motors come in one, two, or three-phase 

configuration, being the latter the most common version [Keeping-13] and the one used during the 

development of the presented work. In order to actuate these motors, the ESC generates 

commutations to sequentially energize the stator coils, generating a rotating electric field that 

interacts with 𝑁 pairs of magnet pairs mounted on the rotor. The result is a torque that drags the 

rotor around with the electric field, generating the angular velocity of the rotor. Thus, N electrical 

revolutions equate to one mechanical revolution.  
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In the case of the three-phase motors, three Hall-effect sensors are commonly embedded in 

the stator to indicate the relative positions of stator and rotor to the controller, so it can energize 

the windings in the correct sequence and at the correct time. The Hall-effect sensors are usually 

mounted on the non-driving end of the unit, as shown in Fig. 1.3. 

 

Fig. 1.3 Brushless DC motor components diagram. 

All electric motors generate a voltage potential due to the movement of the windings 

through the associated magnetic field. This potential is known as an electromotive force (EMF) 

and it gives rise to a current in the windings with a magnetic field that opposes the original change 

in the magnetic flux; in other words, EMF tends to resist the rotation of the motor and is therefore 

referred to as back EMF [Keeping-13]. By monitoring the back EMF or the Hall sensors, and by 

using a microcontroller for that purpose, the relative positions of the stator and rotor can be 

determined. However, the motors being used for this thesis do not have Hall sensors, instead, 

encoders with reflective sensors are sampled altogether with current sensor obtain the rotor speed 

and the power that each ESC consumes. That said, the next step in the modeling is to determine 

the DC-motor equations that relate the angular speed of the rotor, voltage and current in the stator 

as follows ([Bouabdallah-05], [Utkin-99] and [Kumpanya-15]) 

 𝑉𝑎(𝑡) = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑚

𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑉𝑒(𝑡) (1-12) 

 𝜏𝑚(𝑡) = 𝐽𝑚
𝑑𝜔𝑚(𝑡)

𝑑𝑡
+ 𝐵𝑚𝜔𝑚(𝑡) + 𝜏𝑙(𝑡) (1-13) 

 𝜏𝑚(𝑡) = 𝑘𝜏𝑖𝑎(𝑡) (1-14) 

 𝑉𝑒(𝑡) = 𝑘𝑒𝜔𝑚(𝑡) (1-15) 

where 𝑉𝑎(𝑡) is armature voltage, 𝑅𝑎 is the motor armature internal resistance, 𝑖𝑎(𝑡) is the motor 

armature current, 𝐿𝑚 is the motor inductance, 𝑉𝑒(𝑡) is the back EMF voltage, 𝜏𝑚(𝑡) is the motor 
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torque, 𝐽𝑚 is the moment of inertia seen by the motor, 𝛣𝑚 is the coefficient of viscous friction, 

𝜔𝑚(𝑡) is the motor angular speed, 𝜏𝑙 is the motor load, 𝑘𝜏 is the torque constant and 𝑘𝑒 is the back 

EMF constant. 

To simplify the process, the equations (1-12) and (1-13) are rewritten as follows in order 

to solve the current and angular speed derivatives 

 𝐿𝑚

𝑑𝑖(𝑡)

𝑑𝑡
= 𝑉𝑎(𝑡) − 𝑅𝑎𝑖𝑎(𝑡) − 𝑘𝑒𝜔𝑚(𝑡) (1-16) 

 𝐽𝑚
𝑑𝜔𝑚(𝑡)

𝑑𝑡
= 𝑘𝜏𝑖𝑎(𝑡) − 𝐵𝑚𝜔𝑚(𝑡) − 𝜏𝑙(𝑡). (1-17) 

Previously it was mentioned that the BLDC motors used in this dissertation are three-phase 

actuators, but aiming to simplify the computation of the math and the model, an electrical 

approximation from a three-phase to a direct current (DC) motor model is proposed, as shown in 

Fig. 1.4. It is important to note that only the current and torque mathematical models are being 

considered, for the simplification into a DC motor model that this work is pursuing. 

 

Fig. 1.4 Three-phase BLDC to single-phase BLDC brushless motor electric diagram. 

1.3. Flight Modes for Multi-Rotors 

The flight mode of a UAV determines the way that the embedded controller of the vehicle 

interprets the commands received from user by means of a remote control. It also determines the 

structure of the controller as the flight mode defines which variables of the vehicle will be 

controlled and monitored. The platform and software that is being used in the development of this 

work is the Pixhawk and the ArduPilot project, which supports a number of 20 possible flight 

modes that are listed in Table 1.2 [ADT-18b]. For the purpose of this dissertation, two flight modes 

are considered: the stabilize flight mode which controls the attitude and altitude of the multi-rotor, 
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and the trajectory tracking flight mode which controls the position and yaw angle of the aircraft. 

TABLE 1.2. MULTI-ROTOR FLIGHT MODES SUPPORTED BY THE PIXHAWK AND 

ARDUPILOT PROJECT. 

Flight mode Altitude control Position control GPS 

dependency 

Description 

Acrobatic Manual control Manual control No Holds attitude, no self-level. 

Altitude-Hold Automated 
stabilize control 

Manual control 
with limits and 

self-level 

No Holds altitude and self-levels the roll 
and pitch angle. 

Auto Automatic control Automatic control Yes Executes pre-defined mission 

Auto-Tune Automated 

stabilize control 

Automatic control Yes Automated pitch and tilt procedure to 

improve control gains applied in the 
control algorithm. 

Brake Automated 
stabilize control 

Automatic control Yes Brings copter to an immediate stop. 

Circle Automated 
stabilize control 

Automatic control Yes Automatically circles a point in front of 
the vehicle. 

Drift Manual control Manual control 

with limits and 
self-level 

Yes Self-levels the roll and pitch axis, but 

coordinates yaw with roll like a plane. 

Flip Automatic control Automatic control No Rises and completes an automated flip. 

Follow Automated 

stabilize control 

Automatic control Yes Follows a GPS on the ground. 

Guided Automatic control Automatic control Yes Navigates to single points commanded 

by the ground control station (GCS). 

Land Automatic control Automated 
stabilize control 

No Reduces altitude to ground level, 
attempts to go straight down. 

Loiter Automated 
stabilize control 

Automated 
stabilize control 

Yes Holds altitude and position, uses GPS 
for movements. 

Position-Hold Automated 
stabilize control 

Manual control 
with limits and 

self-level 

Yes Holds altitude and position, uses GPS 
for movements, but manual roll and 

pitch when the RC sticks are not 
centered. 

Return to 
Launch (RTL) 

Automatic control Automatic control Yes Returns to the take-off location and may 
also include the landing feature. 

Simple/Super 

Simple 

N/A N/A Yes An add-on to flight modes to use the 

user’s view instead of yaw orientation. 

Smart RTL Automatic control Automatic control Yes RTL, but traces path to get the home 

location. 

Stabilize Manual control Manual control 

with limits and 
self-level 

No Self-levels the roll and pitch axis. 

Sport Automated 
stabilize control 

Automated 
stabilize control 

No Alt-hold, but holds pitch and roll when 
the RC sticks are centered 

Throw Automatic control Automatic control Yes Holds position after a throwing take-off. 

1.4. Control Schemes 

As mentioned in the previous sub-section, the flight mode chosen for the aerial vehicle 

defines the control scheme that must be applied to maneuver the vehicle. In that sense, several 
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control algorithms as linear quadratic regulator/Gaussian (LQR/LQG), adaptive control, robust 

control, optimal control, feedback linearization, and intelligent control (fuzzy logic and artificial 

intelligence) have been applied to multi-rotor models to achieve stabilization and trajectory 

tracking. All these can be categorized as linear or non-linear, each of them having advantages and 

disadvantages for controlling a multi-rotor. Next, the characteristics of proportional integral 

derivative (PID) control, the backstepping technique, and sliding mode controllers are presented 

as they are commonly used in UAV devices [Zulu-14] and will be used throughout the 

development of the presented work. 

1.4.1 Proportional-Integral-Derivative (PID) 

This is the one of the most common controllers used in the industry due to its advantage of 

having only three control gains that can be easily adjusted, and due to the relatively good 

robustness provided. Nevertheless, the multi-rotor mathematical model implies non-linearities and 

an imprecise nature due to un-modeled dynamics, causing the PID to have performance limitations. 

Moreover, the tuning could present some challenges as it must be conducted experimentally. 

Due to its simplicity, this controller does not guarantee optimal control in many situations. 

One of the reasons is that it is not strictly necessary to know the mathematical model of the plant 

as it has demonstrated that can provide satisfactory control under limited circumstances. 

PIDs are based on three gains applied to the error, and these are the proportional gain (𝐾𝑃), 

the integral (𝐾𝐼), and the derivative (𝐾𝐷). The error calculation is the basis to control the UAV, as 

shown in Fig. 3.1. Such error is the difference between the desired value (reference) for the 

controlled the variable and its actual measured value (attitude or position). For example, when 

controlling the roll angle, the desired reference is defined and then the measured value in the 

accelerometer sensor is subtracted to get the error signal that feeds the PID controller. The error is 

computed by the control scheme obtaining control signals that are later translated into PWMs to 

inject into the ESC devices to actuate the motors. The traditional PID controller parallel 

implementation is defined by 

 𝑈(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)
𝑡

0

𝑑𝑡 + 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
   (1-18) 

where 𝑒(𝑡) is the error variable, 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 are the proportional, integral and derivative control 
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gains, and 𝑈(𝑡) is the resulting control signal [Duc-15]. 

In order to define the values of the controller gains, tuning methods are available to provide 

a starting point for the desired behavior in the system, as the Ziegler-Nichols methods that base 

the settings in the delay time 𝐿 and the time constant 𝑇 of the step response of the system, or the 

method of defining a critical value 𝐾𝑐𝑟 where the system presents sustained oscillations and the 

period 𝑃𝑐𝑟 is obtained. Based on these values, 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 are set with well-known formulas 

[Ogata-96]. There are other multiple methods for controller tuning like the frequency response 

design or the computational optimization algorithm, but the purpose of this work is not to provide 

a detailed explanation of their functionality. 

Other approaches can be followed for obtaining the controller values, like the effects 

produced in the closed-loop system when changing each of the parameters, as shown in Table 1.3. 

The modification of each parameter is not independent, meaning that the modification of each of 

them can affect the impact of the others, and for that reason, the table should only be used as a 

reference [UM-99]. 

TABLE 1.3. PID CONTROL GAINS EFFECTS ON THE CLOSED-LOOP SYSTEM TIME 

RESPONSE. 

Control gain Rise time Overshoot Settling time Steady-state error 

𝐾𝑃  Decrease Increase Small change Decrease 

𝐾𝐼 Decrease Increase Increase Eliminate 

𝐾𝐷  Small change Decrease Decrease No change 

1.4.2 Backstepping Control 

The backstepping technique is a recursive Lyapunov-based feedback control scheme and 

the idea behind it is to design a controller recursively by considering some state variables as virtual 

controls, to design intermediate control laws that guarantee the exponential convergence of the 

error to zero, and the global stabilization of the system [Wang-09]. This is achieved by breaking 

down the controller into steps and progressively stabilizing each subsystem.  

The advantages of this algorithm are the convergence speed that does not require a lot of 

computational resources, and disturbances handling, but not being one of the most robust 

methodologies. For increasing robustness, an integrator is commonly added, and that eliminates 

the steady-state errors of the system, reduces the response time, and restrain overshoot of control 
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parameters. Another option is to include a discontinuous term in the control signal based on sliding 

mode control or another variable structure control approach. 

1.4.3 Sliding Mode Control (SMC) 

This is a non-linear control algorithm that works by applying discontinuous control signals 

to the system to command it to slide along a prescribed surface of the state plane of the system. 

One of its main advantages is that it does not simplify the dynamics through linearization and 

offers good tracking capabilities. It has proved robustness by being tested with full-actuated and 

underactuated systems, showing good stability. The disadvantages of this method are the 

oscillations of finite frequency, commonly known as chattering, that are present when trying to 

reach the zero error due to the discontinuous nature of the control law. 

The term sliding mode control first appeared in the context of relay systems, and the reason 

is that the control as a function of the system state switches at high frequency; this motion is called 

sliding mode. This type of controller played and is still playing an exceptional role in theoretical 

and practical applications due to its order reduction property and its low sensitivity to disturbances 

and plant parameter variations, which makes it an effective tool for controlling complex high-order 

dynamic plants. [Utkin-99] 

For instance, considers the following nonlinear system 

 𝑥̇ = 𝑓(𝑥) + 𝑢,      𝑦 = 𝐶𝑥 (1-19) 

with 𝑓(𝑥) as a manifold of the states vector 𝑥 which is bounded by |𝑓(𝑥)| < 𝑓0 = 𝑐, where 𝑐 is a 

constant; 𝑦 is the output of the system defined as a linear combination of the states given by the 

output matrix 𝐶; and 𝑢 is the control term of the system. If the error variable is defined as 𝑒 =

𝑟(𝑡) − 𝑦 where 𝑟(𝑡) is the output reference, then, a sliding mode controller can be designed as a 

relay function of the tracking error as follows 

 𝑢 = {
𝑢0 if 𝑒 > 0

−𝑢0 if 𝑒 < 0
 or 𝑢 = 𝑢0sign(𝑒), 𝑢0 > 𝑐. (1-20) 

A graphical representation of the sign function of the error is depicted in Fig. 1.5. 

 

Fig. 1.5 Graphical representation of the sign function. 
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The values of 𝑒 and 𝑒̇ = 𝑟̇ − 𝑓(𝑥) − 𝑢0sign(𝑒) are opposite if 𝑢0 > 𝑓0 + |𝑟̇|, meaning that 

the magnitude of the error decreases at a finite rate and the error is equal to zero after the finite 

interval 𝑇 as shown in Fig. 1.6. The motion occurring at 𝑡 > 𝑇 is called sliding mode. 

 

Fig. 1.6 Error variable behavior during the sliding mode in a closed-loop system. 

For a real-life implementation, bandwidth limits in the switching device generates high 

frequency components in the closed loop behavior of the system. Also, the high frequency 

switching commands sent to the actuators could led to their premature wearing or damage. 

1.5. Control Algorithms Comparison 

Table 1.4 [Zulu-14] summarizes various algorithms discussed above when applied to multi-

rotors under the same circumstances. It is not an elaborate study of the different control options 

rather than a practical guide in accordance with each controllers' capabilities, where the legends 

values are defined as follows: 0 stands for low, 1 stands for average, and 2 means high. The 

algorithms 1 through 5 correspond to linear controllers, while the remaining to non-linear 

controllers. 

1.6. Hardware and Software for UAV’s Embedded Controller 

The main focus of this work is on the multi-rotor area, and with that aim, a list of embedded 

software and hardware solutions for the implementation of controller on these aerial vehicles is 

defined. In Table 1.5, Table 1.6, Table 1.7, Table 1.8, Table 1.9, and Table 1.10 the most common 

flight control boards and their driving firmware are listed, along with a succinct description of their 

capabilities. Notice that these lists are not definitive, and many other platforms and firmware may 

be available.  
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TABLE 1.4. COMPARISON OF MULTI-ROTOR CONTROL ALGORITHMS. 

Control algorithm Characteristics 
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1. PID 1 0 0 0 1 1 1 2 0 0 2 2 0 

2. Intelligent PID 1 0 0 2 1 1 1 1 0 0 0 1 0 

3. LQR 0 2 1 0 1 1 0 1 1 0 1 1 0 

4. LQG 0 2 2 0 1 1 0 0 2 0 1 0 0 

5. 𝐿1 0 2 2 0 1 2 2 0 1 0 0 0 0 

6. 𝐻∞ 2 1 2 0 2 0 1 0 1 1 0 0 0 

7. SMC 1 2 1 0 2 2 2 1 2 1 0 0 2 

8. FBL 1 1 0 0 2 2 2 1 1 1 0 1 2 

9. Backstepping 0 2 0 0 2 0 1 0 2 1 0 0 0 

10. Fuzzy logic 1 1 1 2 1 1 1 1 1 0 1 0 0 

11. Neural networks 1 2 2 2 1 1 1 0 1 1 0 0 0 

12. Genetic 1 2 2 2 1 1 1 0 1 2 0 0 0 

TABLE 1.5. CLEANFLIGHT FIRMWARE AND COMMON HARDWARE PLATFORMS USED 

FOR MULTI-ROTOR UAV CONTROL. 

Platform Hardware description Software description 

Naze32 STM32F103 microcontroller based board 

which contains MPU6500 IMU, barometer, 

and can handle up to 2 UARTs and 6 pulse 

protocol outputs. 

Open source code designed for 

acrobatic and racing drones. It 

supports STM32F1/3/4/7 

microcontroller based boards. 
Multiple telemetry protocols 

support as FrSky, SmartPort, S. 

Port, HoTT, iBus, MavLink, CRSF, 
and SRXL [Cleanflight-18]. 

Seriously Dodo 

Flight controller 

STM32F303 microcontroller based board 

which contains MPU6050 IMU, barometer, 3 

UART ports available and can handle up 8 
pulse protocol outputs [RMRC-18]. 

TABLE 1.6. ROBOT OPERATING SYSTEM (ROS) FIRMWARE AND COMMON HARDWARE 

PLATFORMS USED FOR MULTI-ROTOR UAV CONTROL. 

Platform Hardware description Software description 

Multiple boards N/A. An open-source operating system designed for robotics 
development that provides libraries and tools for 

hardware abstraction, device drivers, visualizers, 

message-passing, localization, mapping, navigation, etc. 
[ROS-18]. 
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TABLE 1.7. ARDUPILOT FIRMWARE AND COMMON HARDWARE PLATFORMS USED FOR 

MULTI-ROTOR UAV CONTROL. 

Platform Hardware description Software 

description 

ArduPilot1  

Mega  

(APM) 

ATMEGA2560 microcontroller based board that has an MPU6000 

IMU, an ATMEGA32U2 for PPM encoding and USB interfacing, 2 

serial ports available, I2C port, SPI port, 12 ADC channel ports, 

barometer, magnetometers, and 8 PWM outputs [ADT-18a]. 

Open source multi-

platform code. 

Supports multiple 

commands modes 

depending on the 

vehicle needs, 

provides user-

specific scheduler 

routines for easy 

development, and 

several numbers of 

libraries. It provides 

advanced failsafe 

and video 

capabilities to the 

user. Full data 

logging is available 

and real-time 

communication. 

Multiple setup 

configurations are 

provided for specific 

needs. Different 

types for RC inputs 

are supported, such 

as PPM Sum, S. Bus, 

DSM, PWM, and 

MAVLink. It 

supports I2C, SPI, 

UART, and CAN 

protocols [ADT-

18b].  

Pixhawk2 STM32F427 microcontroller based board that uses an STM32F100 as 

a failsafe system. It has an L3GD20H gyroscope, LSM303D and 

MPU6000 IMU, and an MS5611 barometer. It provides 1 ADC 

channel, 1 CAN port, 1 I2C port, 5 UART ports, and supports up to 14 

pulse protocol outputs [PX4DT-18]. 

Navio2/ 

Raspberry 

Daughter I/O board that provides the same capabilities as the Pixhawk 

but with an integrated GNSS receiver. It has connectivity ports for 

Raspberry for running the ArduPilot firmware in Linux [EMLID-18]. 

Erle- 

Brain 3 

ARM Cortex-A53 CPU based board that runs Linux operating system 

and ArduPilot code. It incorporates a gravity sensor, gyroscope, digital 

compass, pressure sensor, temperature sensor, 12 pulse protocol 

outputs and ADC for battery sense. It provides 1 serial port, 2 I2C ports, 

built-in Wi-Fi, Bluetooth, Ethernet, 4 USB ports and can handle an 

8MP camera [Erle-Robotics-18a]. 

PXFMINI/ 

Raspberry 

This is a daughter I/O board that provides the same sensing capabilities 

as the Erle-Brain 3, but only 8 pulse protocol outputs, and a 

communication port for being connected to a Raspberry for running 

the ArduPilot firmware in Linux [Erle-Robotics-18b]. 

Qualcomm 

Snapdragon 

Flight 

Krait quad-core based board with a DSP for real-time control. It has 

built-in 2G/5G Wi-Fi, Bluetooth, USB, and GNSS. It provides an 

integrated 4K camera, IMU, barometer, ESX connector, and an 

expansion port connector. It runs Linux on the main processor and 

ArduPilot code in the DSP [Qualcomm-18]. 

Intel Aero 

Compute 

Intel Atom x7-Z8750 based board with Wi-Fi connectivity, USB 

connector, USB 3.0 dedicated for Intel RealSense support. It provides 

3 UART ports, 1 I2C port, and 1 ADC. It supports an I/O expansion 

board and runs Linux and ArduPilot code. 

TABLE 1.8. LIBREPILOT FIRMWARE AND COMMON HARDWARE PLATFORMS USED FOR 

MULTI-ROTOR UAV CONTROL. 

Platform Hardware description Software description 

OpenPilot 

CopterControl 3D 
(CC3D) 

STM32F303 microcontroller 

based board which contains 
MPU6050 IMU, 1 serial port 

available and can handle up to 10 

PWM outputs [LibrePilot-18a]. 

Open source code project for multi-rotors and 

other RC devices. It supports multiple inputs 
protocols as PWM, PPM, S. Bus, DSM, Sat, 

SRLX, HoTT, EX Bus, OpenLRS, and iBus, 

and multiple boards [LibrePilot-18b]. 

  

 

 
1 ArduPilot, Version 3.5.7, jDrones & Co. 9 Chaloem Phrakiat Rd., Soi 83, Bangkok 10250, Thailand, 2018. 
2 Pixhawk, Version 2.4.6, Auterion, Giesshuebelstrasse 40, 8045 Zurich, Switzerland, 2018. 
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TABLE 1.9. SAFESMART FLIGHT CONTROL FIRMWARE AND COMMON HARDWARE 

PLATFORMS USED FOR MULTI-ROTOR UAV CONTROL. 

Platform Hardware description Software description 

SafeSmart Autopilot Microchip dsPIC33 microcontroller-based 

platform that has an accelerometer, gyroscope, 
magnetometer, barometer, and GPS sensor. It 

has 4 UART ports, supports CAN protocol, I2C, 

and SPI. For motor control, it provides up to 8 

pulse protocol channels. 

Toolbox for Matlab3 that 

offers control capabilities and 
enables the user to generate 

the code for the platform and 

reprogram it [IntelinAir-18]. 

TABLE 1.10. FLYTOS FIRMWARE AND COMMON HARDWARE PLATFORMS USED FOR 

MULTI-ROTOR UAV CONTROL. 

Platform Hardware description Software description 

Multiple 
boards 

N/A. Operating system built on ROS and Linux that works with 
ArduPilot based controllers, NVIDIA TX1/TX2, ODROID 

XU4, Raspberry, DJI, and Intel Aero Compute. It provides 

4G/LTE capabilities, video streaming, swarm managing, object 
tracking, indoor navigation, thermal sensing, LIDAR sensing, 

collision avoidance features, and 3D motion tracking [FlytBase-

18]. 

1.7. Conclusions 

Numerous types of UAVs can be found in the state of the art of these devices, commercially 

and for research purposes. Nevertheless, VTOL aircrafts have become popular due to the 

simplified launching mechanisms or successful results under non-controlled environments for 

mission execution. As mentioned, different control algorithms can be used for flying 

controllability purposes, being PID one of the most used due to the simplicity and lack of a 

mathematical model. This control is not robust for situations where disturbances are present, in 

that case, a more specialized mechanism is required, such as backstepping or sliding mode; 

nevertheless, such algorithms require numerous aircraft parameters that are not commonly 

specified and demand characterization. 

As a variety of control techniques are available, the same pattern is found when talking 

about hardware and software for UAV handling. As technology and complexity evolve, additional 

features are needed in the UAVs for providing reliability, repeatability, and enough processing 

capabilities while maintaining or decreasing the power consumption, that is the reason why an 

 

 
3 MATLAB, Version 2017b, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, 2017. 
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enormous amount of options is available. 

In the next chapters, some of the control technologies are discussed and backstepping is 

taken for embedded implementation and real-time execution. Code development and debug are 

performed for both simulation real-time environments in order to reproduce the results and achieve 

the goal of this dissertation. 
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2. UAV Parameters Characterization and Dynamical 

Modeling 

Aiming to control the UAV, the first step in the process is to define the variables of interest 

of the system and express their relationship using a dynamic model. This process must be done for 

the vehicle and its actuators, accordingly to the proposed overall control scheme. Once the 

mathematical model is defined, the parameters of the model must be characterized by means of 

real time experiments or obtained through the datasheet from the manufacturer. Another option is 

to obtain a simple input-output dynamical model, as a transfer function, from experimental data of 

the system.  

The latter method is utilized in this work as transfer functions for the motor speed and 

current consumption of the actuators were obtained using data from real time experiments 

consisting on step inputs to the motor and acquiring the output time response. The information 

provided by the response to the step impulse allows the usage of the state variables representation, 

and at the same time, discloses most of the physical parameters involved in the system. Such 

characterization is required for feeding the controller with real values to achieve the 

maneuverability of the aircraft, and for reducing controllability errors once the control is 

implemented in the real UAV platform. 

Furthermore, nominal values for the dynamical parameters of the vehicle are obtained using 

a 3D CAD model of the vehicle which replicates almost exactly the physical properties of the real 

UAV. The process to develop these characterizations is described in the following subsections. 

2.1. Actuators Dynamics Modeling 

As mentioned before, brushless DC electric motors are used to actuate the UAV of the 

presented work. These actuators are in the three-phase configuration being controlled by electronic 

speed controllers. This research pursues a simplified model of the actuator by considering them as 

single-phase devices, from the motor model perspective standpoint. According to that, the transfer 

function is a suitable model to be obtained by stimulating the system with a step input signal. This 
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section presents the procedure to estimate the parameters of the simplified model of the actuators. 

2.1.1 Current and Speed Transfer Function Identification 

In order to obtain the motor voltage to speed transfer function, the step response for the 

motor is required. For that purpose, the ESC is injected with a 100 percent duty cycle for a time-

lapse and later decreased to 50 percent duty cycle to observe the transient response. The current 

consumption and speed responses to the step signal are displayed in Fig. 2.1 and Fig. 2.2, 

respectively. 

 

Fig. 2.1 Motor current consumption response to step signal and transient operation. 

It can be noticed that the speed signal does not have the first overdamping that is seen in 

the current 𝑖 response, and that is because the motors can demand more current when breaking the 

static motion to increase their speed, but the velocity capabilities cannot be exceeded from the 

specifications. 

Once all the information is generated, the data is imported to the Matlab system 

identification tool, where the number of system poles and zeros are set as desired for calculating 

the transfer function model. In that regard, a number of 100 system identification iterations were 

executed for each combination, starting from 2 poles and 0 zeros, up to 5 poles 5 zeros, having the 

best accuracy combinations for current and speed listed in Table 2.1 and Table 2.2, 
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correspondingly. 

 

Fig. 2.2 Motor speed response to the step signal and transient operation. 

TABLE 2.1. TRANSFER FUNCTIONS FOR THE PWM DUTY CYCLE TO CURRENT 

CONSUMPTION, DIFFERENT POLES AND ZEROS COMBINATIONS IN ACCURACY ORDER. 

Poles Zeros Transfer function obtained Accuracy 

4 4 
10.33𝑠4 + 14.74𝑠3 + 3.332𝑠2 + 0.1483𝑠 + 0.0001406

𝑠4 + 0.7339𝑠3 + 0.1905𝑠2 + 0.008996𝑠 + 1.414 × 10−5
 92.65% 

3 3 
11.27𝑠3 + 12.97𝑠2 + 0.8405𝑠 − 8.744 × 10−5

𝑠3 + 0.6198𝑠2 + 0.05683𝑠 + 9.977 × 10−6
 89.38% 

5 3 
339.5𝑠3 + 58.44𝑠2 + 3.497𝑠 + 0.002232

𝑠5 + 21.57𝑠4 + 22.26𝑠3 + 4.21𝑠2 + 0.2338𝑠 + 0.0002603
 84.81% 

3 2 
21.12𝑠2 + 1.351𝑠 − 0.0004505

𝑠3 + 1.09𝑠2 + 0.09735𝑠 + 8.211 × 10−10
 82.2% 

5 2 
52.99𝑠2 + 2.532𝑠 − 0.0003044

𝑠5 + 3.734𝑠4 + 6.3𝑠3 + 3.178𝑠2 + 0.1761𝑠 + 5.579 × 10−12
 76.73% 

3 1 
40.39𝑠 + 0.003151

𝑠3 + 1.309𝑠2 + 3.142𝑠 + 0.002591
 73.46% 

2 2 
16.48𝑠2 + 0.8366𝑠 + 0.002468

𝑠2 + 0.05476𝑠 + 0.0003465
 59.63% 

2 0 
24.05

𝑠2 + 0.8608𝑠 + 2.477
 52.71% 

In the simulation environment, the current response transfer function of 4 poles and 4 zeros 

equation is chosen from the list of transfer functions, and for the speed response the 2 poles and 2 

zeros, because of its performance and best fit for execution matching. In the real world, without 

considering perturbations as airspeed, friction, or other system parameters, the DC motor transfer 

function is defined with 2 poles and 0 zeros, and this needs to be used for obtaining the motor 
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specifications. 

TABLE 2.2. TRANSFER FUNCTIONS FOR THE PWM DUTY CYCLE TO MOTOR RPM SPEED, 

DIFFERENT POLES, AND ZEROS COMBINATIONS IN ACCURACY ORDER. 

Poles Zeros Transfer function obtained Accuracy 

2 2 
716.6𝑠2 + 1.377 × 105𝑠 + 7066

𝑠2 + 11.16𝑠 + 0.4724
 95.6% 

2 1 
1.416 × 105𝑠 + 6166

𝑠2 + 11.48𝑠 + 0.4221
 95.36% 

4 3 
1.284 × 105𝑠3 + 2.171 × 105𝑠2 + 5.519 × 105𝑠 + 8.558 × 104

𝑠4 + 12.02𝑠3 + 21.85𝑠2 + 45.74𝑠 + 5.252
 94.47% 

4 4 
1.313 × 104𝑠4 + 1.82 × 106𝑠3 + 1.717 × 108𝑠2 + 1.134 × 109𝑠 + 1.164 × 109

𝑠4 + 153.4𝑠3 + 1.189 × 104𝑠2 + 1.191 × 105𝑠 + 6.999 × 104
 78.74% 

3 0 
2.903 × 108

𝑠3 + 138.7𝑠2 + 3561𝑠 + 1.706 × 104
 70.84% 

2 0 
2.448 × 106

𝑠2 + 27.37𝑠 + 143.7
 70.7% 

 

Fig. 2.3 Block diagram for the voltage to motor angular speed transfer function. 

In Fig. 2.3, a block diagram for the subsystems of the motor is depicted, where it can be 

seen that current 𝑖𝑎 is a virtual control that is half of the complete loop [Sahputro-17], [Alkurawy-

18]. A transfer function model for the motor can be obtained using (1-12)-(1-15) as follows. First, 

a state space representation is obtained by defining the following states, output and input of the 

motor as 

 

𝑥1(𝑡) = 𝜔𝑚(𝑡)

𝑥2(𝑡) = 𝑖𝑎(𝑡)

𝑦(𝑡) = 𝑥1(𝑡)

𝑢(𝑡) = 𝑉𝑎(𝑡).

 (2-1) 

Then, the original equations are expressed in function of the states and input, yielding 

 𝑥̇1(𝑡) =
𝑑𝜔𝑚(𝑡)

𝑑𝑡
=

𝑘𝜏𝑥2(𝑡) − 𝐵𝑚𝑥1(𝑡) − 𝜏𝑙(𝑡)

𝐽𝑚
 (2-2) 

 𝑥̇2 =
𝑑𝑖𝑎(𝑡)

𝑑𝑡
=

𝑢(𝑡) − 𝑅𝑎𝑥2(𝑡) − 𝑘𝑒𝑥1(𝑡)

𝐿𝑚
. (2-3) 

These equations can be transformed to a matrix form as [Ogata-96] 
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 𝐱̇(𝑡) = A𝐱(𝑡) + B𝐮(𝑡),          𝐲(𝑡) = C𝐱(𝑡) + D𝐮(𝑡) (2-4) 

 [
𝑥̇1(𝑡)

𝑥̇2(𝑡)
] =

[
 
 
 
 −

𝐵𝑚

𝐽𝑚

𝑘𝜏

𝐽𝑚

−
𝑘𝑒

𝐿𝑚
−

𝑅𝑎

𝐿𝑚]
 
 
 
 

[
𝑥1(𝑡)

𝑥2(𝑡)
] + [

0
1

𝐿𝑚

]𝑢(𝑡) + [
−

1

𝐽𝑚
0

] 𝜏𝑙(𝑡) (2-5) 

 𝑦(𝑡) = [1 0] [
𝑥1(𝑡)

𝑥2(𝑡)
]. (2-6) 

The torque 𝜏𝑙(𝑡) is assumed as a perturbation for linearity considerations, as described in 

3.3.1. From this state-space representation, the associated voltage to angular speed transfer 

function results of the form 

 𝐺(𝑠) =
𝜔𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝑘𝜏

𝐽𝑚𝐿𝑚

𝑠2 + (
𝐵𝑚𝐿𝑚 + 𝐽𝑚𝑅𝑎

𝐽𝑚𝐿𝑚
) 𝑠 +

𝐵𝑚𝑅𝑎 + 𝑘𝑒𝑘𝜏

𝐽𝑚𝐿𝑚

 (2-7) 

where all motor and vehicle parameters are defined in Table 2.3 for a quad-rotor with a QAV250 

frame and EMAX4 MT2204 2300KV motors with ESC 2-4S 12A using BLHeli firmware 14.9, 

6030 propellers attached, and power supply of 11.1V 2200 mAh Lithium-Polymer battery. 

TABLE 2.3. MULTI-ROTOR INPUT PARAMETERS. 

Parameter Description Value 

𝑚 Mass of the vehicle 0.85 kg 

𝑔 Gravity force 9.80665 m/s2 

𝑙 Arm length 0.1272 m 

𝐶𝑇 Thrust coefficient 81.7445 × 10−3 

𝐶𝐷 Drag coefficient 45 × 10−3 

𝐼𝑥 Moment of inertia in the 𝑥-axis 2.14571 × 10−3 m2 

𝐼𝑦 Moment of inertia in the 𝑦-axis 3.28887 × 10−3 m2 

𝐼𝑧 Moment of inertia in the 𝑧-axis 4.94533 × 10−3 m2 

𝑘𝑒 Back EMF constant 6.4 × 10−4 

𝑘𝜏 Torque constant 0.432140018 

𝑅𝑎 Motor inertia resistance 0.05 Ω 

𝐵𝑚 Coefficient of viscous friction 0.000341336 

𝐽𝑚 Rotor inertia 1.47106 × 10−5  kg·m2 

𝐿𝑚 Inductance 0.012 H 

After that, using the values from the transfer function of 2 poles and 0 zeros in Table 2.2, 

and the parameters from [EMAX-18] and [Kumpanya-15] as a starting point, 𝐿𝑚 and 𝑅𝑎 were 

defined, allowing the calculation of 𝐽𝑚, 𝐵𝑚 and 𝑘𝑒 by means of the following equations 

 

 
4 EMAX, EMAX US Inc., 2861 Saturn St. Unit A, Brea, CA 92821, 2019. 
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𝑘𝜏

𝐽𝑚𝐿𝑚
= 2.448 × 106 (2-8) 

 𝐵𝑚𝐿𝑚 + 𝐽𝑚𝑅𝑎

𝐽𝑚𝐿𝑚
= 27.37 (2-9) 

 𝐵𝑚𝑅𝑎 + 𝑘𝑒𝑘𝜏

𝐽𝑚𝐿𝑚
= 143.7. (2-10) 

During the test execution, it was noticed that the procedure for requesting data from the 

daughter-board had electrical noise due to multi-rotor frame vibration caused by the actuators. 

Therefore, instead of using a pin voltage level change interrupt for requesting data, the request is 

implemented in serial communication as defined in section 5.1.1.1. 

2.2. Vehicle’s Parameters Definition 

The methodology used to obtain the parameters of the actuator of the vehicle is not suitable 

to characterize the dynamical parameters of the UAV’s frame. This is due to the complexity of 

mounting enough sensors to measure all the variables necessary to estimate all the parameters as 

the vehicle mass, moments of inertia of the frame, its dimensions. Therefore, the procedure 

followed in this works is based on running a computer-assisted design (CAD) software and 

analyzing a 3D model of the QAV250 UAV frame designed in [GC-18]. 

On the other hand, in a lot of research works found in the literature, the thrust coefficient 

is normally defined without considering its physical meaning and the procedure used to obtain its 

value. In [Arellano-Muro-13] a thrust coefficient of 2.98 × 10−3  and a drag coefficient of 

1.14 × 10−7 are presented, but there is no background explanation of the source, which is very 

important when it comes to motor control. The equation of thrust correlates the thrust force (𝑇), 

the propeller diameter (𝐷), the propeller/motor speed (𝑛), the air density (𝜌) and the thrust 

coefficient (𝐶𝑇) with the following equation 

 𝑇 = 𝐶𝑇𝜌𝑛2𝐷4 (2-11) 

where 𝜌 is in kg/m3 units, 𝑛 is in rev/s units, 𝐷 is in m units, and 𝑇 is in N units, as obtained in 

[Jun-Li-11], [Greitzer-03], and [Felismina-17]. With regards to the drag coefficient, this correlates 

the drag force (𝐹𝐷), the air density, the cross-section of the movement (𝐴), the velocity (𝑣) and 

the drag coefficient (𝐶𝐷) with the following 

 
𝐹𝐷 =

𝐶𝐷𝜌𝐴𝑣2

2
 

(2-12) 
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where 𝐹𝐷 is in N units, 𝐴 in m2 units, and 𝑣 in m/s units. Fig. 2.4 shows a diagram that exposes 

the force vectors generated by the propellers. 

 

Fig. 2.4 Force vectors produced by the propellers. 

 

Fig. 2.5 Test-bench configuration for obtaining the thrust coefficient. 

The motor manufacturer reports a thrust force value that can be obtained by using 6030 

propellers with their brushless actuators, but the force measurements results show a slight 

difference. The use of a test-bench and a scale is required, and different speeds between the 

supported ranges were tested in order to create the characteristic curve for the thrust coefficient 

[Hafifi-Zulkipli-16], [Luque-Vega-14]. Fig. 2.5 shows the test-bench used to obtain the thrust 

force while increasing the motor speed and Fig. 2.6 shows the characteristic function of the 

measured values converted to the thrust coefficient. 
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Fig. 2.6 Thrust coefficient curve based on EMAX MT2204 2300KV motor thrust force 

measurements. 

 

Fig. 2.7 Comparison between the thrust coefficient at different motor speeds using the 

measured coefficient, the motor manufacturer coefficient, and the proposed 

coefficient. 

As it can be observed, the coefficient is a function  of the speed and not a fixed value, but 

a function cannot be used in the control code execution as the speed reference calculation requires 

this to be a hardcoded value to be used by the motor controller computing. For this reason, a 𝐶𝑇 

value is proposed based on a minimum root mean square error (RMSE). Fig. 2.7 shows the thrust 

force obtained by using the thrust coefficient from the manufacturer values, from the measured 

values, and from the value proposed. With a proposed 𝐶𝑇 = 0.0817445, a minimal RMSE of 
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0.077301668 N (0.7882576369 gf) is obtained, compared to the measured values, which is 

relatively small with respect to the thrust force difference.  

Due to the fact that the cross-section area facing the direction of movement of the drone is 

a complex calculation during flight, a fixed drag coefficient is proposed, using 43 × 10−3 because 

it shows promising results for obtaining the controllability of the UAV. 

 

 

Fig. 2.8 QAV250 frame dimensions. 

In section 3.3 the speed reference 𝜔𝑟(𝑡) for the motor control is not indicated by the user, 

as the UAV reference signals, instead, 𝜔𝑡(𝑡) is a result of the control vector 𝑈, as described in 

(2-11) [Jun-Li-11]. The following equations obtained from Table 1.1, describe the relation between 

𝑈 and the reference values for the four angular velocities of the propellers 

 𝑈1 = 𝐶𝑇𝜌𝐷4(𝜔1
2 + 𝜔2

2 + 𝜔3
2 + 𝜔4

2) = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

𝑈2 = 𝐶𝑇𝜌𝐷4(𝜔1
2 − 𝜔2

2 − 𝜔3
2 + 𝜔4

2) = 𝐹1 − 𝐹2 − 𝐹3 + 𝐹4

𝑈3 = 𝐶𝑇𝜌𝐷4(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2) = 𝐹1 − 𝐹2 + 𝐹3 − 𝐹4

𝑈4 = 𝐶𝐷𝜌𝐷4(𝜔1
2 + 𝜔2

2 − 𝜔3
2 − 𝜔4

2) = 𝐹1 + 𝐹2 − 𝐹3 − 𝐹4.

 (2-13) 

The reason for the asymmetry observed in this configuration is due to the QAV250 frame 

being used, therefore, the 𝑥 and 𝑦 components of the forces need to be calculated to get a more 

accurate control execution. Fig. 2.8 shows a diagram of the dimensions of the QAV250 frame. 
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2.3. Simulation of the Vehicle Dynamic Model in Open-Loop 

Since the control schemes developed in this research are based on the structure of the model 

of the controlled system, it is important to validate the dynamical model of the system to be 

controlled before implementing any type of controller. Aiming to demonstrate the validity and 

completeness of the obtained dynamical model, multiple tests in open loop are performed, 

analyzed, and compared to the expected behavior of the real multi-rotor.  

The simulation experiment is designed as follows. First, the force necessary to counteract 

the weight of the vehicle is calculated as 

 
𝐹ℎ =

𝑚𝑔

𝑛𝑚
=

(0.85)(9.80665)

4
= 2.083913125 N 

(2-14) 

where the device mass 𝑚 is obtained, that multiplied by 𝑔, provides the force that needs to be 

applied by the motors to hover. 𝐹ℎ is the force required by each motor  to hover, and 𝑛𝑚 is the 

number of motors in the UAV configuration. Using this result, the necessary angular velocity for 

the propellers of the vehicle is obtained as 

 
𝑛 = √

𝐹ℎ
𝐶𝑇𝜌𝐷4 = 196.4140 rev/s = 11784.8431 RPM. (2-15) 

Afterwards, a speed differential is injected in the motors in order to achieve roll, pitch, yaw, 

and 𝑧 rotations and movements, according to the configuration diagram defined in Fig. 1.2. The 

velocity differential injected in each step is 30 rev/s, 30 rev/s, and 100 rev/s for roll, pitch, and 

yaw, respectively.  

Finally, the simulation results are analyzed and compared with the expected behavior of 

the vehicle, considering the inputs of the experiment. Several experiments where a basic motion 

of the attitude and position of the vehicle were replicated. For instance, the motion generated by 

the propellers with a given combination of angular speeds are displayed Fig. 2.9, Fig. 2.10, and 

Fig. 2.11.  
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a) b) 

Fig. 2.9 a) Attitude motion (roll, pitch and yaw) b) translational motion (altitude, 

latitudinal and longitudinal) generated during a roll movement of the vehicle in 

open-loop. 

  
a) b) 

Fig. 2.10 a) Attitude motion (roll, pitch and yaw) b) translational motion (altitude, 

latitudinal and longitudinal) generated during a pitch movement of the vehicle in 

open-loop. 

  
a) b) 

Fig. 2.11 a) Attitude motion (roll, pitch and yaw) b) translational motion (altitude, 

latitudinal and longitudinal) generated during a yaw movement of the vehicle in 

open-loop.  

Fig. 2.9 shows the behavior of the vehicle when a roll movement of the vehicle is intended. 

It can be noted how the roll variable 𝜙 is increased and, as a result, the 𝑦 and 𝑧 coordinates of the 
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model are decreased. This is an expected behavior accordingly to the fixed and inertial frames 

defined in Fig. 1.1. Similar experiments are depicted in Fig. 2.10 and Fig. 2.11 where pitch and 

yaw movements of the vehicle were generated. 

The complete set of open loop experiments developed permitted to validate the model 

defined for the vehicle and the relationships expected between its variables.  

2.4. Conclusions 

Characterization of the aircraft  and the actuator parameters is a required step for the 

development of a model-based controller for a UAV. Commercial actuators and multi-rotor frame 

structures do not usually specify accurate dimensions, mass, body inertias, power consumption, 

force factors, etc. Therefore, identification of the system becomes an essential step for not 

introducing undesired disturbances in the embedded device, which can potentially affect the 

controller’s output, providing a control signal that does not correspond to the vehicle being 

maneuvered. 

To facilitate the validation of the parameters, test-benches are recommended to reduce the 

risk exposure for the user, and to obtain the measurements in a consistent matter for repeatability 

and scalability of the test for changes in the configuration. Once the parameters are known, 

simulation in open loop for the system is desired, in order to verify that the expected inputs produce 

the expected outputs, even if the control algorithms are not implemented yet. 

Since UAV platforms are complex vehicles, a more sophisticated controller mechanism is 

required than open-loop algorithms. The next section introduces the design of the proposed 

controllers which are composed by an outer and an inner loop, to control the vehicle and the 

actuators, respectively. The proposal gives the ability to maneuver the vehicle while monitoring 

the status of the actuators, decreasing the chattering in the mechanical elements that drive the 

aircraft. 
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3. Design of the Proposed Controllers 

In this section, the control  scheme proposed for the multi-rotor is presented. In addition, 

the design procedure for the control algorithms is developed considering two flight modes: 

stabilize and trajectory tracking. The former considers references for the altitude and attitude of 

the UAV, and the latter considers references for the 3D position and yaw angle of the vehicle. In 

both cases, the control objective is to perform the reference tracking by means of the UAVs 

actuators. These are BLDC motors which are modelled using experimentally defined transfer 

functions. The control strategy considers two control loops: an inner loop for the actuators of the 

vehicle, and an outer loop for the UAV frame. 

3.1. Overall Control Scheme 

A block diagram representation of the overall control scheme is depicted in Fig. 3.1 where 

the two control loops of the proposal can be appreciated. The general control objective is to 

perform the tracking of the reference vector 𝑌𝑟 by the output 𝑌 of the vehicle. To this end, a UAV 

controller is designed which generates the necessary angular velocities of the actuators 𝜔1𝑟 , 𝜔2𝑟 , 

…, 𝜔𝑛𝑟 with 𝑛 as the amount of actuators of the UAV. This is defined as the outer control loop. 

Afterwards, the actuators controller is designed to perform the tracking of the references 𝜔1𝑟 , …, 

𝜔𝑛𝑟 by the real angular velocities of the actuators 𝜔𝑟, …, 𝜔𝑛 which represents the inner control 

loop. This is achieved by defining the duty cycle of the PWM signals of the BLDC motors. 

 

Fig. 3.1 Block diagram of the global control scheme. 

The algorithms designed for the UAV controller are backstepping control, backstepping 

sliding mode control, and PID control [Chen-14]. On the other hand, the algorithms considered for 

the actuators’ controller are backstepping control and PID control. The design procedure for each 
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of these controllers is presented in detail throughout the rest of this chapter. 

3.2. Outer Control Loop 

Let us recall the state space model (1-10) defined in section 1.1, expressed in the following 

form 

 𝑋̇ [
1
…
6
] =

[
 
 
 
 
 

𝑥2

𝑓2 + 𝑏2𝑈2

𝑥4

𝑓4 + 𝑏4𝑈3

𝑥6

𝑓6 + 𝑏6𝑈4]
 
 
 
 
 

, 𝑋̇ [
7
…
12

] =

[
 
 
 
 
 
 

𝑥8

𝑓8 + 𝑏8𝑈1

𝑥10

𝑢𝑥(
1

𝑚
)𝑈1

𝑥12

𝑢𝑦(
1

𝑚
)𝑈1 ]

 
 
 
 
 
 

 (3-1) 

where 𝑋 = [𝜙, 𝜙̇, 𝜃, 𝜃,̇ 𝜓, 𝜓̇, 𝑧, 𝑧̇, 𝑥, 𝑥̇, 𝑦, 𝑦̇]
𝑇
. It can be noted that the complete model is composed 

of 6 subsystems with the form 

 𝑥̇𝑖 = 𝑥𝑖+1 

𝑥̇𝑖+1 = 𝑓𝑖+1 + 𝑏𝑖+1𝑈𝑗  
(3-2) 

with (𝑖, 𝑗) = {(1,2), (3,3), (5,4), (7,1), (9,1), (11,1)}, which will be useful during the design stage 

of the controller. In the subsequent sections, these subsystems will be referenced by the 𝑖𝑡ℎ state 

variable related to it, i.e. subsystems 1, 3, 5, 7, 9 and 11 corresponding to the states 𝑥1 = 𝜙, 𝑥3 =

𝜃, 𝑥5 = 𝜓, 𝑥7 = 𝑧, 𝑥9 = 𝑥, and 𝑥11 = 𝑦. 

As mentioned before, the UAV controller receives a reference vector 𝑌𝑟 for the output 𝑌 in 

the system. This reference vector is defined depending on the flight mode stablished for the 

vehicle. For instance, if a stabilize flight mode is set, the reference vector is given as 𝑌𝑟 =

[𝜙𝑟 , 𝜃𝑟 , 𝜓𝑟 , 𝑧𝑟]
𝑇. On the other hand, if a trajectory flight mode is selected, the reference vector is 

defined as 𝑌𝑟 = [𝜓𝑟 , 𝑧𝑟 , 𝑥𝑟 , 𝑦𝑟]
𝑇. It is worth to note that the flight mode selection affects the UAV 

controller design procedure as well as the sensors considered for a real-time implementation of the 

control strategy. 

3.2.1 Stabilize Flight Mode 

In this flight mode, the reference values 𝑥1𝑟 = 𝜙𝑟 , 𝑥3𝑟 = 𝜃𝑟, 𝑥5𝑟 = 𝜓𝑟, and 𝑥7𝑟 = 𝑧𝑟 are 

known and bounded, as well as their first and second derivatives. Therefore, 𝑥 and 𝑦 linear 
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movement are not directly controlled, instead, they are a consequence of the generated roll (𝜙) 

and pitch (𝜃) rotations. According to the subsystems defined in (3-2), the input terms 𝑈1−4 will be 

designed to enforce the values of 𝑥1 = 𝜙, 𝑥3 = 𝜃, 𝑥5 = 𝜓, and 𝑥7 = 𝑧 to their corresponding 

references. This is depicted in the following figure. 

 

Fig. 3.2 Stabilize flight mode control scheme. 

Three different control algorithms are designed to this end, and their design procedure is 

presented next. 

3.2.1.1 Backstepping Controller 

As defined in (3-2), the first 4 subsystems must be controlled by the input terms. Hence, 

four error variables of the system can be defined as 

 𝑧𝑖 = 𝑥𝑖𝑟 − 𝑥𝑖  (3-3) 

for 𝑖 = {1,3,5,7}. Then, a Lyapunov function is designed for each of the subsystem as 

 𝑉𝑖 =
1

2
𝑧𝑖

2
 (3-4) 

which is a positive definite function, as required to fulfill the stability Lyapunov’s theorem 

[Bouabdallah-05], [Ogata].-96]. Direct differentiation of 𝑉𝑖 results in 

 𝑉̇𝑖 = 𝑧𝑖𝑧̇𝑖 = 𝑧𝑖(𝑥̇𝑖𝑟 − 𝑥̇𝑖) = 𝑧𝑖(𝑥̇𝑖𝑟 − 𝑥𝑖+1) (3-5) 

that must be a negative semi-definite function to assure the stability of the closed loop system. In 

order to do so, the term 𝑥𝑖+1
∗  is used as a virtual control term and it is proposed as  

 𝑥𝑖+1
∗ = 𝑥̇𝑖𝑟 + 𝑘𝑖𝑧𝑖. (3-6) 

Now, this virtual control 𝑥𝑖+1
∗  is used as a reference for 𝑥𝑖+1 which allows us to define the 

error variable 

 𝑧𝑖+1 = 𝑥𝑖+1
∗ − 𝑥𝑖+1  (3-7) 

and, by means of (3-2) and (3-6), its derivative yields 
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 𝑧̇𝑖+1 = 𝑥̈𝑖𝑟 + 𝑘𝑖𝑧̇𝑖 − 𝑓𝑖+1 − 𝑏𝑖+1𝑈𝑗  (3-8) 

with the ordered pairs (𝑖, 𝑗) = {(1,2), (3,3), (5,4), (7,1)}. 

Again, a Lyapunov’s function is defined for 𝑧𝑖+1 as 

 𝑉𝑖+1 = 𝑉𝑖 +
1

2
𝑧𝑖+1

2
 (3-9) 

whose derivative is obtained of the form 

 𝑉̇𝑖+1 = 𝑉̇𝑖 + 𝑧𝑖+1𝑧̇𝑖+1. (3-10) 

Using (3-5)-(3-8), the previous equation transforms to  

 𝑉̇𝑖+1 = 𝑧𝑖(𝑧𝑖+1 − 𝑘𝑖𝑧𝑖) + 𝑧𝑖+1(𝑥̈𝑖𝑟 + 𝑘𝑖𝑧̇𝑖 − 𝑓𝑖+1 − 𝑏𝑖+1𝑈𝑗). (3-11) 

Finally, the control signal 𝑈𝑗 is designed as 

 𝑈𝑗 = 𝑏𝑖+1
−1 (𝑥̈𝑖𝑟 + 𝑘𝑖 𝑧̇𝑖 − 𝑓𝑖+1 + 𝑧𝑖 + 𝑘𝑖+1𝑧𝑖+1) (3-12) 

which finalizes the control design procedure. 

One of the advantages of the backstepping controller, is that once the control laws design 

is completed, the stability analysis of the closed loop system is straightforward. In this case, by 

substituting the designed control laws (3-6) and (3-12), the terms 𝑉̇𝑖 and 𝑉̇𝑖+1 are simplified to  

 𝑉̇𝑖 = −𝑘𝑖𝑧𝑖
2 + 𝑧𝑖𝑧𝑖+1 

𝑉̇𝑖+1 = −𝑘𝑖𝑧𝑖
2 − 𝑘𝑖+1𝑧𝑖+1

2 . 
(3-13) 

Then, the linear dynamic system (3-11) can be expressed as 

 [
𝑉̇𝑖

𝑉̇𝑖+1

] = − [
0

𝑘𝑖𝑧𝑖
2] − [𝑧𝑖 𝑧𝑖+1] [

𝑘𝑖 1
0 𝑘𝑖+1

] [
𝑧𝑖

𝑧𝑖+1
] (3-14) 

and, assuming 𝑘𝑖 > 0 and 𝑘𝑖+1 > 0, the inequalities 𝑉̇𝑖 < 0 and 𝑉̇𝑖+1 < 0 are demonstrated for 

𝑧𝑖 ≠ 0 and 𝑧𝑖+1 ≠ 0. Consequently, the Lyapunov’s theorem of stability is fulfilled, the error 

variables 𝑧𝑖 and 𝑧𝑖+1 converge to zero asymptotically, and the control objective is achieved. 

Finally, the control vector 𝑈 can be expressed in terms of the states, error variables and the 

systems’ parameters as 

  𝑈 = [

𝑈1

𝑈2

𝑈3

𝑈4

] =

[
 
 
 
 
 
 
 
 

𝑚

cos 𝑥1 cos 𝑥3
(𝑥̈7𝑟 + 𝑘7𝑧̇7 + 𝑔 + 𝑧7 + 𝑘8𝑧8)

1

𝑏1

(𝑥̈1𝑟 + 𝑘1𝑧̇1 − 𝑥4𝑥6𝑎1 − 𝑥4𝑎2Ω + 𝑧1 + 𝑘2𝑧2)

1

𝑏2

(𝑥̈3𝑟 + 𝑘3𝑧̇3 − 𝑥2𝑥6𝑎3 − 𝑥2𝑎4Ω + 𝑧3 + 𝑘4𝑧4)

1

𝑏3

(𝑥̈5𝑟 + 𝑘5𝑧̇5 − 𝑥4𝑥2𝑎5 + 𝑧5 + 𝑘6𝑧6) ]
 
 
 
 
 
 
 
 

. (3-15) 
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3.2.1.2 Backstepping Sliding Mode Controller 

For this controller, the same procedure used for the backstepping controller is followed. 

The only difference is that the term 𝑘𝑖+1𝑧𝑖+1 in the control inputs 𝑈𝑗 is replaced by the 

discontinuous term 𝑘𝑖+1sign(𝑧𝑖+1) which is characteristic of the sliding mode control technique. 

Henceforth, the control signal 𝑈𝑗 is designed as 

 𝑈𝑗 = 𝑏𝑖+1
−1 (𝑥̈𝑖𝑟 + 𝑘𝑖 𝑧̇𝑖 − 𝑓𝑖+1 + 𝑧𝑖|𝑧𝑖+1| + 𝑘𝑖+1sign(𝑧𝑖+1)) (3-16) 

and the control design procedure is finished. 

Regarding the stability analysis, the Lyapunov functions candidates are defined as  

 𝑉𝑖 =
1

2
𝑧𝑖

2 and 𝑉𝑖+1 = 𝑉𝑖 + |𝑧𝑖+1|. (3-17) 

Hence, considering (3-16), their derivatives are obtained as 

 
𝑉̇𝑖 = −𝑘𝑖𝑧𝑖

2 + 𝑧𝑖𝑧𝑖+1 

𝑉̇𝑖+1 = −𝑘𝑖𝑧𝑖
2 − 𝑘𝑖+1 

(3-18) 

which, again assuming 𝑘𝑖 > 0 and 𝑘𝑖+1 > 0, the inequalities 𝑉̇𝑖 < 0 and 𝑉̇𝑖+1 < 0 are 

demonstrated for 𝑧𝑖 ≠ 0 and 𝑧𝑖+1 ≠ 0. Consequently, the Lyapunov’s theorem of stability is 

fulfilled, the error variables 𝑧𝑖 and 𝑧𝑖+1 converge to zero asymptotically, and the control objective 

is achieved. 

Finally, the control vector 𝑈 can be expressed in terms of the states, error variables and the 

systems’ parameters as 

  𝑈 = [

𝑈1

𝑈2

𝑈3

𝑈4

] =

[
 
 
 
 
 
 
 
 

𝑚

cos𝑥1 cos 𝑥3

(𝑥̈7𝑟 + 𝑘7𝑧̇7 + 𝑔 + 𝑧7|𝑧8| + 𝑘8sign(𝑧8))

1

𝑏1

(𝑥̈1𝑟 + 𝑘1𝑧̇1 − 𝑥4𝑥6𝑎1 − 𝑥4𝑎2Ω + 𝑧1|𝑧2| + 𝑘2sign(𝑧2))

1

𝑏2

(𝑥̈3𝑟 + 𝑘3𝑧̇3 − 𝑥2𝑥6𝑎3 − 𝑥2𝑎4Ω + 𝑧3|𝑧4| + 𝑘4sign(𝑧4))

1

𝑏3

(𝑥̈5𝑟 + 𝑘5𝑧̇5 − 𝑥2𝑥4𝑎5 + 𝑧5|𝑧6| + 𝑘6sign(𝑧6)) ]
 
 
 
 
 
 
 
 

. (3-19) 

3.2.1.3 PID Controller 

This controller is based on the derivative, integral and proportional effect of error feedback. 

In the same manner of the two previous controllers, one control term of 𝑈1−4 is assigned for the 

reference tracking of one of the outputs defined for stabilize flight mode  𝑥1 = 𝜙, 𝑥3 = 𝜃, 𝑥5 = 𝜓, 
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and 𝑥7 = 𝑧. Hence, considering the references 𝑌𝑟 = [𝑥1𝑟 , 𝑥3𝑟 , 𝑥5𝑟 , 𝑥7𝑟] for this flight mode, the 

following error variables can be defined 

 𝑒𝜙 = 𝑥1𝑟 − 𝑥1, 𝑒𝜃 = 𝑥3𝑟 − 𝑥3, 𝑒𝜓 = 𝑥5𝑟 − 𝑥5, 𝑒𝑧 = 𝑥7𝑟 − 𝑥7. (3-20) 

Then, the control vector 𝑈 can be expressed in terms of the error variables as 

  𝑈 = [

𝑈1

𝑈2

𝑈3

𝑈4

] =

[
 
 
 
 
 
 
 
 
 𝐾𝑃1𝑒z + 𝐾𝐼1 ∫ 𝑒𝑧

𝑡

0

𝑑𝑡 + 𝐾𝐷1𝑒̇𝑧

𝐾𝑃2𝑒𝜙 + 𝐾𝐼2 ∫ 𝑒𝜙

𝑡

0

𝑑𝑡 + 𝐾𝐷2𝑒̇𝜙

𝐾𝑃3𝑒𝜃 + 𝐾𝐼3 ∫ 𝑒𝜃

𝑡

0

𝑑𝑡 + 𝐾𝐷3𝑒̇𝜃

𝐾𝑃4𝑒𝜓 + 𝐾𝐼4 ∫ 𝑒𝜓

𝑡

0

𝑑𝑡 + 𝐾𝐷4𝑒̇𝜓
]
 
 
 
 
 
 
 
 
 

 (3-21) 

where 𝐾𝑃𝑖, 𝐾𝐼𝑖, 𝐾𝐷𝑖 for 𝑖 = {1,2,3,4} are the controller gains to be defined. This tuning process was 

performed manually for this work and the results will be presented in the implementation section 

of the document. 

3.2.2 Trajectory Flight Mode 

In this flight mode, the reference values 𝑥5𝑟 = 𝜓𝑟 , 𝑥7𝑟 = 𝑧𝑟 , 𝑥9𝑟 = 𝑥𝑟 and 𝑥11𝑟 = 𝑦𝑟 are 

known and bounded, as well as their first and second derivatives. Therefore, 𝑥 and 𝑦 linear 

movements are indirectly controlled to obtain a desired position for the UAV. Similar to the 

stabilize flight mode, the subsystems 5 and 7 defined in (3-2) will be controlled by 𝑈4 and 𝑈1. 

Moreover, the controller design procedure for 𝑈4 and 𝑈1 will remain the same for this flight mode. 

Regarding the subsystems 9 and 11, the control inputs 𝑈2 and 𝑈3 cannot be used to directly control 

𝑥9 = 𝑥 and 𝑥11 = 𝑦 as the control terms do not appear explicitly in the dynamical equations of 

these subsystems. This strategy is depicted in the following figure [Fan-17]. 

 

Fig. 3.3 Trajectory flight mode control scheme. 
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Therefore, the control strategy is proposed according to the following steps: 

S1. The terms 𝑢𝑥 , 𝑢𝑦 are proposed as virtual control terms for the subsystems 9 and 11 

S2. Then, the obtained 𝑢𝑥 , 𝑢𝑦 are used to define the references for the states 𝑥1 = 𝜙 and 𝑥3 =

𝜃, and these references 𝑥1𝑟 and 𝑥3𝑟 are used to define the error variables 𝑧1 = 𝑥1𝑟 − 𝑥1 

and 𝑧3 = 𝑥3𝑟 − 𝑥3. 

S3. The control terms 𝑈2 and 𝑈3 are designed to control the subsystems 1 and 3 in the same 

manner that the stabilize flight mode. 

The step S2 is resolved by using equation (1-10). From there, the following equations can 

be obtained to relate the references for 𝑥1 and 𝑥3 with the terms 𝑢𝑥 and 𝑢𝑦 

 𝑥1𝑟 = sin−1(𝑢𝑥 sin 𝑥5 − 𝑢𝑦 cos 𝑥5) , 𝑥3𝑟 = sin−1 (
𝑢𝑥 − sin 𝑥1 sin 𝑥5

cos 𝑥1 cos 𝑥5
) . (3-22) 

The step S3 was already developed for the stabilize flight mode. The resulting control terms 

were defined in (3-15), (3-19) and (3-21) and will be used for trajectory flight mode as well. 

Hence, the remaining of this subsection is dedicated to address the development of the step 

S1 for the three proposed controllers. 

3.2.2.1 Backstepping Controller 

As previously stablished, the control design procedure needs to address only the 

subsystems 9 and 11. Hence, it is assumed that the references 𝑥9𝑟 and 𝑥11𝑟 are known a priori and 

their related error variables can be defined of the form 

 𝑧𝑖 = 𝑥𝑖𝑟 − 𝑥𝑖  (3-23) 

for 𝑖 = {9,11}. Then, a Lyapunov function is designed for each of the subsystem as 

 𝑉𝑖 =
1

2
𝑧𝑖

2
 (3-24) 

which is a positive definite function, as required to fulfill the stability Lyapunov’s theorem [Ogata-

96]. Direct differentiation of 𝑉𝑖 results in 

 𝑉̇𝑖 = 𝑧𝑖 𝑧̇𝑖 = 𝑧𝑖(𝑥̇𝑖𝑟 − 𝑥̇𝑖) = 𝑧𝑖(𝑥̇𝑖𝑟 − 𝑥𝑖+1) (3-25) 

that must be a negative semi-definite function to assure the stability of the closed loop system. In 

order to do so, the term 𝑥𝑖+1 is used as a virtual control term and it is proposed as  

 𝑥𝑖+1
∗ = 𝑥̇𝑖𝑟 + 𝑘𝑖𝑧𝑖 . (3-26) 

Now, this virtual control 𝑥𝑖+1
∗  is used as a reference for 𝑥𝑖+1 which allows us to define the 

error variable 
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 𝑧𝑖+1 = 𝑥𝑖+1
∗ − 𝑥𝑖+1 (3-27) 

and, by means of (3-2) and (3-6), its derivative yields 

 𝑧̇𝑖+1 = 𝑥̈𝑖𝑟 + 𝑘𝑖𝑧̇𝑖 − 𝑏0𝑈𝑖+1  (3-28) 

where 𝑏0 =
𝑈1

𝑚
 , 𝑈10 = 𝑢𝑥 and 𝑈12 = 𝑢𝑦. After that, a Lyapunov function candidate is defined for 

𝑧𝑖+1 as 

 𝑉𝑖+1 = 𝑉𝑖 +
1

2
𝑧𝑖+1

2
 (3-29) 

whose derivative is obtained of the form 

 𝑉̇𝑖+1 = 𝑉̇𝑖 + 𝑧𝑖+1𝑧̇𝑖+1. (3-30) 

Using (3-25)-(3-28), the previous equation transforms to  

 𝑉̇𝑖+1 = 𝑧𝑖(𝑧𝑖+1 − 𝑘𝑖𝑧𝑖) + 𝑧𝑖+1(𝑥̈𝑖𝑟 + 𝑘𝑖 𝑧̇𝑖 − 𝑏0𝑈𝑖+1). (3-31) 

Finally, the control signal 𝑈𝑖+1 is designed as 

 𝑈𝑖+1 = 𝑏0
−1(𝑥̈𝑖𝑟 + 𝑘𝑖𝑧̇𝑖 + 𝑧𝑖 + 𝑘𝑖+1𝑧𝑖+1) (3-32) 

or, equivalently, as 

 𝑢𝑥 = 𝑏0
−1(𝑥̈9𝑟 + 𝑘9𝑧̇9 + 𝑧9 + 𝑘10𝑧10) (3-33) 

 𝑢𝑦 = 𝑏0
−1(𝑥̈11𝑟 + 𝑘11𝑧̇11 + 𝑧11 + 𝑘12𝑧12) (3-34) 

which finalizes the backstepping control part in the design procedure. 

It is easy to see that the stability analysis for these closed-loop subsystems corresponds 

exactly to the one developed for the stabilize flight mode. Therefore, it can be concluded that the 

stability conditions for the control laws (3-32) are 𝑘𝑖 > 0 and 𝑘𝑖+1 > 0 for 𝑖 = {9,11}. 

Finally, the control terms 𝑈1, 𝑈2, 𝑈3 and 𝑈4 are defined exactly as in (3-15) 

  𝑈 = [

𝑈1

𝑈2

𝑈3

𝑈4

] =

[
 
 
 
 
 
 
 
 

𝑚

cos 𝑥1 cos 𝑥3
(𝑥̈7𝑟 + 𝑘7𝑧̇7 + 𝑔 + 𝑧7 + 𝑘8𝑧8)

1

𝑏1

(𝑥̈1𝑟 + 𝑘1𝑧̇1 − 𝑥4𝑥6𝑎1 − 𝑥4𝑎2Ω + 𝑧1 + 𝑘2𝑧2)

1

𝑏2

(𝑥̈3𝑟 + 𝑘3𝑧̇3 − 𝑥2𝑥6𝑎3 − 𝑥2𝑎4Ω + 𝑧3 + 𝑘4𝑧4)

1

𝑏3

(𝑥̈5𝑟 + 𝑘5𝑧̇5 − 𝑥4𝑥2𝑎5 + 𝑧5 + 𝑘6𝑧6) ]
 
 
 
 
 
 
 
 

 (3-35) 

along with (3-22) and (3-32). 

3.2.2.2 Backstepping Sliding Mode Controller 

This controller is a variation of the previous one. The only difference is that the control 
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laws are composed of (3-22) and (3-32), but with the definition of 𝑈1, 𝑈2, 𝑈3 and 𝑈4 of the form 

  𝑈 = [

𝑈1

𝑈2

𝑈3

𝑈4

] =

[
 
 
 
 
 
 
 
 

𝑚

cos 𝑥1 cos 𝑥3

(𝑥̈7𝑟 + 𝑘7𝑧̇7 + 𝑔 + 𝑧7|𝑧8| + 𝑘8sign(𝑧8))

1

𝑏1

(𝑥̈1𝑟 + 𝑘1𝑧̇1 − 𝑥4𝑥6𝑎1 − 𝑥4𝑎2Ω + 𝑧1|𝑧2| + 𝑘2sign(𝑧2))

1

𝑏2

(𝑥̈3𝑟 + 𝑘3𝑧̇3 − 𝑥2𝑥6𝑎3 − 𝑥2𝑎4Ω + 𝑧3|𝑧4| + 𝑘4sign(𝑧4))

1

𝑏3

(𝑥̈5𝑟 + 𝑘5𝑧̇5 − 𝑥4𝑥2𝑎5 + 𝑧5|𝑧6| + 𝑘6sign(𝑧6)) ]
 
 
 
 
 
 
 
 

. (3-36) 

3.2.2.3 Backstepping PID Controller 

In section 3.2.2 it is explained that 𝑥 and 𝑦 linear movements cannot be controlled 

directly, instead, a virtual control design is required aiming to produce references 𝜙𝑟 and 𝜃𝑟 that 

can now be directly controlled to achieve trajectory tracking flight mode. The overall resulting 

control scheme is depicted in Fig. 3.3. Hence, in this section the backstepping technique for the 

virtual control of 𝑥 and 𝑦 is proposed, first addressing only the subsystems 9 and 11 of (3-2) where 

the references 𝑥9𝑟 and 𝑥11𝑟 are known a priori. Using the backstepping technique for these 

subsystems, the virtual controllers result in the following equations 

 𝑢𝑥 = 𝑏0
−1(𝑥̈9𝑟 + 𝑘9𝑧̇9 + 𝑧9 + 𝑘10𝑧10) (3-37) 

 𝑢𝑦 = 𝑏0
−1(𝑥̈11𝑟 + 𝑘11𝑧̇11 + 𝑧11 + 𝑘12𝑧12). (3-38) 

Once the desired values for 𝑢𝑥 and 𝑢𝑦 are computed, the reference terms 𝑥1𝑟 = 𝜙𝑟  and 

𝑥3𝑟 = 𝜃𝑟  are calculated by means of equation (1-10(1-10) as 

 𝑥1𝑟 = sin (
𝑢𝑥 tan(𝑥5) − 𝑢𝑦

sin(𝑥5) tan(𝑥5) + cos(𝑥5)
)

−1

 (3-39) 

 𝑥3𝑟 = sin (
(𝑢𝑥 − sin(𝑥1)) sin(𝑥5)

cos(𝑥1) cos(𝑥5)
 )

−1

. (3-40) 

As the trajectory tracking flight mode requires to know the references 𝑥5𝑟 = 𝜓𝑟, and 𝑥7 =

𝑧𝑟 beforehand, the complete reference vector 𝑌𝑟 = [𝑥1𝑟 , 𝑥3𝑟 , 𝑥5𝑟 , 𝑥7𝑟] is defined. So, the associated 

error variables result of the form 

 𝑒𝜙 = 𝑥1𝑟 − 𝑥1, 𝑒𝜃 = 𝑥3𝑟 − 𝑥3, 𝑒𝜓 = 𝑥5𝑟 − 𝑥5, 𝑒𝑧 = 𝑥7𝑟 − 𝑥7 (3-41) 

and the control vector 𝑈 can be expressed in terms of the error variables as 
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  𝑈 = [

𝑈1

𝑈2

𝑈3

𝑈4

] =

[
 
 
 
 
 
 
 
 
 𝐾𝑃1𝑒z + 𝐾𝐼1 ∫ 𝑒𝑧

𝑡

0

𝑑𝑡 + 𝐾𝐷1𝑒̇𝑧

𝐾𝑃2𝑒𝜙 + 𝐾𝐼2 ∫ 𝑒𝜙

𝑡

0

𝑑𝑡 + 𝐾𝐷2𝑒̇𝜙

𝐾𝑃3𝑒𝜃 + 𝐾𝐼3 ∫ 𝑒𝜃

𝑡

0

𝑑𝑡 + 𝐾𝐷3𝑒̇𝜃

𝐾𝑃4𝑒𝜓 + 𝐾𝐼4 ∫ 𝑒𝜓

𝑡

0

𝑑𝑡 + 𝐾𝐷4𝑒̇𝜓
]
 
 
 
 
 
 
 
 
 

 (3-42) 

where 𝐾𝑃𝑖, 𝐾𝐼𝑖, 𝐾𝐷𝑖  for 𝑖 = {1,2,3,4} are the controller gains to be tuned. This tuning process was 

performed manually for this work and the results will be presented in the implementation section 

of the document. 

3.3. Inner Control Loop 

The outputs of the outer loop controller are the control terms 𝑈1, 𝑈2, 𝑈3 and 𝑈4, which can 

be used along with (1-6) to obtain the necessary angular velocities of the actuators as follows 

 

[
 
 
 
𝜔1

2(𝑡)

𝜔2
2(𝑡)
…

𝜔𝑛
2(𝑡)]

 
 
 

= 𝑀−1 [

𝑈1

𝑈2

𝑈3

𝑈4

]. (3-43) 

 where matrix 𝑀 is defined as 

 

𝑀 = [

𝑏 𝑏 𝑏 𝑏
𝑝 −𝑝 −𝑝 𝑝
𝑞 −𝑞 𝑞 −𝑞
𝑑 𝑑 −𝑑 −𝑑

] ,

𝑏 = 𝐶𝑇𝜌𝐷4

𝑝 = 𝑏sin(52.56°)

𝑞 = 𝑏sin(37.44°)

𝑑 = 𝐶𝐷𝜌𝐴 2⁄

 (3-44) 

according to (2-13) and the configuration of the UAV with frame QAV250, which will be used for 

the real time experiments. It is worth to note that 𝑀 is a full rank matrix, assuring that there is a 

unique solution of the equation system (3-43). Also, the angular velocities of the propellers are 

strictly positive as the drivers of the actuators only generate torque in one sense of rotation. 

After that, the resulting 𝜔1(𝑡), 𝜔2(𝑡), …, 𝜔𝑛(𝑡) are regarded as the references 𝜔1𝑟(𝑡), 

𝜔2𝑟(𝑡), …, 𝜔𝑛𝑟(𝑡) for the inner loop controller, as these variables cannot be directly manipulated. 

3.3.1 Backstepping Controller 



3. DESIGN OF THE PROPOSED CONTROLLERS 

 81 

Once the velocity references 𝜔1𝑟(𝑡), 𝜔2𝑟(𝑡), …, 𝜔𝑛𝑟(𝑡) for the BLDC motors are defined, 

the next step is to design the inner control loop whose objective is to manipulate the voltage applied 

to each of the motors to generate their respective desired angular velocities. As the actuators are 

defined by the same exact model, only one controller must be designed and replicated for the four 

actuators. 

First, let us recall from section 1.2 that the dynamical equations of the electric motor are 

given by 

𝑉𝑖(𝑡) = 𝑅𝑖𝑖𝑎𝑖(𝑡) + 𝐿𝑚𝑖
𝑑𝑖𝑎𝑖(𝑡)

𝑑𝑡
+ 𝑘𝑒𝑖𝜔𝑚𝑖(𝑡). (3-45) 

𝑘𝜏𝑖𝑖𝑎𝑖(𝑡) = 𝐽𝑚𝑖
𝑑𝜔𝑖(𝑡)

𝑑𝑡
+ 𝐵𝑚𝑖𝜔𝑖(𝑡) + 𝜏𝑙𝑖(𝑡). (3-46) 

As the value of the inductance 𝐿𝑚 is considerably small (in the order of mH units) with 

respect to the other motor parameters, the inductance is neglected and equation (3-45) is converted 

to 

 𝑖𝑎𝑖(𝑡) =
𝑉𝑖(𝑡) − 𝑘𝑒𝑖𝜔𝑖(𝑡)

𝑅𝑖
. (3-47) 

Moreover, the load torque 𝜏𝑙𝑖(𝑡) is considered as a perturbation in the equation and set to 

0. Using (3-46) and (3-47), the resulting dynamics are of the form 

 𝜔̇𝑖(𝑡) =
𝑘𝜏𝑖𝑉𝑖(𝑡)

𝐽𝑚𝑖𝑅𝑖
−

𝑘𝜏𝑖𝑘𝑒𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖𝑅𝑖
−

𝐵𝑚𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖
. (3-48) 

Considering that the reference for the angular velocity of the 𝑖th actuator is 𝜔𝑖𝑟  for 𝑖 =

{1,2,3,4}, then the error variable for that actuator can be defined as 

 𝑧𝑖𝑀 = 𝜔𝑖𝑟(𝑡) − 𝜔𝑖(𝑡) (3-49) 

where 𝜔𝑖(𝑡) is the current angular velocity of the motor. Then, the error dynamics can be obtained 

of the form 

 𝑧̇𝑖𝑀 = 𝜔̇𝑖𝑟(𝑡) − 𝜔̇𝑖(𝑡) = 𝜔̇𝑖𝑟(𝑡) −
𝑘𝜏𝑖𝑉𝑖(𝑡)

𝐽𝑚𝑖𝑅𝑖
+

𝑘𝜏𝑖𝑘𝑒𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖𝑅𝑖
+

𝐵𝑚𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖
. (3-50) 

With the error defined, the following candidate Lyapunov function is proposed 

 𝑉𝑖𝑀 =
1

2
𝑧𝑖𝑀

2 . (3-51) 

This is a positive definite function, that satisfies the stability Lyapunov’s theorem 

[Bouabdallah-05], [Ogata-96] and its derivative, obtained by direct differentiation, results in 
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 𝑉̇𝑖𝑀 = 𝑧𝑖𝑀 𝑧̇𝑖𝑀 = 𝑧𝑖𝑀 (𝜔̇𝑖𝑟(𝑡) −
𝑘𝜏𝑖𝑉𝑖(𝑡)

𝐽𝑚𝑖𝑅𝑖
+

𝑘𝜏𝑖𝑘𝑒𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖𝑅𝑖
+

𝐵𝑚𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖
). (3-52) 

Now, the voltage control term 𝑉𝑎(𝑡) is designed of the form 

 𝑉𝑖(𝑡) =
𝐽𝑚𝑖𝑅𝑖

𝑘𝜏𝑖
(𝜔̇𝑖𝑟(𝑡) +

𝑘𝜏𝑖𝑘𝑒𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖𝑅𝑖
+

𝐵𝑚𝑖𝜔𝑖(𝑡)

𝐽𝑚𝑖
+ 𝑘𝑖𝑀𝑧𝑖𝑀). (3-53) 

After that, using (3-52) and (3-53), the term 𝑉̇𝑖𝑀  yields 

 𝑉̇𝑖𝑀 = −𝑘𝑖𝑀𝑧𝑖𝑀
2  (3-54) 

and, considering 𝑘𝑖𝑀 > 0, the condition 𝑉̇𝑖𝑀 < 0 is fulfilled. Hence, by means of the Lyapunov’s 

stability theorem, the asymptotic convergence of 𝑧𝑖𝑀 to zero is assured. Consequently, 𝜔𝑖(𝑡) 

converges to 𝜔𝑖𝑟(𝑡) and the control objective is fulfilled. 

3.3.2 Levant’s Differentiator 

Once the inner control loop has been designed, a new issue arises as the derivative of the 

reference terms 𝜔̇𝑖𝑟(𝑡) must be computed to fully define the control laws. The first attempt was to 

use the differentiator block of Simulink5, but its performance was poor as it injected noise to the 

algorithm and led the simulation to fail. In order to solve these problems, a robust exact 

differentiator proposed by Levant [Levant-98], [Levant-03] was used instead. The main problem 

with classical differentiator designs is the combination of exactness and robustness with respect to 

possible measurement errors and input noise. Moreover, if the input signal present disturbances, 

the differentiator’s output is contaminated too, and there is a risk of amplifying the error. In 

contrast to Simulink’s differentiator, the Levant’s differentiator provides the square of the maxima 

of the measured input signal from the base signal, reducing the rate error that can be present in the 

output [Milosavljević-10]. For the proposed controller, a second-order Levant’s differentiator is 

used, which is defined by 

 𝑥̇ = 𝑣𝑛−1 (3-55) 

 
𝑧̇0 = −𝜆2|𝑧0 − 𝑓(𝑡)|

2
3sign(𝑧0 − 𝑓(𝑡)) + 𝑧1 

(3-56) 

 
𝑧̇1 = −𝜆1|𝑧1 − 𝑣0|

1
2sign(𝑧1 − 𝑣0) + 𝑧2 

(3-57) 

 

 
5 MATLAB, Version 2017b, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, 2017. 
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 𝑧̇2 = −𝜆0sign(𝑧2 − 𝑣1) (3-58) 

where 𝑓(𝑡) is the input signal, and 𝑧𝑛 is the estimation for the 𝑛-order derivate of 𝑓(𝑡), as shown 

in Fig. 3.4. 

 

Fig. 3.4 Second-order Levant’s exact differentiator block diagram. 

3.4. Conclusions 

For the overall controller design and implementation, a two-loop control scheme as 

selected. It is composed of an outer control loop for the vehicle dynamics, and an inner control 

loop for the actuators of the UAV. One advantage of this proposal is that the high-frequency 

components of the control term generated by the outer loop are filtered by the dynamics of the 

actuator in the simulation stage. Hence, the inner control loop, which requires the model of the 

BLDC motors, defines the response of the actuators in accordance with their mechanical 

capabilities. 

Three controller designs are developed, being the backstepping controller the one chosen 

for real time implementation. This decision is made based on the fact that the non-linearity of the 

sign function from the sliding mode injects non linearities to the subsequent derivatives required 

for the inner loop, causing indetermination in the calculation of the controller, that result in 

instabilities in the execution [Derafa-12]; furthermore, the high frequency responses observed in 

this type of controllers is not a desired input for the brushless motors. Regarding the PID controller, 

avoiding the fact that the embedded implementation just requires de error calculation and its 

derivative and integrals for each variable to control, the lack of robustness makes it a not desired 

solution due to the unmodeled dynamics and the disturbances that the control method will not be 

able to handle. 
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To verify the performance of the developed controllers, the following section describes the 

simulation results of the system in closed loop. This is a necessary stage, aiming to validate the 

controller and its parameters. For that purpose, the simulation environment is setup to test the 

system without the risk of damaging the device, to provide a first approach of the behavior, and to 

tune the controller gains.
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4. Closed Loop Simulation Results 

Before implementing the controller in an embedded hardware, it is important to obtain 

simulation results in order to identify issues with the code or the model that can be fixed early in 

the implementation to avoid debug efforts. In that regard, the controllers designed, the dynamic 

models for the vehicle, and its actuators obtained in previous sections are implemented in a 

simulation environment. For that purpose, the Matlab/Simulink software is used as it provides pre-

defined blocks for performing different calculations or actions, which do normally require time-

consuming tasks when implementing them in hardware. 

It is important to notice that the controller-motor interaction in the system corresponds to 

a stiff system behavior, which is basically a plant/actuator with slow dynamics compared with the 

fast processing of the controller of the plant. In other words, the time constant of the dynamic 

mechanical system is higher (slower) than the time constant for the controller response. The key 

to resolve the synchronization problem is to use advanced signal processing techniques, and 

algorithms to take advantage of the computational power in order to achieve the control goal no 

matter of the mechanical restrictions [Ehsani-99]. 

4.1. Block Definitions for Vehicle Dynamics Simulation 

The integrated development environment (IDE) selected to simulate the closed loop 

response of the designed controllers, modelled UAV, and actuators, is Simulink. A general view 

of the blocks implemented in this IDE are shown in Fig. 4.1 where the essential subsystems of the 

model are indicated. For instance, the UAV Input Parameters subsystem defines all the parameters 

of the vehicle and its configuration. These parameters are used by the UAV Mathematical Model 

subsystem which contains the definition of the dynamical models of the vehicle and the actuators. 

It implements the system defined in (1-11) and considers the output of UAV control and the speed 

output from Motor control to estimate the states. Fig. C.4 shows the code related to this routine. 

Finally, the Control Algorithm subsystem defines the control algorithms, for the inner and outer 

loops, designed in the previous section. 
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Fig. 4.1 Simulink closed loop model for the stabilize flight mode of the UAV. 

For the simulation, the reference signals for the vehicle are the attitude (roll 𝜙, pitch 𝜃, and 

yaw 𝜓) and altitude (𝑧) as the stabilize flight mode is considered. These references generate a 

rectangular route for the position of the vehicle and are defined as 

 
𝜙𝑟 = {

𝑐1 sin 𝑡 ∀𝑡 ∈ 𝐴
−𝑐1 sin 𝑡 ∀𝑡 ∈ 𝐵

0∀𝑡 ∈ 𝐶
, (4-1) 

 
𝜃𝑟 = {

𝑐1 sin 𝑡 ∀𝑡 ∈ 𝐷
−𝑐1 sin 𝑡 ∀𝑡 ∈ 𝐸

0∀𝑡 ∈ 𝐹
, (4-2) 

 𝜓𝑟 = 0, (4-3) 

 𝑧𝑟 =
𝑐1

(1 + 𝑒
−𝑐2(𝑡−

2
𝑐2

)
)

2 (4-4) 

where 𝑐1 and 𝑐2 are constants, 𝐴 = [𝜋, 2𝜋), 𝐵 = [5𝜋, 7𝜋), 𝐶 = 𝑈 − (𝐴 + 𝐵), 𝐷 = [7𝜋, 𝜋), 𝐸 =

[3𝜋, 4𝜋), and 𝐹 = 𝑈 − (𝐷 + 𝐸). It is worth to address that the reference signals were designed to 

be composed by time derivable functions to avoid singularities as the control laws calculation 
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requires the derivatives of the references for the outputs of the system. 

4.2. Outer Loop Controllers 

Using the same Simulink model, the three controllers for the vehicle are simulated in closed 

loop. The stabilize flight mode and the same references for the attitude and altitude of the vehicle, 

which were defined in the previous section, are used for the three control algorithms. The results 

of these experiments are presented in the following section of the document. 

4.2.1 Backstepping Controller 

The controller gains used for this simulation experiment are given by 

 𝑘𝑖 = 5, 𝑘𝑖+1 = 20, 𝑘7 = 5, 𝑘8 = 3, 𝑘𝑗𝑀 = 4000 (4-5) 

for 𝑖 = {1,2,3} and 𝑗 = {1,2,3,4}. The resulting 3D coordinates for the position of the vehicle are 

depicted in Fig. 4.2. It shows the resulting square path according to the references 𝜃𝑟 and 𝜙𝑟. 

 

Fig. 4.2 3D output path resulting from the outer loop backstepping controller simulation. 

In addition, the resulting Euler angles, corresponding to the attitude of the UAV, are shown 

in Fig. 4.3. It can be noted that the control objective is fulfilled as the angles converge to their 
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respective reference in finite time. Also, three yaw overshoots are appreciated, caused by the 

transitions of the roll and pitch from a constant value to a time variant value, and vice versa. 

 

 

 

Fig. 4.3 Euler angles and their references resulting from the outer loop backstepping 

controller simulation. 

 

 

 

Fig. 4.4 Position coordinates resulting from the outer loop backstepping controller 

simulation.  
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Now, Fig. 4.4 shows the position coordinates of the aircraft. As stabilize flight mode is 

defined, only the altitude 𝑧 is controlled, which performed satisfactorily. Lastly, Table 4.1 depicts 

three different indices of the RMSE (root mean square error) corresponding to the reference 

tracking performance of the experiment. It will be used to evaluate and select one option from the 

three proposed controllers. 

TABLE 4.1. RMSE CALCULATION FOR THE REFERENCE TRACKING SIMULATION OF THE 

BACKSTEPPING CONTROLLER 

Calculus 𝜙 𝜃 𝜓 𝑧 

Σ(𝑒𝑡
2) 1.46572× 10−5 rad2 1.44753× 10−5 rad2 1.10785× 10−10 rad2 1.120496847 m2 

Σ (
𝑒𝑡

2

𝑛
) 4.8841× 10−9 rad2 4.82351× 10−9 rad2 3.69162× 10−14 rad2 0.000373374 m2 

√Σ (
𝑒𝑡

2

𝑛
) 6.98863× 10−5 rad 6.94515× 10−5 rad 1.92136× 10−7 rad 0.019322901 m 

4.2.2 Backstepping Sliding Mode Controller 

The next simulation results are obtained with the backstepping sliding mode controller. 

The controller gains used for this simulation experiment are given by 

 𝑘𝑖 = 3, 𝑘𝑖+1 = 0.05, 𝑘7 = 3, 𝑘8 = 0.3, 𝑘𝑗𝑀 = 4000 (4-6) 

for 𝑖 = {1,2,3} and 𝑗 = {1,2,3,4}. 

 

Fig. 4.5 3D output path resulting from the outer loop backstepping sliding mode controller 

simulation. 
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Fig. 4.6 Euler angles and their references resulting from the outer loop backstepping 

sliding mode controller simulation. 

 

 

 

Fig. 4.7 Position coordinates resulting from the outer loop backstepping sliding mode 

controller simulation. 

The resulting 3D coordinates for the position of the vehicle are depicted in Fig. 4.5. It 

shows the resulting square path according to the references 𝜃𝑟 and 𝜙𝑟. A significant attenuation 

can be appreciated in the tracking of the variables, which is a direct consequence of the 
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implementation of the sliding mode term in the control law. 

Moreover, the resulting Euler angles, corresponding to the attitude of the vehicle, are 

depicted in Fig. 4.6. It can be noted that the control objective is fulfilled as the angles converge to 

their respective reference in finite time. In comparison with the previous controller, the overshoots 

are eliminated but a high frequency component is appreciated in the response. This is a 

characteristic of the variable structure control algorithms as sliding modes.  

Therefore, Fig. 4.7 shows the position coordinates of the aircraft. As stabilize flight mode 

is defined, only the altitude 𝑧 is controlled, which performed satisfactorily. Lastly, Table 4.2 

depicts three different indices of the RMSE corresponding to the reference tracking performance 

of the experiment. 

TABLE 4.2. RMSE CALCULATION FOR THE REFERENCE TRACKING SIMULATION OF THE 

BACKSTEPPING SLIDING MODE CONTROLLER 

Calculus 𝜙 𝜃 𝜓 𝑧 

Σ(𝑒𝑡
2) 5.11457× 10−5 rad2 4.78446× 10−5 rad2 1.24818× 10−6 rad2 2.981129865 m2 

Σ (
𝑒𝑡

2

𝑛
) 1.70429× 10−8 rad2 1.59429× 10−8 rad2 4.1592× 10−10 rad2 0.000993379 m2 

√Σ (
𝑒𝑡

2

𝑛
) 0.000130548 rad 0.000126265 rad 2.03941× 10−5 rad 0.031517913 m 

4.2.3 PID Controller 

The last simulation results correspond to the controller based on the PID methodology. The 

controller gains used for this simulation experiment are given by 

 𝑘𝑃𝑖 = 2, 𝑘𝐼𝑖 = 1, 𝑘𝐷𝑖 = 0.5     for 𝑖 = {2,3,4}, (4-7) 

 𝑘𝑃1 = 15, 𝑘𝐼1 = 14, 𝑘𝐷1 = 10, 𝑘𝑗𝑀 = 4000     for 𝑗 = {1,2,3,4}. (4-8) 

The resulting 3D coordinates for the position of the vehicle are depicted in Fig. 4.8. It 

shows the resulting square path according to the references 𝜃𝑟 and 𝜙𝑟. A significant increase of 

the tracking error can be appreciated with respect to the previous controllers. This lack of 

robustness is a feature of the PID controller itself. 

Furthermore, the resulting Euler angles, corresponding to the attitude of the vehicle, are 

depicted in Fig. 4.9. It can be noted that the control objective is fulfilled as the angles converge to 

their respective reference in finite time. In comparison with the previous controller, the overshoots 

are present again in the yaw response, which is, also, a feature of the PID controller due to the 
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compromise between a minimum stabilization time and a minimum control signal magnitude. Fig. 

4.10 shows the position coordinates of the aircraft. As stabilize flight mode is defined, only the 

altitude 𝑧 is controlled, which performed satisfactorily. Finally, Table 4.3 depicts three different 

indices of the RMSE corresponding to the reference tracking performance of the experiment. 

 

Fig. 4.8 3D output path resulting from the outer loop PID controller simulation. 

 

 

 

Fig. 4.9 Euler angles and their references resulting from the outer loop PID controller 

simulation. 
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Fig. 4.10 Position coordinates resulting from the outer loop PID controller simulation. 

TABLE 4.3. RMSE CALCULATION FOR THE REFERENCE TRACKING SIMULATION OF PID 

CONTROLLER 

Calculus 𝜙 𝜃 𝜓 𝑧 

Σ(𝑒𝑡
2) 0.000112219 rad2 0.000262295 rad2 1.83042× 10−11 rad2 18.08997305 m2 

Σ (
𝑒𝑡

2

𝑛
) 3.7394× 10−8 rad2 8.74025× 10−8 rad2 6.09936× 10−15 rad2 0.006027982 m2 

√Σ (
𝑒𝑡

2

𝑛
) 0.000193375 rad 0.000295639 rad 7.80984× 10−8 rad 0.077640078 m 

 

From the analysis in Table 4.1, Table 4.2, and Table 4.3, it can be concluded that the best 

controller performance was demonstrated by the backstepping algorithm based on the lowest error 

rates generated. Also, the low robustness of the PID controller and the high frequency components 

in the response of the backstepping sliding mode controller are good arguments to discard them. 

4.3. Inner Loop Backstepping Controller 

As described in section 3.3, the references 𝜔𝑖𝑟  for the inner loop controller are obtained 

from the control laws 𝑈1, 𝑈2, 𝑈3 and 𝑈4 of the outer loop controller. The tracking of these 

references is achieved by means of the voltage applied to each of the motors of the vehicle. 

It is important to notice that these voltage signals are not directly injected into the motors. 

Instead, these are converted to duty cycles of PWM signals, which are generated by the embedded 
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system. The electronic speed controllers (ESC) later convert them to the corresponding voltages 

that are applied to the motors. 

 

Fig. 4.11 Reference tracking of the angular velocities for the inner loop backstepping 

controller simulation. 

 

 

Fig. 4.12 PWM duty cycles corresponding to the voltages generated by the inner loop 

backstepping controller. 

The resulting reference tracking for the four motors of the vehicle are presented in Fig. 
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4.11. It can be observed that the tracking was achieved successfully, and that the magnitude of the 

generated angular velocities is within the range of a standard BLDC motor for UAV. Also, the 

settling time and maximum overshoot for the resulting tracking response are minimal as required 

for assuring the stabilization of the outer loop controller. Finally, Fig. 4.12 depicts the PWM duty 

cycle signals corresponding to the voltages generated by the controller. 

4.4. Conclusions 

Simulation environments are normally defined under ideal situations and, hence, they 

usually discard factors as disturbances and unmodeled dynamics. In order to evaluate the 

effectiveness of the proposed control schemes, simulation is a good starting point; nevertheless, 

the controller needs to be implemented in an embedded system to perform real-time experiments. 

Based on the analysis of the simulations results obtained for the three control algorithms 

for the outer loop, the backstepping controller is selected to develop the real-time experiment. 

Also, the same technique will be used for the inner control loop. 

In the next section, the methodology for the embedded implementation of the proposed 

control scheme is presented and the issues faced during the process are discussed. Furthermore, 

the code embedded in the main controller board is developed and explained, aiming to test the 

aircraft by interconnecting all of its subsystems. 
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5. Multi-Rotor Embedded System Development 

After a satisfactory simulation stage, the next step is to translate the designed controllers 

from a simulation environment to embedded code for real-time execution. This process is required 

because Matlab-Simulink uses code that is interpreted, not compiled, and is not compatible with 

embedded systems. Even though Matlab provides a tool for code generation, it generates several 

lines of unused code and headers. For that reason, manual code development is performed. 

 

Fig. 5.1 Overview of the UAV components and the electrical interconnections. 

As the overall control scheme is based on feedback, it relies on retrieving the status of 

important variables of the vehicle. For the outer control loop, these variables are its attitude and 

altitude, as a stabilize flight mode is implemented. For the inner control loop, the variables to 

retrieve are the current and angular velocities of the BLDC motors. The first phase of this process 

is carried out by sensors which are interfaced with the embedded system by means of appropriate 
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ports as analog to digital converter (ADC) inputs or digital inputs. Whereas the main embedded 

control system has a limited number of inputs, the use of a daughter-board is proposed to receive 

the measurements from a sub-set of the sensors of the vehicle and to maintain a constant 

communication with the main embedded board. The main board used for the implementation of 

the controller is the Pixhawk [PX4DT-18] and the daughter-board is a generic board based on an 

ATMEGA328/P microcontroller [Atmel-16]. The configuration of the embedded control 

architecture and its components is presented in Fig. 5.1. 

The rest of this chapter presents the role of these boards in the overall embedded controller 

and their relationships with the sensors and the actuators of the UAV. 

5.1. Daughter-Board Embedded Implementation 

This board is dedicated to interface the currents sensors and speed sensors of the actuators 

with the inner loop control algorithm, which is implemented in the main board. Moreover, the 

conditioning of the signals retrieved from the sensors is developed in the daughter-board as well. 

For instance, filtering stages are implemented in this board to improve the characteristics of the 

noisy measurements received by the sensors at a high-speed frequency. The communication 

between the daughter and the main board is stablished by using a serial protocol and data request 

polling. The daughter-board is based on an ATMEGA328/P microcontroller, which is capable of 

running at a frequency of 16 MHz, has 8 ADC channels available with up to 10-bit precision, and 

a universal synchronous and asynchronous receiver-transmitter (USART). As a result, the board 

can be used to sample up to 8 analog sensors and transmit the data through serial communication 

to the main board. 

5.1.1 Motors Current Sensors 

The electronic speed controllers (ESC) used in the UAV can support up to 12A when 

driving the brushless motors. Therefore, the same current rate, or higher, needs to be used to 

measure the power consumption in the motors during flight. For that, ACS712ELCTR-20A-T 

devices are used, which are low profile SOIC8 current sensors that can be attached to the UAV, 

without compromising the weight load that it can support. Basically, the sensors are linear Hall 
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Effect devices with copper conduction path that generates a magnetic field that is sensed by the 

Hall integrated circuit (IC) and converted to a proportional voltage signal. The device has a 

response time of 5 𝜇s and can operate with a 5V supply voltage, which is suitable for embedded 

systems and fits in the UAV circuitry. Moreover, due to the power saving needs of UAVs, these 

devices have an internal conductive resistance of 1.2 Ω that provides low power loss and supports 

up to 5 times the overcurrent conditions.  

Furthermore, based on Fig. 5.2, there is no need for using signal isolators as far as sensor 

pins 5 through 8 are isolated from the conductive paths. The sensors can read the current in both 

directions, from Ip+ to Ip- and vice versa. The device specification provides a chart that involves 

both cases, where can be observed that there is an offset which identifies where the current 

direction transition occurs, given the following equation 

 𝑉sensor-offset =
𝑉𝑐𝑐
2

 
(5-1) 

where 𝑉𝑐𝑐  is the supply voltage for the integrated circuit, defined as 5V. 

 

 

Fig. 5.2 Typical application of ACS712. 

Hence, using the sensitivity of the sensors retrieved from [Allegro-17], the equation for the 

measured current can be defined as 

 𝑉𝑜𝑢𝑡 = 𝑉sensor-offset + 0.1𝑖 (5-2) 

 
𝐴𝐷𝐶𝑟𝑒𝑎𝑑 =

1023

𝑉𝑐𝑐
𝑉𝑜𝑢𝑡  (5-3) 

 𝐴𝐷𝐶𝑟𝑒𝑎𝑑 =
1023

𝑉𝑐𝑐
(
𝑉𝑐𝑐
2

+ 0.1𝑖) (5-4) 

 
𝑖 =

𝐴𝐷𝐶𝑟𝑒𝑎𝑑𝑉𝑐𝑐
1023 −

𝑉𝑐𝑐
2

0.1
= 10𝑉𝑐𝑐 (

𝐴𝐷𝐶𝑟𝑒𝑎𝑑

1023
−

1

2
) = 50 (

𝐴𝐷𝐶𝑟𝑒𝑎𝑑

1023
−

1

2
) 

(5-5) 

where 𝐴𝐷𝐶𝑟𝑒𝑎𝑑  is the value obtained by the daughter-board by means of a 10-bit precision ADC. 

Seeing that the maximum and minimum values that the sensor can return are 4.5V (920 in 
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the ADC read) and 0.5V (102 in the ADC read), respectively, the maximum and minimum currents 

that can be obtained are 20A and -20A. With the goal to avoid decimals in the calculation due to 

embedded system floating-point limitations, the 𝐴𝐷𝐶𝑟𝑒𝑎𝑑 parameter is multiplied by a factor of 

1000, meaning that the 
1

2
 in the equation is seen as 500, as follows 

 𝑖𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 = 50 (
1000𝐴𝐷𝐶𝑟𝑒𝑎𝑑

1023
− 500). (5-6) 

Given (5-6), the current is expressed in milliamps format to be able to have more 

granularity in the embedded calculation. 

5.1.1.1 ADC Data Capture and Transmission 

The communication between the main and daughter-boards permits to the motors control 

algorithm, which is implemented in the main board, to define the necessary feedback from the 

current sensors. To that end, the daughter-board is configured to interrupt whenever an ADC 

conversion is ready and manually triggers the ADC for the next channel to be sensed. Basically, 

the board does a sweep for all the channels defined in a macro at a maximum of 8, and after 

reaching that limit, the ADC channel setting starts again from the first port. The implementation 

of these functionalities are described in the code depicted in Fig. F.1 and Fig. F.2 of the appendices. 

Hence, the daughter-board continually reads the sensors and sends the data through serial protocol 

when requested by the motors control algorithm implemented in the main board. 

It is important to notice that a normal conversion takes 1.5 ADC clock cycles for sample-

and-hold after setting the start of conversion bit (ADSC), and 13 clock cycles later, the conversion 

completes [Atmel-16]; after that, a 1 cycle period is needed in order to change the ADC channel. 

That gives a total of 15.5 ADC clock cycles for a single conversion to be ready, thereby, 124 ADC 

cycles are needed, for a maximum of 8 channels, as obtained in the following equation 

 ADC_cycles_for_8CH = 8(1.5 + 13 + 1) = 8(15.5) = 124 clock cycles (5-7) 

where the clock cycle is the ADC clock defined in the ADCSRA register, which is 2 MHz. In that 

regard, the time required to complete all the conversions is 15.5 𝜇s. Nevertheless, a single 

conversion is not accurate enough for measuring the motor current, and after inspection, it was 

noticed that 50 samples are a reasonable number that provides good accuracy, based on 

measurements. In this case, after all the operations required, the measurement provides a total of 

5.24-ms for all 8 channels and 2.63-ms in the case of 4 channels.  
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Once the sensor values are captured, the next step is to define a routine for capturing the 

requests from the main board. In this context, the USART device is configured in asynchronous 

mode on the daughter-board for sharing the ADC and speed captures. The implementation requires 

being ready whenever a data request arrives, and for that purpose, two different methods are 

defined. The first receives interrupts configured to respond as soon as a data request is received, 

as coded in Fig. F.3, and another for sending data once a board pin voltage level change is detected, 

as coded in Fig. F.4. These requests tell the daughter-board that the UAV controller board requires 

data, therefore the secondary board responds with a package containing the information. See Fig. 

F.5 for references on USART interrupt routine and Fig. F.6 for references in voltage level change 

interrupt routine.  

As far as the data requests is received at a 100 Hz frequency (10-ms time period) from the 

UAV controller scheduler, the transmission cannot exceed that lapse. Hence, the UART is defined 

to run at 500,000 bits per second (bps), as described in Fig. F.3, which gives the ability to send 

625 bytes in the scheduler period of the selected routine for getting the data. That gives enough 

space for sending the ADC and speed values and other information that might be required later, 

which is obtained as 

 
Number_of_bytes =

(
𝑏𝑝𝑠
𝐹

)

Bits_in_a_byte
=

(
500000

100
)

8
= 625 

(5-8) 

where 𝐹 is the UAV controller scheduler routine frequency, and 𝑏𝑝𝑠 is the baud rate [Atmel-16]. 

It is important to remark that during debug, it was found that because of the latency of the 

interrupt functions and data transmission, both were getting interrupted by the ADC interrupt 

vector, causing corruption of the ADC conversion array. Therefore, ADC interrupt disabling is 

required during the transmission process, and the subsequently interrupt restoration at the end of 

the data transference. The code that exemplifies the disabling and enabling of the ADC 

interruptions is shown in Fig. F.7 and Fig. F.8, respectively, meanwhile the code for transmission 

is shown in Fig. F.9. 

5.1.1.2 Motor Current Sensor Configuration and Validation 

After that the current sensing mechanism is set up, the next step is to test the functionality 

by running the brushless motors at different speeds, and by capturing the ADC reads from the 

ACS712. The current that is consumed by the motor needs to flow through the sensor, and for that 
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purpose, the circuit interconnection for testing is shown in Fig. 5.3. 

 

Fig. 5.3 ACS712 sensor interconnection. 

The measuring was performed by using different throttle settings and by sending the read 

data through serial communication to a host machine. Numerous reads are captured for each 

throttle value from 1000 to 2000, in increments of 50. During testing execution, noticeably sensor 

noise response was observed causing several ADC capturing bits fluctuation.  

The propellers considered for the testing are the 6030, which are 1 inch larger than the 

default 5030 and provide more thrust force, but as a sequence of the different inertia element and 

weight of this propellers specification, the speed capabilities are reduced and more power 

consumption is generated when used with the selected MT2204 2300KV brushless motors.  

With the aid of an oscilloscope, the sensor output signal was captured at the same time that 

the ADC was converting the signal, and by observation, it was noticed that the signal trends at the 

mean of the fluctuation, that gives the advice of the need of a filtering mechanism for having better 

performing reads, and that is the main reason for coding the multiple ADC sampling [Kester-06]. 

In Fig. 5.4, the current consumption can be observed, which is calculated by using the mean of the 

ADC captures regarding the previous explanation. 

 

Fig. 5.4 Current to PWM duty cycle characteristic curve. 
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5.1.2 Motor Speed Sensors 

The objective of the motors control algorithm, which is based on the backstepping 

technique, is to control the angular velocity 𝜔 of each actuator for tracking the references 𝜔𝑟 

defined by the outer control loop. Since the BLDC motor used in the UAV considered in this work 

do not have Hall effect sensors or an encoder coupled to its axle, an intermittent black and white 

band is attached in the motor case and CNY70 reflective sensors are used for capturing the light 

intensity change in the band when the motor is rotating, generating a pulse frequency that feeds a 

pin voltage level change interrupt in the daughter-board, as implemented in [González-Hernández-

12]. This represents an alternative of an optical encoder which is simple and low cost. 

The interruption generated by the encoder is time tracked with a timer, designated in the 

daughter microcontroller for that specific purpose and five different captures are made. The first 

capture takes a false pulse, which is taken in the middle of a pulse generated (not at the rising or 

falling edge), and then the next four pulses are timer captured, having two complete periods 

observed, which are averaged to obtain better accuracy. The black and white band of the encoder 

generates 40 level changes within a motor revolution, as shown in Fig. 5.5, and the reason to have 

multiple trackers is the time it takes to the motor to go through a single revolution, which is high 

regarding the timing limitation of 10 milliseconds for capturing the sensor in the daughter-board, 

sending the data to the main controller, and calculating the control outputs. Therefore, the more 

tags are in the encoder band, the less it takes to know the motor speed if only a couple of pin 

voltage level changes are time measured.  

 

Fig. 5.5 CNY70 reflective sensor setting and interconnection with the daughter-board. 

The code that takes care of initializing the timer for time capturing is shown in Fig. F.10, 

while the initialization for the pin voltage level change ports and their interruptions are displayed 

in Fig. F.4 and Fig. F.11, respectively. 
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It is important to notice that the code for current sensing from section 5.1.1 is running all 

together with the motor speed sensing algorithm, which can cause interruption overlap if they are 

not handled properly. For resolving that problem, an interrupt scheduler routine is created to assign 

execution status to the current and speed sensing tasks. In that way, only one interruption is running 

at a time, avoiding the interrupt miss for the speed period capturing, which is extremely time 

sensitive. The code for that implementation is shown in Fig. F.12. The results of the speed 

measurements at various throttle values are displayed in Fig. 5.6. 

 

Fig. 5.6 RPM speed to PWM duty cycle trending function. 

5.1.2.1 Motor Speed Sensing Filter 

During the motor control testing, it was noticed that the measurements from the encoder 

present fluctuations that inject errors in the UAV controller calculation. Therefore, the necessity 

of a digital filter is evident and two different schemes are implemented. The first one is a moving 

average (MA) filter, which considers 11 samples according to the following equation 

 MA𝑛 =
∑ 𝑥𝑖

𝑛
𝑖=𝑚

𝑛 − 𝑚
 

(5-9) 

where 𝑛 is the current sample number, 𝑚 is 𝑛 minus the number of samples desired for the average 

calculation, and 𝑥𝑖 is the 𝑖th raw data sample. The second filter approach is an exponentially 

weighted moving average (EWMA), where successively declining weights are applied as the 
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calculation goes further back in history as defined in 

 EWMA𝑛 = (1 − 𝛼)EWMA𝑛−1 + 𝛼𝑥𝑛 = EWMA𝑛−1 + 𝛼(𝑥𝑛 − EWMA𝑛−1)  
(5-10) 

where 𝛼 is the weight constant for the raw samples data, which presents a minimal error with a 

value of 0.132. 

In the analysis of both filters, the EWMA exposes a smaller RMSE, which is the acceptance 

criteria considered for the filter to be chosen. Moreover, EWMA provides smoother means of 

averaging, where data becomes gradually less influential as it ages, while MA treats each of the 

observations in the calculation equally when talking about importance, and later are suddenly 

disregarded as soon as the samples fall off the end of the number of elements considered [Everett-

11]. The code for the filter is shown in Fig. D.23. 

5.1.3 Graphical User Interface (GUI) for Data Capturing 

The system’s response can be obtained by exciting the motor with a step signal for a certain 

period and by sensing the current consumed by the motor during the time interval of the impulse. 

This is a standard procedure for obtaining the transfer function of a single input-single output 

(SISO) unknown system. For that purpose, a 100% duty cycle is injected into the ESC PWM input. 

During the test, serial communication is used for obtaining the data about current consumption and 

speed, but due to the lack of a data container in the microcontroller for the complete test, a 

graphical user interface (GUI) is needed for logging all the information, show the behavior in a 

graph, and write a data file containing all sensed variables. 

The GUI was created by using Java6 code due to its number of classes already available 

and for portability. Wireless serial communication is required and for that purpose, thus, a 

Bluetooth communication device is mounted in the aircraft for sending the data to the GUI. The 

UART protocol rate is defined at 921,600 bits per second (BPS), as supported by the wireless 

device, while the Pixhawk board defines two different baud rates, one for the GUI and another for 

the daughter-board connection; the last defined at the same rate indicated in 5.1.1. The code for 

that implementation is shown in Fig. E.1 Notice that an action listener is added in the code for 

tracking the serial connection status, which opens or closes the UART connection and also finishes 

 

 
6 Java, Version 1.8.0_162, Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065, 2018. 
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the execution of the sensors tracking. Due to the time restrictions to execute the controller code, 

the data transmission needs to be optimized as much as possible, which ends on defining a high 

transmission rate as mentioned. Since the algorithm needs to read data whenever it comes, a thread 

is required to oversee that task. Therefore, serial communication receiving thread is created, as 

shown in Fig. E.2. In this figure, it can be noticed that another routine is being called (PrintGraph); 

that function is in charge of capturing the serial data and split it into the multiple messages that the 

serial line received contains, also performing a caching method for better graphical performance 

while displaying the data in multiple panes. Fig. E.3 shows the algorithm of its implementation. 

Furthermore, a handler function for generating signals for the data request was identified 

as required, in order to emulate the UAV controller scheduler, which executes every 10-

milliseconds. At the end of the execution, when the serial communication is finished, all the data 

is logged in a comma-separated values (CSV) format file to be later used for system identification 

and flying parameters analysis. The code that executes that task is defined in Fig. E.4. A description 

of the designed GUI and its elements is depicted in Fig. 5.7. 

 

Fig. 5.7 Graphical user interface and its elements. 

5.2. Main Board Embedded Implementation 

The measurements acquired and conditioned by the daughter-board are received by the 
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main board to close the outer and the inner control loops. Hence, the control algorithm for both 

loops are implemented in the main board based on the backstepping algorithm. In addition, the 

main board directly receives the measurements of the inertial measurement unit (IMU) which 

provides the current attitude of the vehicle during the experiments.  

The implementation of the controllers is developed in a Pixhawk board, which is embedded 

in the vehicle, for real-time execution. Multiple implications about implementing integrals and 

derivatives calculation, errors computing, filtering mechanisms, variables value persistence within 

a function, among others, need to be considered. The following subsections describe the solutions 

deployed for each of these functions from an embedded C code perspective. 

5.2.1 Attitude and Position Sensors 

For the outer control loop implementation, it is necessary to retrieve the position 

coordinates 𝑥, 𝑦, and 𝑧 of the vehicle, and its attitude defined by the Euler angles roll (𝜙), pitch 

(𝜃) and yaw (𝜓). For that reason, sensors of estimators for these variables are required for 

calculating the error between the reference signals and the vehicle position and orientation in time. 

The Pixhawk platform, which is the main board in the considered vehicle, has an inertial 

measurement unit (IMU) that can provide the angles, and also an embedded barometer that can 

give an approximation of the altitude. However, after testing the barometer, it was noticed that its 

performance is characterized by relatively large fluctuations on its output, resulting in inaccurate 

measurement values. Therefore, the proposed solution is to incorporate the MB1043 HRLV-EZ4 

sonar sensor which provides millimeter-resolution the 𝑧 position. This board is connected directly 

to the Pixhawk using I2C protocol [Honegger-13], [Dronecode-18]. As the sonar sensor attached 

in the PX4Flow board provides altitude values in the range from 30 cm. to 5 m. having a blind 

spot in the 0 to 30 cm. range, a VL53L0XV2 laser sensor is connected in a I2C splitter and added 

in the devices list by setting the parameters required under the full parameter list of Mission 

Planner (RNGFND_TYPE = 16 “VL53L0X”, RNGFND_ADDR = 41, RNGFND_SCALING = 

1, RNGFND_MIN_CM = 5, RNGFND_MAX_CM = 120, RNGFND_GNDCLEAR = 10 [ADT-

19b]) for providing the 0 to 1 m altitude range value. The MB1043 HRLV-EZ4 sonar sensor is 

connected in the analog to digital converter (ADC) port of the Pixhawk platform for the larger 

range, which is sensed and decoded within the ArduCopter code as the Pixhawk only supports one 
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main altitude sensor. ArduCopter 3.5.7 does not support the VL53L0XV2 sensor natively until 

version 3.6.0, therefore, the sensor capability was migrated from the later version to the one being 

used to have the short distance readings for 𝑧 position control. 

Normally, most unmanned aerial vehicles (UAVs) rely on GPS for navigation. However, 

this navigation solution does not function properly for applications such as planetary exploration, 

indoor navigation, or under GPS spoofing scenarios. To solve that problem, the optical flow 

mechanism has been studied. This is a natural solution for navigation that is used by insects like 

honeybees, dragonflies, and flying birds. It can be treated as a 2D projection of the 3D perceived 

motion of objects, and it has a wide application for motion estimation [Chao-13]. Various 

navigation subtasks can be accomplished with the use of optical flow, such as distance estimation 

altitude hold, obstacle avoidance, velocity and height estimations, and vertical landing. To support 

of the previously mentioned estimation and autonomous functions, both new vision systems, and 

novel optical flow motion models are required. The most used devices for generating optical flow 

are optical computer mouse chips and CCD/CMOS sensors. It works by sensing the apparent 

motion of the brightness patterns of the feature points in an image, which is a projection of the 3D 

relative motion into the 2D image plane. The motion can be calculated from the movement of 

pixels with the same brightness value between two consequent images. For any point (𝜇, 𝜈) on the 

image plane, the optical flow vector can be expressed as [𝜇̇, 𝜈̇]𝑇, in the unit of pixels per 

frame/second, or radian per frame/second, or it can be expressed as a function of image pixels, 

𝑓(𝜇, 𝜈). A board called PX4Flow [ADT-16b] is an optical flow sensor that can provide information 

about the position of the drone body frame. It is based on a CMOS machine vision sensor and an 

ARM Cortex M4 microcontroller that calculates the optical flow in real-time at 250 Hz, however, 

the update of the optical flow is done at 200 Hz within the Pixhawk code. By using vision and an 

incorporated 3-axis gyroscope, the sensor obtains the ground texture and visible features to 

calculate the aircraft ground velocity. With that information, an approximation of the 𝑥 and 𝑦 

position can be obtained. 

During UAV control testing, it was noticed that the compass (yaw angle sensor) readings 

presented errors while increasing the speed of the rotors. This is due to the electric field produced 

by the rotors that interfere with the sensing mechanism of the device. To reduce the error, the 

Mission Planner software allows the user to calibrate the compass while the speed of the rotors is 

increased to consider the electric field in the process. The propellers are attached backward in the 
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motors to produce inverted force while keeping the UAV in place, during the increase of speed in 

steps in the calibration process. The global positioning system (GPS) sensor device attached in the 

aircraft provides a second compass, and it is enabled in the settings to have measurement 

redundancy to obtain more accurate sensing. To enable it the second compass, connect the 

Pixhawk board to the computer, access Mission Planner→Initial setup→Mandatory 

Hardware→Compass and checkbox “Use this compass” for compass #1 and #2 [ADT-19a]. 

5.2.2 Firmware Architecture and Execution 

As mentioned before, the outer control loop involves diverse subroutines to compute the 

terms that composes the control terms for the vehicle. In that regard, Fig. 5.8 shows a pseudocode 

which corresponds to the sequential execution of these subroutines. 

Define the system and controller constant parameters; 

while (Receive UAV flight mode reference signals 𝑋𝑟) do 
    Calculate the 1st and 2nd derivatives of the reference signals; 

    Retrieve UAV states 𝑋 for the specific flight mode; 
    Filter 𝑧 measurement with EWMA method; 
    Calculate the 1st and 2nd derivatives of the UAV states; 

    Compute outer loop controller to obtain 𝜔𝑟; 

    Calculate the derivatives 𝜔̇𝑟 and 𝜔̈𝑟; 
    Retrieve motors velocities 𝜔; 

    Filter 𝜔 measurements with EWMA method; 

    Compute inner loop controller to obtain 𝑉𝑎1−𝑎𝑛; 

    Transform 𝑉𝑎1−𝑎𝑛 to 𝑃𝑊𝑀1−𝑛; 

    Set 𝑃𝑊𝑀1−𝑛 signals in the main board output ports; 
end 

Fig. 5.8 Overall controller execution pseudo-code algorithm. 

First, it is necessary to define the constant parameters of the vehicle and both control 

algorithms. This subroutine is only executed once and is important to do so for improving 

execution time. Its code is defined in Fig. D.8. Whereas the function works for both flight modes, 

stabilize and trajectory tracking, two different sets of gains are defined, but for exemplification, 

only one set is presented in Fig. D.8. 

Next in line is the definition of the inverse matrix of the matrix of forces 𝑀. As mentioned 

in (1-6), this matrix is required to obtain the speed to be used as a reference for the motors 

controller (inner loop). The implementation requires the adjoint and the determinant for a square 

matrix or the Moore-Penrose pseudo-inverse for a non-square, which involves the transpose of the 

matrix, multiplications and inverse matrices [MacAusland-14]. Both equations are defined as 
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 If 𝑚 = 𝑛 ∴ 𝑀−1 =
adj(𝑀)

det(𝑀)
 

(5-11) 

 If 𝑚 ≠ 𝑛 ∴ {
𝑚 > 𝑛 ∴ 𝑀+ = (𝑀T𝑀)−1𝑀T

𝑚 < 𝑛 ∴ 𝑀+ = 𝑀T(𝑀𝑀T)−1
 (5-12) 

where 𝑚 is the number of rows, and 𝑛 is the number of columns in the matrix. In this 

implementation, a quad-rotor is being considered, and (5-13) is used. Hence, the definition of the 

determinant for a matrix of 4 × 4 can be obtained with 

 𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] (5-13) 

 det(𝐴) = 𝑎11|𝐴11| − 𝑎12|𝐴12| + 𝑎13|𝐴13| − ⋯+ 𝑎1𝑛|𝐴1𝑛| = ∑(−1)𝑘+1 𝑎1𝑘𝐴1𝑘

𝑛

𝑘=1

 (5-14) 

where |𝐴1𝑥| is the determinant resulting from subtracting row 1 and column 𝑥 from the matrix 

[Grossman-12], forming a 3 × 3 matrix for the quad-rotor case. For this sub-matrix, the 

determinant can be obtained as follows 

 |𝐴3×3| = 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12(𝑎21𝑎33 − 𝑎23𝑎32) + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31). 
(5-15) 

With (5-14) as a reference, the code for obtaining the determinant is defined in Fig. D.9, where 

CalcDet4x4Element is defined in Fig. D.10 and the determinants of each 3 × 3 matrix are calculated 

using (5-15), as coded in Fig. D.11. 

The determinant is defined and the next element to resolve is the adjoint of the matrix, 

which is formally defined as 

 adj(𝐴) = 𝐵T = (

|𝐴11| |𝐴12| ⋯ |𝐴1𝑛|

|𝐴21| |𝐴22| ⋯ |𝐴2𝑛|

⋮ ⋮ ⋮
|𝐴𝑛1| |𝐴𝑛2| ⋯ |𝐴𝑛𝑛|

)

T

 
(5-16) 

where 𝐵T is the transpose of the matrix of cofactors of 𝐴. With (5-16) as a reference, the code for 

calculating the cofactor matrix is defined in Fig. D.12. After that, the transpose is required, and for 

that purpose, the function in Fig. D.13 is created. The function that computes both tasks is 

CalcAdjMatrix4x4 in Fig. D.14, and as its name indicates, it calculates the adjoint for the 

provided 4 × 4 matrix. When both the determinant and the adjoint are in place, the calculation of 

the inverse matrix is possible, and the code for this process can be executed, as coded in Fig. D.15. 

The subroutines to define the control gains and the inverse matrix are only executed at the 

initialization stage. Afterward, a loop is executed for resolving the control terms each time a 

reference vector for the vehicle is received by the main board. To that end, the latest aircraft states 
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and the current value for their references are required. The user must generate these references, 

hence a reference signals generation routine is created. It takes the execution time steps as a 

parameter to be used in the pattern calculation to be tracked. The code in charge of this task is 

described in Fig. D.16 for trajectory tracking control. One important thing to notice is that the code 

does not get the target values instantly; in contrast, it generates integrable and derivable signals as 

the code needs time-continuous functions for its execution. Otherwise, the calculations present 

undetermined results, which are undesired. 

During the error calculation for the control terms computing, the reference values and their 

first and second derivatives are used. For simplifying the access to them, they are provided in an 

ordered index accessible fashion which can be addressed with the state number minus one, due to 

C++ memory pointers math. For generating that format and providing 𝜙, 𝜃,𝜓, 𝑧, 𝑥 and 𝑦 references 

and their derivatives, the GenerateXr function is defined in Fig. D.17, where the code covers the 

trajectory tracking case of the implementation. 

Section 3.1 describes the essential need for calculating the errors and their derivatives 

between the reference signals and the current state variables. Based on those equations, 

UAVErrorCalculation is developed in Fig. D.18, and considering that GenerateXr partially provides 

the reference values, this function completes the 12 states array by defining 𝑥2𝑟 , 𝑥4𝑟 , 𝑥6𝑟 , 𝑥8𝑟 , 𝑥10𝑟 

and 𝑥12𝑟 that are necessary for the calculation of the errors 𝑧2𝐷 , 𝑧4𝐷 , 𝑧6𝐷, 𝑧8𝐷 , 𝑧10𝐷  and 𝑧12𝐷 , 

respectively. 

The control algorithm requires an extra variable from the already listed. The angular speed 

difference generated by the rotors’ configuration Ω is used in the control equations. Depending on 

the spinning direction (clockwise or counterclockwise) and rotor position, the effect that the rotor 

speed of an actuator takes in the formula, as defined in Table 1.1. The code for the implementation 

is the block of Fig. D.19. This shows the examples captured for + and × quad-rotor configurations. 

Finally, the control algorithm can be defined using the previous code subroutines. Fig. D.21 

shows the example code for trajectory tracking flight mode using a backstepping scheme with 

linear control. 

5.2.2.1 Integral and Derivative Routines 

The implementation of the overall control scheme requires the calculation of the integrals 

and derivatives of certain variables. To cover that part, the implementation of two subroutines are 
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described in this section.  

For the integral subroutine, different solutions are available where the most common 

options are the rectangular approximation, trapezoidal approximation, and the Simpson’s method. 

The first one takes the sample period as a parameter to calculate the area below the curve using a 

rectangle between the sample 𝑛 − 1 and sample 𝑛 as follows 

 𝑖𝑛 = 𝑖𝑛−1 + 𝑇𝑥𝑛−1 (5-17) 

where 𝑖𝑛 is the current integral result, 𝑖𝑛−1 is the previous result, 𝑇 is the period between samples, 

and 𝑥𝑛−1 is the previous sample value. The trapezoidal approximation of the integral, computes 

the area under the curve by using trapezoid shapes between samples, with the following formula 

 𝑖𝑛 = 𝑖𝑛−1 + (
𝑇

2
) (𝑥 − 𝑥𝑛−1) 

(5-18) 

where 𝑥 is the last sample value. On the other hand, the Simpson’s rule for integral approximation 

is slightly different from the previous two since it uses three samples to calculate the area below 

the curve using a second-order polynomial, as follows 

 𝑖𝑛 = 𝑖𝑛−2 + (
𝑇

3
) (𝑥 + 4𝑥𝑛−1 + 𝑥𝑛−2) 

(5-19) 

where 𝑖𝑛−2 and 𝑥𝑛−2 are the result and the sampled values from two steps before, correspondingly 

[Lyons-11]. 

When generating the source code for the Simulink integrator block, the inspection of the 

code indicates that the approximation used is the rectangular. Hence, in order to fit the simulation 

results, that approximation is used as well in the embedded implementation. The code for that 

block is shown in Fig. D.3, which represents a single integral. 

It is important to mention that for every single integrator being used in the simulation, a 

different integrator routine is defined since the code needs to track the old result and previous value 

in order to calculate the integral, and that is being done by using static variables within the function. 

The Levant differentiator as the first option to compute the necessary derivatives for the 

control algorithms. Its implementation requires integrals and sign functions and, as the integrators 

are already developed, the only thing remaining is the sign function routine, which is defined based 

on the following equation and its corresponding code is depicted in Fig. D.4. 

 sign (𝑥) = {

1, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 = 0

−1, 𝑖𝑓 𝑥 < 0
 (5-20) 

One complication that was faced during the implementation of Levant’s differentiator is 
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that Simulink block uses a recursive term in the feedback loop of the integrators. For that reason, 

the embedded routine initializes the old values to 0 in the integrators. After the first call, the 

function updates the old value parameter in the integrator with the new result for later execution, 

to replicate the recursive mechanism of the loop. The code example for the integrators in Levant’s 

differentiator of the 𝑋 array is in Fig. D.5, while the complete differentiator code is in Fig. D.6. 

During the code execution, it was noticed that the second derivatives required in section 2 

expose some chattering when using the third-order Levant’s derivative, which makes the control 

unstable. This is due to the chattering multiplication produced from the first derivative that 

migrated to the second derivative. In the cases where second or higher-order derivatives are 

required, the solution to the problem is to implement and compare a first-difference and central-

difference approximation techniques for the discrete derivative. The first-difference differentiator 

is the process of computing the difference between successive 𝑥𝑛 samples 

 𝑦𝑛 = (
1

𝑇
) (𝑥𝑛 − 𝑥𝑛−1) 

(5-21) 

where 𝑦𝑛 is the differentiator’s output, 𝑇 is the sampling period, 𝑥𝑛 is the last sample and 𝑥𝑛−1 is 

the previous sample. Fig. 5.9 shows the first and second derivative using the first-difference 

algorithm. 

 

Fig. 5.9 First and second derivative approximations for a sinusoidal signal using the first-

difference algorithm. 

On the other hand, the central-difference differentiator is based on computing the average 

difference between alternate pairs of 𝑥𝑛 samples [Lyons-11] 
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 𝑦𝑛 =
𝑥𝑛 + 𝑥𝑛−2

2𝑇
. (5-22) 

There are numerous approximations considering 5, 7, 9 or more data points, but during the 

data analysis of them, it was observed that the resulting derivative shifts the signal to the right, by 

the number of elements considered for the calculus times the sampling period. For the mentioned 

reason, the derivative is not realistic for the control purposes, thus the first-difference 

approximation is chosen for second or higher-order derivatives, Levant’s are only used when 

single non-consecutive derivatives are required. Fig. 5.10 shows the first and second derivative 

approximations for a sinusoidal signal using the central-difference algorithm while Fig. 5.11 shows 

the Levant’s approximations. 

It is hard to notice the error between the first-difference algorithm and the central-

difference method, therefore, Table 5.1 is provided to show the RMSE analysis between the 

algorithms for the second derivatives, where the first-difference method exposes the minimum 

error. The code for the derivatives calculation routine is displayed in Fig. D.7. 

 

Fig. 5.10 First and second derivative approximations for a sinusoidal signal using the 

central-difference algorithm. 
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Fig. 5.11 First and second derivative approximations for a sinusoidal signal using Levant’s 

algorithm. 

TABLE 5.1. RMSE COMPARISON BETWEEN THE FIRST-DIFFERENCE, CENTRAL-
DIFFERENCE AND LEVANT’S DIFFERENTIATOR FOR THE SECOND DERIVATIVE OF A 

SINUSOIDAL SIGNAL. 

Calculus First-difference Central-difference Levant 

Σ(𝑒𝑡
2) 0.031083657 0.124328521 139.0915905 

Σ (
𝑒𝑡

2

𝑛
) 0.00004.97339 0.000198926 0.222546545 

√Σ(
𝑒𝑡

2

𝑛
) 0.007052223 0.0141041 0.471748391 

5.2.2.2 Motor Angular Speed Reference Routine 

The control signals 𝑈 = [𝑈1, 𝑈2, 𝑈3, 𝑈4]
𝑇 must be used to determine the references angular 

velocities 𝜔1𝑟 , 𝜔2𝑟 , 𝜔3𝑟  and 𝜔4𝑟  for the actuators. For this particular calculation, a block of code 

is defined in Fig. D.20, which uses 𝑈 obtained from the code in Fig. D.21 and the inverse matrix 

𝑀−1 defined in Fig. D.15. Based in (1-6), the speed is the square root of the multiplication of the 

inverse matrix by the array 𝑈. To not cause imaginary numbers calculations or change of spinning 

direction of the actuators, due to mechanical restrictions, a safety check is performed within the 

routine to analyze if the number to process with the square root is positive. 

Additionally, the motor control block that is described in the next subsection requires the 

derivative of 𝜔1𝑟 , 𝜔2𝑟 , 𝜔3𝑟  and 𝜔4𝑟 . For that purpose, the output generated by CalcWr is derived 

using the Levant’s derivative block in Fig. D.6. 
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5.2.2.3 Inner Loop Backstepping Controller Routine 

The controller from section 5.2.2 provides the input parameters to be used for generating 

the motor speed references, nevertheless, it does not consider the motor dynamics of the BLDC 

motors used in the UAV. For that reason, an extra controller for tracking the reference velocity is 

required. In section 3.3 a proposal of a controller is made, and the same implementation is 

developed here for the embedded execution. Fig. D.22 shows the code that performs this task, 

which is based on a loop of the number of motors in the configuration to calculate each control for 

the specific BLDC rotors in the UAV frame. 

5.2.2.4 Units Conversion Routines for the Controllers 

The current consumption and speed of the motors are being captured in a raw format by 

the daughter-board. When calculating the controller, amperes, and revolutions per minute (RPM) 

units are required since these are the formats used in the simulation, by the multi-rotor 

mathematical model, and by the control algorithm. For that reason, two conversion routines are 

defined in the Pixhawk board code. In section 5.1.1.1, the ADC to current formula is defined and, 

by using that reference, the function from converting the ADC reading into milliamps is defined 

in Fig. D.1. In Fig. F.10 the timer count increase of 0.5 microseconds is defined. Since embedded 

system implementations do not normally support floating-point processing, a factor of 1×107 is 

used to convert the 0.5 𝜇s into 5. The same multiplier is used to convert seconds into 0.1 𝜇s units, 

in order to do the calculation properly. The routine for RPM conversion is defined in Fig. D.2. 

5.3. Conclusions 

The theorical and experimental implementation of a control scheme for any type of system 

require different technical capabilities. Usually, during the theoretical phase, only simulations are 

carried out and, consequently, a lot of environmental factors are discarded as highly nonlinear 

dynamics, external disturbances, and noise. For the proposal of this work, a two-loop control 

scheme is designed, and its implementation has required two electronic board as well: the main 

and the daughter-boards. In addition, current and speed sensing for brushless motors are not 

straightforward tasks since the sensors used generate fluctuating output. In addition to the basic 
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ADC and timer reads, a filtering process needs to be used for having an accurate system input. 

Therefore, the mean calculation for the ADC sampling process is performed when analyzing the 

digital conversions, along with the EWMA filter computation for the speed data. This data 

processing becomes essential for the control algorithm in order to reduce the chattering and high-

frequency elements that can inject errors in the computation of the control signals. By avoiding 

these disturbances, the motors only handle governance control signals of the frequency and 

magnitude they can mechanically achieve. 
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6. Real-Time Experimental Results 

Once the hardware and software architecture has been developed and functionally 

validated, the next stage is to develop real-time experiments to assess the performance of the 

control scheme and its embedded implementation from an integral point of view. The vehicle’s 

parameters used during the experiments are depicted in Table 2.3 and Fig. 2.8, which correspond 

to the QAV250 UAV model. 

To this end, first, experiments for the reference tracking of a single output are carried out. 

As a stabilize flight mode is selected, the outputs of the systems are the altitude (𝑧), and the three 

Euler angles (𝜃, 𝜙, 𝜓) corresponding to the attitude of the vehicle. Therefore, four different 

experiments for this stage were developed and reported. On the other hand, a test-bench is 

developed to mount the vehicle during the single output reference tracking experiments. This 

allows to finely tune the controller gains in a safe manner.  

Finally, the performance of the overall control scheme for the reference tracking of the four 

outputs simultaneously is validated by means of free flight real time experiments. In this case, as 

the stabilize flight mode is set, the roll and pitch angles indirectly control the 𝑥 and 𝑦 positions of 

the aircraft. This device should be able to navigate in non-controlled environments, deal with the 

static error or handle variations such as changes in mass, payloads or inertia parameters. In the 

effort to test the robustness of the algorithms, disturbances are applied to the system to observe the 

functionality and tracking ability during flight. 

6.1. Test-Bench Experiments 

Previous to the free flight experiment, single output reference tracking experiments were 

carried out by using a test-bench. These tests structures allow the user to validate the controllers 

separately and to skip some parameters from the equation, as mass for example, but with a cost-

benefit of changing the center of rotation in the aircraft to the point of joint with the mechanism. 

Fig. 6.1 shows the test-bench for the roll (𝜙) and pitch (𝜃) reference tracking experiments. It 

consists of a fixed metal tube that trespasses longitudinally the structure of the aircraft and it is 
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coupled to the vehicle by bearings which let the vehicle rotate around the fixed tube. Depending 

on the yaw position of the vehicle with respect the fixed tube, the configuration permits to test the 

pitch and roll rotation of the vehicle. 

 

 

Fig. 6.1 Roll and pitch reference tracking control test-bench. 

On the other hand, Fig. 6.2 depicts the test-bench for the yaw (𝜓) and altitude (𝑧) 

experiments. It is composed of an external tubular fixed base and an internal tubular base attached 

to the bottom part of the vehicle. This allows the vehicle to translate vertically and to rotate 

longitudinally around the fixed base. 

 

 

Fig. 6.2 Altitude and yaw angle reference tracking control test-bench. 
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6.1.1 Outer Control Loop Single Reference Tracking 

The real time experiments were initially carried out selecting a single output of the vehicle 

on a test-bench designed to this end. The first experiment was developed by defining the output as 

the roll angle 𝜙 and considering the reference as 𝜙𝑟 = 0.4 cos(2𝜋𝑡) rad. This reference is 

determined by taking into consideration the mechanical limitations of the test-bench and the multi-

rotor. Moreover, the reference includes a change in the sign of the angular velocity 𝜙̇ which 

demands a higher performance from the actuators and the inner loop controller. The results are 

depicted in Fig. 6.3 considering the following control gains 

 𝑘1 = 20.53,𝑘2 = 20.53. (6-1) 

 

Fig. 6.3 Test-bench experiment results for the reference tracking of the vehicle’s roll angle 

𝜙. 

It can be noted that the reference tracking is developed successfully. As expected, during 

the sign change of the angular velocity 𝜙̇ the actuators performance is decreased as their behavior 

is stressed. However, the overall experiment for this individual output is satisfactory. 

Then, the same reference vector 𝜃𝑟 = 0.4 cos(2𝜋𝑡) rad is defined for the pitch angle 𝜃 of 

the vehicle. The result of the experiment is shown in Fig. 6.4, considering the following control 

gains 

 𝑘3 = 40.92, 𝑘4 = 7.83, (6-2) 

and demonstrating the convergence of the error variable to zero. 
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Fig. 6.4 Test-bench experiment results for the reference tracking of the vehicle’s pitch 

angle 𝜃. 

In addition, the performance of the reference tracking for the pitch angle is better than the 

one obtained for roll angle as it is not affected by the sign change of 𝜃̇. 

For the yaw angle 𝜓, the reference vector is defined as 𝜓𝑟 = 0.8 cos(2𝜋𝑡) rad and the 

results of the experiments are depicted in Fig. 6.5 with the control gains defined as 

 𝑘5 = 15, 𝑘6 = 21.5. (6-3) 

 

Fig. 6.5 Test-bench experiment results for the reference tracking of the vehicle’s yaw 

angle 𝜓. 

The figure shows that the control objective is fulfilled but the transient part of the response 

is characterized by a considerable large overdamping. This can be attributed to the inertia 

generated by the initial error value and to the well-known inability of the linear control terms, 

utilized during the backstepping control algorithm, to compensate this phenomenon. 

Finally, the altitude 𝑧 reference tracking experiment was carried out considering the 
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reference 𝑧𝑟 = 0.28 + 0.03cos(2𝜋𝑡)m, and considering 𝜙𝑟 = 𝜃𝑟 = 𝜓𝑟 = 0. The resulting 

control gains are given by 

and the experimental result is shown in Fig. 6.6. 

 

Fig. 6.6 Test-bench experiment results for the reference tracking of the vehicle’s altitude 

𝑧. 

The results of the four single output reference tracking can be appreciated in [Mayorga-

Macías-20] where the real time experiments are presented. The use of the test-benches for the 

reference tracking of a single output permitted to demonstrate the performance of the controller 

and to heuristically tune the controller gains by means of the repetition of the experiment until the 

desired performance was obtained. This process allowed to tune the inner control loop gains as 

well, which resulted with the value 𝑘𝑖𝑀 = 305 for 𝑖 = 1,2,3,4. 

Evidently, there is a price to pay for the use of the test-benches during the controller gains 

tuning process. It is related to the undesirable and unmodelled dynamics that the test benches add 

to the closed loop system which are originated by the inertia of the benches’ components that were 

coupled to the vehicle, and the friction of their degrees of freedom. Nonetheless, the validation of 

the performance of the overall controller without these mechanical limitations is presented in the 

following section of this work.  
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 𝑘7 = 9.55, 𝑘8 = 9.6, (6-4) 
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6.2. Free Flight Experiments 

Once the experiments with the test benches have been done, resulting in the tuning of all 

the controller gains, the experiments with the aircraft in free flight are ready to be carried out. 

For these experiments, the reference for the yaw angle 𝜓𝑟 of the vehicle was defined as 

zero, and the references for pitch 𝜃𝑟 and roll 𝜙𝑟 angles were defined to generate a square path for 

the coordinates 𝑥 and 𝑦 of the vehicle, by means of the stabilize flight mode. To this end, two 

sinusoidal components for the references 𝜃𝑟 and 𝜙𝑟 were generated: the initial and larger 

component with 0.18 rad of amplitude and a terminal and smaller component with amplitude of 

0.04 rad which is used to stop cancel inertia of the vehicle generated by its previous motion. 

Finally, the altitude reference 𝑧𝑟 was designed to obtain a smooth transition from zero altitude to 

0.7 m and vice versa. It aims to develop a safer take-off and landing of the vehicle during the 

experiments. 

The results for the experiment are depicted in Fig. 6.7, Fig. 6.8, Fig. 6.9 and Fig. 6.10 where 

the tracking response for  𝜙, 𝜃, 𝜓 and 𝑧 are shown, respectively. 

 

Fig. 6.7 Free flight experiment results for the reference tracking of the vehicle’s roll angle 

𝜙. 
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Fig. 6.8 Free flight experiment results for the reference tracking of the vehicle’s pitch 

angle 𝜃. 

 

Fig. 6.9 Free flight experiment results for the reference tracking of the vehicle’s yaw angle 

𝜓. 

 

 

Fig. 6.10 Free flight experiment results for the reference tracking of the vehicle’s altitude 

𝑧. 
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It can be noted that the best performance is obtained for the reference tracking of the pitch 

angle 𝜃𝑟, as the performance for the tracking of other three references show a significant steady 

state error. Moreover, the worst performance was obtained for the tracking of the yaw angle 

reference 𝜓𝑟 as it shows the larger tracking error amplitude.  

This can also be concluded by analyzing Table 6.1 where the root-mean-square error for 

each of the tracked references of the experiment are displayed. Nonetheless, the control objective 

was achieved, and its results can be appreciated in detail in [González-Jiménez-20], where a video 

of the free flight real time experiment is shown. 

TABLE 6.1. RMSE CALCULATION FOR THE REFERENCE TRACKING OF THE VEHICLE IN 

FREE FLIGHT 

Calculus 𝜙 𝜃 𝜓 𝑧 

Σ(𝑒𝑡
2) 17.8588 rad2 5.1136 rad2 5.4792 rad2 0.3087 m2 

Σ (
𝑒𝑡

2

𝑛
) 0.002443733 rad2 0.000699726 rad2 0.000749754 rad2 0.0000655414 m2 

√Σ (
𝑒𝑡

2

𝑛
) 0.049434127 rad 0.026452341 rad 0.027381631 rad 0.008095764 m 

 

It is important to mention that, in contrast with test-bench experiments, these experimental 

results were affected by more external disturbances and unmodelled dynamics. For instance, the 

ArduPilot code provides centimeter granularity for the altitude sensing independently of the sensor 

capabilities, which causes size considerable error in the derivatives due to the discretization 

method. Hence, instead of using the centimeter granularity approximation, the code was modified 

to accumulate the millimeters readings from VL53L0XV2, and then send the value to the 

controller. In addition, noise was present in the altitude measurement as well, and an EWMA filter 

was applied. On the other hand, the payload of the aircraft is defined as 0.85 kg, but the experiment 

was performed with additional 50 gr. of mass attached to the aircraft, which composes a parametric 

variation to the system. Also, the moments of inertia use the mass parameter to calculate its value, 

and since the factor was changed, 𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 compose not modeled dynamics. Moreover, three-

phase brushless motors are used in the vehicle, but their models were approximated considering 

single-phase DC models. This adds another perturbation to the controller that needs to be addressed 

in future works.  
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6.3. Conclusions 

Code implementation and its debugging perform an essential role when implementing 

control algorithm for a real time experiment with a UAV. These tasks are not designed during the 

controller design stage, so a part of their development is carried out during the experiments and 

the designer must troubleshoot as the issues are detected. Usually, these issues are generated due 

to unconsidered subsystems in the dynamical model of the vehicle, noise in the instrumentation of 

the vehicle, external disturbances, and parametric variations. 

Despite all these factors, this chapter showed successful results during the real time 

experiments for the embedded implementation of the overall control scheme designed. The 

selected flight mode was Stabilize, which means that the controller receives reference signals for 

the attitude (roll, pitch and yaw) and the altitude if the aircraft. Therefore, the longitudinal and 

lateral coordinates of the UAV are indirectly controlled by the pitch and roll angle, respectively. 

This principle was used to generate the reference for the experiments to generate a rectangular path 

for the position of the vehicle. 

It is worth to note, that this work considers the backstepping control technique to synthetize 

both control loops of the overall scheme, but there are plenty other algorithms to be investigated 

and implemented with better features and characteristics related to robustness, smooth 

convergence, energy optimality or adaptability. 
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General Conclusions 

In this work, the design and implementation of a control scheme for the reference tracking 

of a multi-rotor in Stabilization flight mode was presented. In this flight mode, the controller 

receives four reference signals: three for the Euler angles that define the orientation of the aircraft 

and one more for its altitude. 

As a first step in the design of the proposed control scheme, the differential equations that 

define the dynamics of the vehicle and its actuators were obtained. From these equations, a state 

space model was obtained with 12 state variables corresponding to the linear and angular positions 

and velocities of the UAV. The actuators of this type of vehicle are brushless electric motors 

(BLDC) whose power interface is known as ESC, from Electronic Speed Controller. To avoid the 

complexity of the equations of this type of motor and the characterization of its parameters, transfer 

functions (TF) of the actuators were obtained experimentally considering the duty cycle of the 

PWM signal that is introduced to the ESC of the motor and as outputs the angular speed of the 

motor and its current. 

Once a dynamic model of the complete system and its actuators had been obtained, a 

control scheme with two feedback loops was proposed: an outer loop that controls the dynamics 

of the vehicle, and an inner loop that controls the dynamics of the actuators. Based on this scheme, 

three control algorithms were designed for the external loop using three different techniques: 

backstepping, sliding modes, and PID. These three controllers were designed for two different 

flight modes: Stabilization and Trajectory. In addition, the backstepping technique was also used 

to design the inner loop controller of the global scheme. Using the dynamic models of the vehicle 

and actuators, and the controllers for the external and internal loops, simulation results were 

obtained that validated the effectiveness of the proposed algorithms. 

Of the two flight modes considered in simulation, Stabilization was chosen to carry out the 

embedded implementation and the experiments in real time. This is because it was considered to 

carry out the experiments indoors, and there was no sensor available that would allow us to 

feedback the position of the vehicle accurately and precisely. Additionally, the backstepping based 

controller were chosen for both feedback loops due to the low robustness of the PID controller and 

the high-frequency components that slide modes induce in system response and the generated 
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control signals. 

After the simulation stage, the algorithms were implemented in a system embedded in the 

aircraft. The implementation required, in addition to coding the algorithm, designing an angular 

velocity sensor for the actuator axles, and conditioning the signals measured by the current sensors. 

To make the implementation of these stages more efficient and have more input / output ports in 

the embedded system, a daughter embedded board was integrated to the platform that was in charge 

of the acquisition and instrumentation stages of said sensors, and to maintain constant 

communication with the main embedded system. The control algorithms for both feedback loops 

were encoded on the main board. 

Finally, the experiments were carried out in real time with the embedded implementation 

of the designed global control scheme. For safety and gain tuning purposes, the experiments were 

first conducted using a test bench that limited the degrees of freedom of the vehicle. This made it 

possible to validate the control algorithm for tracking the references individually. Once a good 

performance was obtained under this modality, the obtained gains were used for the 

implementation of the proposed control scheme with the vehicle in free flight. These experiments 

were successful as all four references were tracked simultaneously. 

On the other hand, implementing a control scheme for the vehicle that considers the sensing 

of the current consumed by the actuators allows the detection of faults in the motors and the 

reconfiguration of the controller to increase its robustness during the occurrence of these events 

[Chen-14], [Merheb], [Santos], [Qian-16]. 

Moreover, the system can easily implement different control algorithms that can improve 

the performance of the closed-loop system. The only requirement, from a code development point 

of view, is the modification of the control routines implemented on the main embedded system. 

Assuming the proper control of the aircraft, other research fields can be developed to give 

more autonomy to the device. One approach that can be investigated is the use of clustering for 

data compression in images taken from the aircraft to classify them in three different categories as 

left, center, and right with the purpose of obtaining the yaw angle of the vehicle with respect to a 

desired pathway. It will allow to the controller to orient the aircraft properly and to continue the 

flight in the desired route. This area of research requires the implementation of a neural network 

method and image sets for training the system, to obtain the array of weights of the controller that 

drives the UAV [Giusti-15]. 
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Additionally, some improvements were identified from the embedded implementation 

point of view. The variables and calculations that require floating-point support use double (8 

bytes) data type; nevertheless, the level of precision required for the computation is not at that 

level, therefore the float (4 bytes) data type could be used, decreasing the data memory required 

by the storing device. 

One of the limitations faced regarding the execution frequency for the controllers in this 

dissertation, was the developer restrictions from the ArduCopter scheduler as 10ms is the fastest 

pre-defined task that does not interrupt the other routines running. This limits the update frequency 

for the control outputs and in order to accelerate the processing, a new software architecture needs 

to be selected from the pre-existing open source solutions that provide alternatives to the 

developer, otherwise, implement a new software and hardware architecture. 
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Conclusiones Generales 

En este trabajo se presentó el diseño e implementación de un esquema de control para el 

seguimiento de referencia de un multi-rotor en modo de vuelo Estabilización. En este modo de 

vuelo, el controlador recibe cuatro señales de referencia: tres para los ángulos de Euler que definen 

la orientación de la aeronave y uno más para su altitud.  

Como primer paso para el diseño del esquema de control propuesto, se obtuvieron las 

ecuaciones diferenciales que definen la dinámica del vehículo y de sus actuadores. De estas 

ecuaciones, se obtuvo un modelo en espacio de estados con 12 variables de estado 

correspondientes a las posiciones y velocidades lineales y angulares del UAV. Los actuadores de 

este tipo de vehículos son motores eléctricos sin escobillas (BLDC) cuya interfaz de potencia se 

conoce como ESC, del inglés Electronic Speed Controller. Para evitar la complejidad de las 

ecuaciones de este tipo de motor y la caracterización de sus parámetros, se obtuvieron 

experimentalmente funciones de transferencia (FDT) de los actuadores considerando el ciclo de 

trabajo de la señal PWM que se introduce al ESC del motor y como salidas la velocidad angular 

del motor y su corriente. 

Una vez obtenido un modelo dinámico del sistema completo y sus actuadores, se planteó 

un esquema de control con dos lazos de retroalimentación: un lazo externo que controla la 

dinámica del vehículo, y un lazo interno que controla la dinámica de los actuadores. Basado en 

este esquema, se diseñaron tres algoritmos de control para el lazo externo usando tres diferentes 

técnicas: backstepping, modos deslizantes y PID. Estos tres controladores se diseñaron en dos 

diferentes modos de vuelo: Estabilización y Trayectoria. Además, se utilizó la técnica de 

backstepping también para diseñar el controlador del lazo interno del esquema global. Usando los 

modelos dinámicos del vehículo y los actuadores, y los controladores para los lazos externo e 

interno, se obtuvieron resultados de simulación que validaron la efectividad de los algoritmos 

propuestos. 

De los dos modos de vuelos considerados en simulación, se eligió el de Estabilización para 

realizar la implementación embebida y los experimentos en tiempo real. Esto debido a que se 

planteó realizar dichos experimentos en interiores y no se contaba con un sensor que nos permitiera 

retroalimentar de forma exacta y precisa la posición del vehículo durante los experimentos. 
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Además, se eligieron los controladores basados en backstepping para ambos lazos de 

retroalimentación debido a la baja robustez del controlador PID y a las componentes de alta 

frecuencia que los modos deslizantes inducen en la respuesta del sistema y las señales de control 

generadas. 

Después de la etapa de simulación, se realizó la implementación de los algoritmos en un 

sistema embebido en la aeronave. La implementación requirió, además de la codificación del 

algoritmo, el diseñar un sensor de velocidad angular para los ejes de los actuadores y el 

acondicionar las señales medidas por los sensores de corriente. Para hacer más eficiente la 

implementación de estas etapas y contar con más puertos entrada/salida en el sistema embebido, 

se integró una tarjeta de procesamiento auxiliar que se encargó de las etapas de adquisición e 

instrumentación de dichos sensores, y mantener constante comunicación con la tarjeta de 

procesamiento principal. En la tarjeta principal se codificaron los algoritmos de control de ambos 

lazos de retroalimentación. 

Finalmente, se realizaron los experimentos en tiempo real con la implementación embebida 

del esquema global de control diseñado. Por cuestiones de seguridad y sintonización de ganancias, 

primero se realizaron los experimentos mediante una cama de pruebas que limitaba los grados de 

libertad solo a algunas de las variables del vehículo. Esto permitía validar el algoritmo de control 

para el seguimiento de las referencias de forma individual. Una vez obtenido un buen desempeño 

bajo esta modalidad, se usaron las ganancias obtenidas para la implementación del esquema 

propuesto de control con el vehículo en vuelo libre. Estos experimentos resultaron satisfactorios 

al lograrse el seguimiento de las cuatro referencias simultáneamente. 

Por otro lado, el instrumentar un esquema de control para el vehículo que considera el 

sensado de la corriente consumida por los actuadores permite la detección de fallas en los motores 

y la reconfiguración del controlador para incrementar su robustez ante estos eventos [Chen-14], 

[Merheb], [Santos], [Qian-16]. 

Además, el sistema es capaz de implementar de forma sencilla diferentes algoritmos de 

control que pueden mejorar el desempeño del sistema en lazo cerrado. El único requerimiento, 

desde el punto de vista de desarrollo de código, es la modificación de las rutinas de control 

implementadas en la tarjeta de procesamiento principal. 

Con el control adecuado de la aeronave, otras áreas pueden ser involucradas en el desarrollo 

para dar autonomía al dispositivo. Una de las aproximaciones que pueden ser investigadas es la 
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del uso de clustering para compresión de datos en imágenes obtenidas desde la nave, y después 

clasificarlas en tres diferentes categorías como izquierda, centro, y derecha con el propósito de 

saber la orientación en el ángulo de yaw en el sistema sobre un camino o vereda, para finalmente 

orientar el dispositivo en su posición central y entonces continuar el vuelo en la ruta deseada. Esta 

área de investigación requiere de la implementación de alguno de los métodos de redes neuronales, 

y conjuntos imágenes para entrenar el sistema y con ello obtener el arreglo de pesos para calcular 

las salidas de control para la orientación del VANT [Giusti-15]. 

Adicionalmente a lo ya mencionado, se identifican algunas mejoras a realizar en la 

implementación embebida. Las variables y cálculos que requieren soporte de punto flotante hacen 

uso de tipos de dato doble (8 bytes); sin embargo, la precisión necesaria para el cómputo no 

requiere de tal nivel precisión, por lo que el tipo de dato usado en los algoritmos podría ser 

cambiado a flotante (4 bytes), disminuyendo con ello la memoria de datos requerida. 

Una de las limitantes con respecto a la frecuencia de ejecución de los controladores en este 

trabajo, fue la restricción de tareas definidas en ArduCopter para su uso por los desarrolladores, 

siendo de 10 ms la tarea predefinida más rápida que no interrumpe las tareas programadas, 

limitando a esa frecuencia la actualización de las salidas de control. Para acelerar el procesamiento, 

nueva arquitectura de software debe ser elegida, ya sea en soluciones existentes de código abierto 

que proporcionen alternativas al desarrollador, o en su caso, la implementación de una nueva 

arquitectura tanto de software como de hardware. 
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C. UAV SIMULATION SOURCE CODE 

function [Yaw, Z, X, Y] = main(t) 

  Yaw = 0; Zr  = 3; Xr  = 1; Yr  = 2; slope = 2.9; 

  t1 = 4; t2 = 8; t3 = 12; t4 = 16; %Times 

  %Positions 

  Z = Zr/(1 + exp (-slope*(t-(5/slope))))^2; 

  X = Xr/(1 + exp (-slope*(t-t1-(5/slope))))^2 -  

      Xr/(1 + exp (-slope*(t-t3-(5/slope))))^2; 

  Y = Yr/(1 + exp (-slope*(t-t2-(5/slope))))^2 -  

      Yr/(1 + exp (-slope*(t-t4-(5/slope))))^2; 

end 

Fig. C.1 Yaw, 𝑥, 𝑦 and 𝑧 reference definition for simulation. 

function U = main(m, g, l, Ix, Iy, Iz, Jr, k, omega, x, xrp, z, zp) 

  %Parameters  1          2           3           4          5 

  a  = [((Iy - Iz)/Ix) (-Jr/Ix) ((Iz - Ix)/Iy) (Jr/Iy) ((Ix - Iy)/Iz)]; 

  %       1      2      3 

  b  = [(l/Ix) (l/Iy) (l/Iz)]; 

 

  %Z position control 

  U1 = (m/(cos(x(1))*cos(x(3))))*(xrp(8) + k(7)*zp(7) + g + z(7) +  

       k(8)*z(8)); 

 

  %Roll angle control 

  U2 = (1/b(1))*(xrp(2) + k(1)*zp(1) - x(4)*x(6)*a(1) - x(4)*a(2)*omega +  

       z(1) + k(2)*z(2)); 

 

  %Pitch angle control 

  U3 = (1/b(2))*(xrp(4) + k(3)*zp(3) - x(2)*x(6)*a(3) - x(2)*a(4)*omega +  

       z(3) + k(4)*z(4)); 

 

  %Yaw angle control 

  U4 = (1/b(3))*(xrp(6) + k(5)*zp(5) - x(2)*x(4)*a(5) + z(5) + k(6)*z(6)); 

  U = [U1; U2; U3; U4]; 

end 

Fig. C.2 UAV backstepping control equations for stabilize flight mode. 

function [U,x1r,x3r] = main(m, g, l, Ix, Iy, Iz, Jr, k, omega, x, xrp, z, zp) 

  %Parameters 

  %            1          2           3           4          5 

  a  = [((Iy - Iz)/Ix) (-Jr/Ix) ((Iz - Ix)/Iy) (Jr/Iy) ((Ix - Iy)/Iz)]; 

  %       1      2      3 

  b  = [(l/Ix) (l/Iy) (l/Iz)]; 

 

  %Z position control 

  U1 = (m/(cos(x(1))*cos(x(3))))*(xrp(8) + k(7)*zp(7) + g + z(7)*abs(z(8)) + k(8)*sign(z(8))); 

 

  %Roll angle control 

  U2 = (1/b(1))*(xrp(2) + k(1)*zp(1) - x(4)*x(6)*a(1) - x(4)*a(2)*omega + z(1)*abs(z(2)) +  

       k(2)*sign(z(2))); 

 

  %Pitch angle control 

  U3 = (1/b(2))*(xrp(4) + k(3)*zp(3) - x(2)*x(6)*a(3) - x(2)*a(4)*omega + z(3)*abs(z(4)) +  

       k(4)*sign(z(4))); 

 

  %Yaw angle control 

  U4 = (1/b(3))*(xrp(6) + k(5)*zp(5) - x(2)*x(4)*a(5) + z(5)*abs(z(6)) + k(6)*sign(z(6))); 

  U = [U1; U2; U3; U4]; 

end 

Fig. C.3 UAV backstepping sliding mode control equations for stabilize flight mode. 
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function dx  = main(x, M, W_rps, m, g, l, Ix, Iy, Iz, Jr, xr, omega) 

  %            1          2          3          4          5 

  a  = [((Iy - Iz)/Ix) (-Jr/Ix) ((Iz - Ix)/Iy) (Jr/Iy) ((Ix - Iy)/Iz)]; 

  %       1      2      3 

  b  = [(l/Ix) (l/Iy) (l/Iz)]; 

  %Note: Use RPS instead of RPM 

  U = M * power(W_rps, 2); 

  %Variables 

  ux = (cos(x(1))*sin(x(3))*cos(x(5)) + sin(x(1))*sin(x(5))); 

  uy = (cos(x(1))*sin(x(3))*sin(x(5)) - sin(x(1))*cos(x(5))); 

  %Roll(x) 

  dx1  = x(2); 

  dx2  = x(4)*x(6)*a(1) + x(4)*a(2)*omega + b(1)*U(2); 

  %Pitch(y) 

  dx3  = x(4); 

  dx4  = x(2)*x(6)*a(3) + x(2)*a(4)*omega + b(2)*U(3); 

  %Yaw(z) 

  dx5  = x(6); 

  dx6  = x(4)*x(2)*a(5) + b(3)*U(4); 

  %Z 

  dx7  = x(8); 

  dx8  = -g + (cos(x(1))*cos(x(3)))*(1/m)*U(1); 

  %X 

  dx9  = x(10); 

  dx10 = ux*(1/m)*U(1); 

  %Y 

  dx11 = x(12); 

  dx12 = uy*(1/m)*U(1); 

  dx = [dx1; dx2; dx3; dx4; dx5; dx6; dx7; dx8; dx9; dx10; dx11; dx12]; 

end 

Fig. C.4 UAV mathematical model. 

function [xrV, z, zp] = main(x, xr, k) 

  xrV = zeros([length(xr), 1]); 

  z   = zeros([length(xr), 1]); 

  zp  = zeros([length(xr), 1]); 

  %Roll angle control errors 

  z(1)    = xr(1) - x(1);         zp(1)   = xr(2) - x(2); 

  xrV(2)  = xr(2) + k(1)*z(1);    z(2)    = xrV(2) - x(2); 

  %Pitch angle control errors 

  z(3)    = xr(3) - x(3);         zp(3)   = xr(4) - x(4); 

  xrV(4)  = xr(4) + k(3)*z(3);    z(4)    = xrV(4) - x(4); 

  %Yaw angle control errors 

  z(5)    = xr(5) - x(5);         zp(5)   = xr(6) - x(6); 

  xrV(6)  = xr(6) + k(5)*z(5);    z(6)    = xrV(6) - x(6); 

  %Z position control errors 

  z(7)    = xr(7) - x(7);         zp(7)   = xr(8) - x(8); 

  xrV(8)  = xr(8) + k(7)*z(7);    z(8)    = xrV(8) - x(8); 

  %X position control errors 

  z(9)    = xr(9) - x(9);         zp(9)   = xr(10) - x(10); 

  xrV(10) = xr(10) + k(9)*z(9);   z(10)   = xrV(10) - x(10);  

  %Y position control errors 

  z(11)   = xr(11) - x(11);       zp(11)  = xr(12) - x(12); 

  xrV(12) = xr(12) + k(11)*z(11); z(12)   = xrV(12) - x(12); 

end 

Fig. C.5 UAV states errors equations. 

  



 

 145 

function [M, Minv, FConfig]= main(Ct,Cd,Rho,D,l,LSide,SSide,Clk,FThr,MTOff) 

  % 3+  1-       ^ x QAV 250 configuration (Pixhawk) 

  %  \^/         | 

  %   o    y < - o 

  %  / \ 

  % 2-  4+ 

  b = Ct*Rho*D^4; 

  p = b*LSide/l; %sin(52.56)=opposite/hypotenuse=0.7941(Roll) 

  q = b*SSide/l; %sin(37.44)=opposite/hypotenuse=0.6078(Pitch) 

  d = Cd*Rho*D^4; 

  %     M1 M2 M3 M4  

  A = [ b  b  b  b];  

  B = [ p -p -p  p]; 

  C = [ q -q  q -q];  

  D = [ d  d -d -d]; 

  FConfig = 2; 

  %When M is not square, Moore-Penrose pseudo-inverse (pinv) should be used 

  Minv = inv([A; B; C; D]); 

end 

Fig. C.6 UAV motors configuration matrix. 

function Wout = main(U, Minv) 

  Wsquare = Minv * U; 

  [row, col] = size(Wsquare); 

  Wrpm = zeros(size(Wsquare)); 

  %Restriction to not cross below 0 for the speeds. 

  for i = 1:row 

    for j = 1:col 

      if Wsquare(i, j) >= 0 

        Wrps = sqrt(Wsquare(i, j)); 

      else 

        Wrps = 0; 

      end 

      Wrpm(i, j) = Wrps * 60; 

    end 

  end 

  Wout = Wrpm(:,1); %Workaround to skip the Simulink problem 

end 

Fig. C.7 Speed reference calculation block. 

function [Va, Va_raw] = main(Wm_rpm, Wr_rpm, Wrp_rpm, Ke, Kt, Bm, Ra, Jr) 

  Wm  = ((2*pi)/60)*Wm_rpm; %Convert Wm_rpm, Wr_rpm and Wrp_rpm to radians 

  Wr  = ((2*pi)/60)*Wr_rpm; 

  Wrp = ((2*pi)/60)*Wrp_rpm; 

  k1 = 3200; %Motor control gain for simulation 

  z1 = Wr - Wm; %Speed error calculation  

  Va_raw = (Jr*Ra/Kt)*(Wrp + Kt*Ke*Wm/(Jr*Ra) - Bm*Wm/Jr + k1*z1); 

  Va = Va_raw; 

  [row col] = size(Va); 

  for Index = 1:row 

    if (Va(Index) > 1) 

       Va(Index) = 1; 

    elseif (Va < 0) 

       Va(Index) = 0; 

    end 

  end 

end 

Fig. C.8 Motor speed control block. 
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function omega = main(W_rps, FConfig) 

  calculation = 0; % Default value in case no configuration is found 

  % Calculate omega taking CW motor rotations as (+) and CCW as (-) 

  if (length(W_rps) == 4)  

    switch FConfig 

      case 0 % (0) Bouabdallah's paper 

        calculation = -W_rps(1) + W_rps(2) - W_rps(3) + W_rps(4); 

      case 1 % (1) Pixhawk quad X, (2) QAV 250 quad 

      case 2 

        calculation = -W_rps(1) - W_rps(2) + W_rps(3) + W_rps(4); 

    end 

  end 

  omega = calculation; 

end 

Fig. C.9 Ω parameter calculation for a quad-rotor in + and × configuration. 
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D. UAV CONTROLLER SOURCE CODE 

// ADC to current conversion definitions 

#define MULTIPLY_FACTOR   50 // ADC to current multiplication factor  

#define MAX_ADC_VALUE   1023 // Maximum number the ADC of 10-bit resolution 

#define MA_FACTOR       1000 // mA conversion factor  

#define MA_FACTOR_MID    500 // mA conversion factor (upper) 

/************************************************************************/ 

/* Raw ADC conversion output to mA conversion function                  */ 

/************************************************************************/ 

void 

AdcToMACurrent ( 

  MOTOR_PARAMETERS MotorParameters[MAX_MOTORS], 

  double           CurrentmAh[MAX_MOTORS] 

  ) 

{ 

  uint8_t Index; 

  double  MeanAdcValue; 

  for (Index = 0; Index < MAX_MOTORS; Index++) { 

    // The AdcCurrentValue contains the summ of 50 samples 

    MeanAdcValue = (MotorParameters[Index].AdcCurrentValue /  

                            NUM_ADC_SAMPLES); 

    CurrentmAh[Index] = (MULTIPLY_FACTOR * (((MA_FACTOR *  

                         MeanAdcValue) / MAX_ADC_VALUE) – MA_FACTOR_MID)); 

  } 

} 

Fig. D.1 ADC output to mA conversion routine. 

// Raw counts to RPM conversion definitions 

#define SECOND_IN_MICRO_SECOND_UNIT 10000000 //1 second expressed in 0.1 us #define 

TIMER_PERIOD                       5 //Timer count period in 0.1 us  

#define NUM_COUNTS_IN_RPM                 40 //Number of encoder markers 

#define SECONDS_IN_MINUTE                 60 //Number of seconds in a minute 

/************************************************************************/ 

/* Raw timer counts to RPM conversion function                          */ 

/************************************************************************/ 

void 

CountsToRpm ( 

  MOTOR_PARAMETERS MotorParameters[MAX_MOTORS], 

  double           Wm_rpm_unfiltered[MAX_MOTORS] 

  ) 

{ 

  uint8_t  Index; 

  uint16_t NumberOfTicks = 0; 

  double   Rps; 

  for (Index = 0; Index < MAX_MOTORS; Index++) { 

    NumberOfTicks = (MotorParameters[Index].MotorSpeedTicks == 0) ? 65535 :  

                     MotorParameters[Index].MotorSpeedTicks; 

    Rps = (SECOND_IN_MICRO_SECOND_UNIT / (TIMER_PERIOD * NumberOfTicks *  

           NUM_COUNTS_IN_RPM));  

    Wm_rpm_unfiltered[Index] = (double)(Rps * SECONDS_IN_MINUTE); 

  } 

} 

Fig. D.2 Raw timer counts to RPM speed conversion routine. 
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/************************************************************************/ 

/* Main function for performing integrals calculations                  */ 

/************************************************************************/ 

void 

Integrate ( 

  double *Result, double *OldResult, double OldValue 

  ) 

{ 

  // Rectangular integrator 

  *Result = *OldResult + STEP_SIZE*OldValue; 

  // Update OldResult to be the Result just obtained 

  *OldResult = *Result; 

} 

Fig. D.3 Integrator routine code. 

/************************************************************************/ 

/* Sign function definition                                             */ 

/************************************************************************/ 

double 

Sign ( 

  double Value 

  )  

{ 

  /* Sign function definition:  

           ^____1 

           | 

       ---0-----> 

     -1____|       */  

  if (Value > 0) return 1; 

  else if (Value == 0) return 0; 

  else return -1; 

} 

Fig. D.4 Sign function code. 

/************************************************************************/ 
/* Function that integrates the ds0, ds1 and ds2 results of the Levant  */ 
/* derivative for the states array X                                    */ 
/************************************************************************/ 
double 

IntegrateLevantDiff ( 

  double ds0, double ds1, double ds2, double *s0, double *s1, double *s2, 

  uint8_t Index2, uint8_t ClearStatic 

  ) 

{ 

         uint8_t Index;          

         double  *Result[LEVANT_ORDER+1] = {s0, s1, s2};; 

  static double  OldResult[LEVANT_ORDER+1] = {0}; 

         double  OldValue[LEVANT_ORDER+1] = {ds0, ds1, ds2}; 

  Result[0] = s0; 

  Result[1] = s1; 

  Result[2] = s2; 

  // OldValue receives the derivatives of Levant to be used in the  

  // integration step 

  for (Index = 0; Index < LEVANT_ORDER+1; Index++) { 

    // Perform integration step  

    Integrate (Result[Index], &OldResult[Index][Index2], OldValue[Index]); 

  } 

  // Clear the static variables if indicated 

  if (ClearStatic) { 

    memset (&OldResult, 0, sizeof (OldResult)); 

  } 

} 

Fig. D.5 Levant’s integrators routine code.  
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/************************************************************************/ 

/* Levant’s derivative for the states array X                           */ 

/************************************************************************/ 

void 

LevantDiff ( 

  double  X[MAX_STATES], // Input/Output 

  uint8_t ClearStatic    // Input 

  ) 

{ 

         uint8_t Index; double  v0, v1; 

  static double  s0[MAX_STATES/2] = {0}, s1[MAX_STATES/2] = {0}; 

  static double  s2[MAX_STATES/2] = {0}; 

         double  ds0, ds1, ds2; 

  for (Index = 0; Index < MAX_STATES/2; Index++) { 

    // Use Index*2 in X to address 0, 2, 4, 6, 8 and 10 indexes, that 

    // correspond to Roll, Pitch, Yaw, Z, X and Y, respectively 

    v0  = -LAMBDA*pow (fabs (s0[Index] - X[Index*2]), POWER_2_3) *  

          Sign (s0[Index] - X[Index*2]) + s1[Index]; 

    v1  = -LAMBDA*sqrt (fabs (s1[Index] - v0)) * Sign(s1[Index] - v0) +  

          s2[Index]; 

    ds0 = v0; 

    ds1 = v1; 

    ds2 = -ALPHA*Sign (s2[Index] - v1); 

    // Assign s1 to X at this point, in the next execution, the s1 is 

    // be the Levant’s derivative produced in the following steps 

    X[Index*2 + 1] = s1[Index]; 

    // Update the OldValues to be ds0, ds1 and ds2 to use them in the   

    // integration step 

    IntegrateLevantDiffX (ds0,ds1,ds2, &s0[Index], &s1[Index], &s2[Index],  

                          Index, ClearStatic); 

  } 

  // Clear the static variables if indicated 

  if (ClearStatic) { 

    memset (&s0, 0, sizeof (s0)); 

    memset (&s1, 0, sizeof (s1)); 

    memset (&s2, 0, sizeof (s2)); 

  } 

} 

Fig. D.6 Levant’s second order derivative routine. 

/************************************************************************/ 

/* Main function for performing derivatives calculations                */ 

/************************************************************************/ 

void 

Derivate ( 

  double  *Result, double  Value[MAX_DERIVATIVE_POINTS], 

  uint8_t DerivativePoints 

  ) 

{ 

  switch (DerivativePoints) { 

    case 3: // 3 point central difference 

      *Result = (1/(2*STEP_SIZE))*(Value[0] - Value[2]); 

      break; 

    case 5: // 5 point central difference 

      *Result = (1/(10*STEP_SIZE))*(1*Value[0] + Value[1] - Value[3] –  

                2*Value[4]); 

      break; 

    case 1: 

    default: // First-difference derivative 

      *Result = (1/STEP_SIZE)*(Value[0] - Value[1]); 

      break; 

  } 

} 

Fig. D.7 Classic derivatives calculation routine.  
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/************************************************************************/ 

/* Definition of the control gains of the system                        */ 

/************************************************************************/ 

void 

ControlGains (double k[MAX_STATES]) { 

  k[0]  = 20.53; k[1]  = 20.35; // Roll 

  k[2]  = 40.92; k[3]  = 7.83;  // Pitch 

  k[4]  = 15;    k[5]  = 21.5;  // Yaw 

  k[6]  = 9.55;  k[7]  = 9.6;   // Z 

  k[8]  = 0;     k[9]  = 0;     // X 

  k[10] = 0;     k[11] = 0;     // Y 

} 

Fig. D.8 Control gains definition function. 

/************************************************************************/ 

/* Function for calculating a 4x4 matrix determinant                    */ 

/************************************************************************/ 

double 

DetMatrix4x4 (void) { 

  // Sign rule for determinant calculation:       +-+-+-... 

  //                                        Det = -+-+-+... 

  //                                              +-+-+-... 

  return (CalcDet4x4Element (0, 0) - CalcDet4x4Element (1, 0) +  

          CalcDet4x4Element (2, 0) - CalcDet4x4Element (3, 0)); 

} 

Fig. D.9 Function that calculates the determinant of a 4 × 4 matrix. 

/************************************************************************/ 

/* Function for calculating a 4x4 matrix determinant element            */ 

/************************************************************************/ 

double 

CalcDet4x4Element ( 

  uint8_t Row, 

  uint8_t Column 

  ) 

{ 

  double Matrix3x3[3][3] = {0}; 

  double Element = 0; 

  // Create a new matrix by skipping the row and column indicated 

  FillMatrix3x3 (Row, Column, Matrix3x3); 

  // Calculate the determinant of the 3x3 matrix previously generated and 

  // multiply it by the M matrix element indicated 

  Element = Matrix[Row][Column] * DetMatrix3x3 (Matrix3x3); 

  return Element; 

} 

Fig. D.10 Routine that calculates a determinant element for the sum in the complete 

determinant function.  
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/************************************************************************/ 

/* Function for calculating a 3x3 matrix determinant                    */ 

/************************************************************************/ 

double  

DetMatrix3x3 ( 

  double Matrix3x3[3][3] 

  ) 

{ 

  double Determinant; 

   

  Determinant = (Matrix3x3[0][0] * Matrix3x3[1][1] * Matrix3x3[2][2]) + 

                (Matrix3x3[1][0] * Matrix3x3[2][1] * Matrix3x3[0][2]) +  

                (Matrix3x3[2][0] * Matrix3x3[0][1] * Matrix3x3[1][2]) + 

                (-1)*(Matrix3x3[0][2] * Matrix3x3[1][1] * Matrix3x3[2][0]) +  

                (-1)*(Matrix3x3[1][2] * Matrix3x3[2][1] * Matrix3x3[0][0]) + 

                (-1)*(Matrix3x3[2][2] * Matrix3x3[0][1] * Matrix3x3[1][0]); 

  return Determinant; 

} 

Fig. D.11 Determinant calculation function for a 3 × 3 matrix. 

/************************************************************************/ 

/* Function for calculating a the cofactor matrix of a 4x4 matrix       */ 

/************************************************************************/ 

void 

CofMatrix4x4 (double Matrix4x4[4][4]) { 

  uint8_t Index1, Index2, Counter = 0; 

  double  Multiplier; 

  double  Matrix3x3[3][3]; 

   

  for (Index1 = 0; Index1 < 4; Index1++) { 

    for (Index2 = 0; Index2 < 4; Index2++) { 

      // Fill the matrix with the 3x3 matrix, skipping the row 

      // and column indicated 

      FillMatrix3x3 (Index1, Index2, Matrix3x3); 

       

      // If the counter is odd, use the negative 

      Multiplier = (Counter % 2) ? -1 : 1; 

      //If Index1 is even, invert the previous 

      if (Index1 % 2) { 

        Multiplier = (Counter % 2) ? 1 : -1; 

      } 

      Counter++; 

      // Generate the cofactor matrix 

      Matrix4x4[Index1][Index2] = Multiplier * DetMatrix3x3 (Matrix3x3); 

    } 

  } 

} 

Fig. D.12 Cofactors matrix calculation for a 4 × 4 matrix.  
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/************************************************************************/ 

/* Function for calculating a the transpose matrix of a 4x4 matrix      */ 

/************************************************************************/ 

void 

TransMatrix4x4 ( 

  double Matrix4x4[4][4] 

  ) 

{ 

  uint8_t Index1; 

  uint8_t Index2; 

  double  TempMatrix4x4[4][4]; 

   

  // Copy the content of the cofactor matrix into a temporary variable 

  memcpy (&TempMatrix4x4, Matrix4x4, sizeof (TempMatrix4x4)); 

   

  for (Index1 = 0; Index1 < 4; Index1++) { 

    for (Index2 = 0; Index2 < 4; Index2++) { 

      // Invert the content to generate the transpose 

      Matrix4x4[Index2][Index1] = TempMatrix4x4[Index1][Index2];  

    } 

  } 

} 

Fig. D.13 Transpose matrix calculation Cofactors matrix calculation for a 4 × 4 matrix. 

/************************************************************************/ 

/* Function for calculating a the adjoint of a 4x4 matrix               */ 

/************************************************************************/ 

void 

CalcAdjMatrix4x4 (double Matrix4x4[4][4]) { 

  memcpy (Matrix4x4, Matrix, sizeof (Matrix)); 

  CofMatrix4x4 (Matrix4x4); 

  TransMatrix4x4 (Matrix4x4); 

} 

Fig. D.14 Adjoint matrix calculation for a 4 × 4 matrix. 

/************************************************************************/ 

/* Function for calculating the inverse matrix                          */ 

/************************************************************************/ 

void 

CalcInvMatrix (double InvMatrix[MAX_MOTORS][CONTROLLER_SIGNALS]) { 

  uint8_t Index1, Index2; double Det; double AdjMatrix4x4[4][4]; 

  if (MAX_MOTORS == 4) { 

    Det = DetMatrix4x4 (); 

    CalcAdjMatrix4x4 (AdjMatrix4x4); 

    for (Index1 = 0; Index1 < MAX_MOTORS; Index1++) { 

      for (Index2 = 0; Index2 < CONTROLLER_SIGNALS; Index2++) { 

        InvMatrix[Index1][Index2] = AdjMatrix4x4[Index1][Index2]/Det; 

      } 

    } 

  } 

} 

Fig. D.15 Inverse matrix calculation algorithm for a 4 × 4 matrix.  
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/************************************************************************/ 

/* Function that generates the reference signals for trajectory tracking*/ 

/************************************************************************/ 

void 

ReferenceSignalsTrajectory ( 

  double References[CONTROLLER_SIGNALS], double *Counter 

  ) 

{ 

  double  Yaw = 0, Zr = 3, Xr = 1, Yr = 2; uint8_t Time[4] = {4, 8, 12, 16}; 

  References[0] = Yaw; 

  References[1] = Zr/pow(1+exp(-SLOPE*(*Counter -(5/SLOPE))), 2); 

  References[2] = Xr/pow(1+exp(-SLOPE*(*Counter -Time[0] - (5/SLOPE))), 2) -  

                  Xr/pow(1+exp(-SLOPE*(*Counter -Time[2] - (5/SLOPE))), 2);   

  References[3] = Yr/pow(1+exp(-SLOPE*(*Counter -Time[1] - (5/SLOPE))), 2) -  

                  Yr/pow(1+exp(-SLOPE*(*Counter -Time[3] - (5/SLOPE))), 2);  

  *Counter += STEP_SIZE; 

} 

Fig. D.16 Trajectory tracking reference generation for controllable states. 

/************************************************************************/ 

/* Function that generates all the reference states array for the       */ 

/* trajectory flight mode                                               */ 

/************************************************************************/ 

void 

GenerateXrTrajectory ( 

  double X1r, double X3r, double References[CONTROLLER_SIGNALS], 

  double Xr[MAX_STATES], double Xrp[MAX_STATES], 

  uint8_t UseLevantDerivatives, uint8_t DerivativePoints,uint8_t ClearStatic 

  ) 

{ 

  // Fill the Xr array with the actual roll, pitch, yaw, Z, X and Y values 

  Xr[0] = X1r; Xr[2] = X3r; Xr[4] = References[0]; Xr[6] = References[1]; 

  Xr[8] = References[2]; Xr[10] = References[3]; 

  if (UseLevantDerivatives) { 

    // Derivate the reference values, then derivate Xr to obtain Xrp 

    LevantDiffReference (Xr, 0); LevantDiffXr (Xr, Xrp, 0); 

  } else { 

    // Derivate the reference values, then derivate Xr to obtain Xrp 

    DerivateReference (Xr, DerivativePoints, ClearStatic); 

    DerivateXr (Xr, Xrp, DerivativePoints, ClearStatic); 

  } 

} 

Fig. D.17 Function that generates the 6 temporary variables references array (𝜙, 𝜃, 𝜓, 𝑧, 𝑥, 
and 𝑦) and obtains the first and second derivatives for Xr and Ẋr.  
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************************************************************************/ 

/* Error calculation of the states in the system                        */ 

/************************************************************************/ 

void 

UAVErrorCalculation ( 

  double  X[MAX_STATES],   // Input 

  double  Xr[MAX_STATES],  // Input 

  double  XrV[MAX_STATES], // Output 

  double  Xrp[MAX_STATES], // Input 

  double  k[MAX_STATES],   // Input 

  double  Z[MAX_STATES],   // Output 

  double  Zp[MAX_STATES],  // Output 

  uint8_t DirectControl    // Input 

  ) 

{ 

  /* Roll angle error */ 

  Z[0]    = Xr[0] - X[0];         // Z1    = X1r - X1 

  Zp[0]   = Xr[1] - X[1];         // Z1p   = X2r - X2 

  XrV[1]  = Xr[1] + k[0]*Z[0];    // X2r*  = X2r + k1*Z1 

  Z[1]    = XrV[1] - X[1];        // Z2    = X2r* - X2 

 

  /* Pitch angle error */ 

  Z[2]    = Xr[2] - X[2];         // Z3    = X3r - X3 

  Zp[2]   = Xr[3] - X[3];         // Z3p   = X4r - X4 

  XrV[3]  = Xr[3] + k[2]*Z[2];    // X4r*  = X4r + k3*Z3 

  Z[3]    = XrV[3] - X[3];        // Z4    = X4r* - X4 

 

  /* Yaw angle error */ 

  Z[4]    = Xr[4] - X[4];         // Z5    = X5r - X5 

  Zp[4]   = Xr[5] - X[5];         // Z5p   = X6r - X6 

  XrV[5]  = Xr[5] + k[4]*Z[4];    // X6r*  = X6r + k5*Z5 

  Z[5]    = XrV[5] - X[5];        // Z6    = X6r* - X6 

 

  /* Z position error */ 

  Z[6]    = Xr[6] - X[6];         // Z7    = X7r - X7 

  Zp[6]   = Xr[7] - X[7];         // Z7p   = X8r - X8 

  XrV[7]  = Xr[7] + k[6]*Z[6];    // X8r*  = X8r + k7*Z7 

  Z[7]    = XrV[7] - X[7];        // Z8    = X8r* - X8 

 

  /* X position error */ 

  Z[8]    = Xr[8] - X[8];         // Z9    = X9r - X9 

  Zp[8]   = Xr[9] - X[9];         // Z9p   = X10r - X10 

  XrV[9]  = Xr[9] + k[8]*Z[8];    // X10r* = X10r + k9*Z9 

  Z[9]    = XrV[9] - X[9];        // Z10   = X10r* - X10 

 

  /* Y position error */ 

  Z[10]   = Xr[10] - X[10];       // Z11   = X11r - X11 

  Zp[10]  = Xr[11] - X[11];       // Z11p  = X12r - X12 

  XrV[11] = Xr[11] + k[10]*Z[10]; // X12r* = X12r + k11*Z11 

  Z[11]   = XrV[11] - X[11];      // Z12   = X12r* - X12 

} 

Fig. D.18 Error calculation function, that also generates the virtual error.  
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/************************************************************************/ 

/* Function that calculates Omega parameter based on the motors RPS and */ 

/* frame configuration                                                  */ 

/************************************************************************/ 

void 

OmegaCalculation ( 

  double W_rps[MAX_MOTORS], 

  double *Omega 

  ) 

{ 

  // Default value in case no configuration is found 

  *Omega = 0; 

  switch (FRAME_CONFIGURATION) { 

    // Bouabdallah's paper 

    case '+':      

      *Omega = -W_rps[0] + W_rps[1] - W_rps[2] + W_rps[3]; 

      break; 

    // Pixhawk quad X and QAV 250 configuration 

    case 'X': 

    case 'Q': 

      *Omega = -W_rps[0] - W_rps[1] + W_rps[2] + W_rps[3]; 

      break; 

  } 

} 

 

Fig. D.19 Block that calculates the angular speed difference Ω from Table 1.1. 

/************************************************************************/ 
/* Function for calculating the reference speed                         */ 
/************************************************************************/ 
void 
CalcWr ( 
  double U[CONTROLLER_SIGNALS], 
  double InvMatrix[MAX_MOTORS][CONTROLLER_SIGNALS], 
  double Wr_rps[MAX_MOTORS], 
  double Wr_rpm[MAX_MOTORS] 
  ) 
{ 
  uint8_t Index1; 
  uint8_t Index2; 
  double  Speed; 
 
  for (Index1 = 0; Index1 < MAX_MOTORS; Index1++) { 
    // Calculate the multiplication with U 
    Speed = 0; 
    for (Index2 = 0; Index2 < CONTROLLER_SIGNALS; Index2++) { 
      Speed += InvMatrix[Index1][Index2] * U[Index2]; 
    } 
 
    // Calculate the square root of the speed 
    if (Speed >= 0) { 
      // U = sum(F) = M^-1*W where W is in RPS units 
      Wr_rps[Index1] = sqrt (Speed); 
      // Multiply Wr_rps by 60 to convert RPS to RPM, which is what  
      // F = Ct*Rho*W_rps^2*PropDiameter^4 uses 
      Wr_rpm[Index1] = Wr_rps[Index1]*60; 
    } else { 
      Wr_rps[Index1] = 0; 
      Wr_rpm[Index1] = 0; 
    } 
  } 
} 

Fig. D.20 Angular speed reference processing function.  
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/************************************************************************/ 

/* UAV Backstepping linear controller code for trajectory flight mode   */ 

/************************************************************************/ 

void  

BacksteppingLinearControlTrajectory ( 

  double Mass, 

  double k[MAX_STATES], 

  double Omega, 

  double X[MAX_STATES], 

  double Xrp[MAX_STATES], 

  double Z[MAX_STATES], 

  double Zp[MAX_STATES], 

  double U[CONTROLLER_SIGNALS], // Output 

  double *X1r,                  // Output 

  double *X3r                   // Output 

  ) { 

  double Ux, Uy, Temp; 

  // DERIVATIVES 

  // Xrp[1]  = Xrpp[0]  - Roll | Xrp[3]  = Xrpp[2]  - Pitch 

  // Xrp[5]  = Xrpp[4]  - Yaw  | Xrp[7]  = Xrpp[6]  - Z 

  // Xrp[9]  = Xrpp[8]  - X    | Xrp[11] = Xrpp[10] - Y 

  /* Yaw angle control (U4 calculation) */ 

  U[3] = (1 / b_var2)*(Xrp[5] + k[4]*Zp[4] - X[1]*X[3]*a_var4 + Z[4] +  

                       k[5]*Z[5]); 

  /* Z position control (U1 calculation) */ 

  U[0] = (Mass / (cos (X[0])*cos (X[2])))*(Xrp[7] + k[6]*Zp[6] + Gravity +  

                                           Z[6] + k[7]*Z[7]); 

  /* X position control */ 

  Ux = (Mass / U[0])*(Xrp[9] + k[8]*Zp[8] + Z[8] + k[9]*Z[9]); 

  /* Y position control */ 

  Uy = (Mass / U[0])*(Xrp[11] + k[10]*Zp[10] + Z[10] + k[11]*Z[11]); 

  /* Roll angle control (U2 calculation) */ 

  U[1] = (1 / b_var0)*(Xrp[1] + k[0]*Zp[0] - X[3]*X[5]*a_var0 –  

                       X[3]*a_var1*Omega + Z[0] + k[1]*Z[1]); 

  Temp = (Ux*tan (X[4]) - Uy) / (sin (X[4])*tan (X[4]) + cos (X[4])); 

  if (Temp > 1) { // Sanity check for arcsin function definition boundaries 

    Temp = 1; 

  } else if (Temp < -1) { 

    Temp = -1; 

  } 

  *X1r = asin (Temp); 

  /* Pitch angle control (U3 calculation) */ 

  U[2] = (1 / b_var1)*(Xrp[3] + k[2]*Zp[2] - X[1]*X[5]*a_var2 –  

                       X[1]*a_var3*Omega + Z[2] + k[3]*Z[3]); 

  Temp = (Ux - sin (X[0])*sin (X[4])) / (cos (X[0])*cos (X[4])); 

  if (Temp > 1) { // Sanity check for arcsin function definition boundaries 

    Temp = 1; 

  } else if (Temp < -1) { 

    Temp = -1; 

  } 

  *X3r = asin (Temp); 

} 

Fig. D.21 Backstepping with linear control code for trajectory tracking flight mode.  
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/************************************************************************/ 

/* UAV backstepping motor controller code                               */ 

/************************************************************************/ 

void  

MotorControlBackstepping ( 

  double Z_radps[MAX_MOTORS],   // Input 

  double Wr_radps[MAX_MOTORS],  // Input 

  double Wrp_radps[MAX_MOTORS], // Input 

  double Wm_radps[MAX_MOTORS],  // Input 

  double ControlGain,           // Input 

  double Va[MAX_MOTORS],        // Output 

  double Va_raw[MAX_MOTORS]     // Output 

  ) 

{ 

  uint8_t Index; 

  double  k1 = ControlGain; 

 

  for (Index = 0; Index < MAX_MOTORS; Index++) { 

    // Calculation of the voltage applied in the motor 

    Va_raw[Index] = (Jr*Ra/Kt)*(Wrp_radps[Index] + Kt*Ke*Wm_radps[Index]  

                    /(Jr*Ra) - Bm*Wm_radps[Index]/Jr + k1*Z_radps[Index]); 

    Va[Index] = Va_raw[Index]; 

 

    // Sanity check for the voltage (PWM duty cycle) 

    if (Va[Index] > 1) { 

      Va[Index] = 1; 

    } else if (Va[Index] < 0) { 

      Va[Index] = 0; 

    } 

  } 

} 

Fig. D.22 Motor control algorithm. 

/************************************************************************/ 

/* EWMA motor speed filter for the noise from the speed sensors         */ 

/************************************************************************/ 

void 

SpeedFilterEWMA ( 

  double W_rpm_in[MAX_MOTORS], // Input 

  double W_rpm_out[MAX_MOTORS] // Output 

  ) 

{ 

  uint8_t Index; 

  for (Index = 0; Index < MAX_MOTORS; Index++) { 

    W_rpm_out[Index] = W_rpm_out[Index] + LPHA_SPEED_FILTER*(W_rpm_in[Index]   

                       - W_rpm_out[Index]); 

  } 

} 

Fig. D.23 EWMA speed filter routine.  
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/************************************************************************/ 

/* Functions that executes all the controller code involved             */ 

/************************************************************************/ 

void 

ControllerExecution ( 

  double *Timer, 

  double Mass, 

  double InvMatrix[MAX_MOTORS][CONTROLLER_SIGNALS], 

  double k[MAX_STATES],        //Input 

  double kDv[MAX_STATES/2],    //Input 

  double X[MAX_STATES],        //Input 

  double Xr[MAX_STATES],       //Output 

  double XrV[MAX_STATES],      //Output 

  double Xrp[MAX_STATES],      //Output 

  double Z[MAX_STATES],        //Output 

  double Zp[MAX_STATES],       //Output 

  double Wr_rps[MAX_MOTORS],   //Output 

  double Wr_rpm[MAX_MOTORS],   //Output 

  double Wrp_rpm[MAX_MOTORS],  //Output 

  double Wm_rps[MAX_MOTORS],   //Input 

  double Wm_rpm[MAX_MOTORS],   //Input 

  double *Omega,               //Output 

  double MotorControlGain,     //Input 

  double MotorControlDGain,    //Input 

  double Va[MAX_MOTORS],       //Output 

  double U[CONTROLLER_SIGNALS] //Output 

  ) 

{ 

  double References[CONTROLLER_SIGNALS] = {0}; 

  // Motor control variables 

  double Wr_radps[MAX_MOTORS] = {0}, Wrp_radps[MAX_MOTORS] = {0}; 

  double Wm_radps[MAX_MOTORS] = {0}, Z_motor_radps[MAX_MOTORS] = {0}; 

  double Z_motor_rpm[MAX_MOTORS] = {0}, Va_raw[MAX_MOTORS] = {0}; 

  // Control variables 

#if (FLIGHT_MODE == FLIGHT_MODE_TRAJECTORY) 

  static double X1r = 0; 

  static double X3r = 0; 

#endif // FLIGHT_MODE_TRAJECTORY 

 

  // Generate the reference signals for testing 

#if (FLIGHT_MODE == FLIGHT_MODE_STABILIZE) 

  ReferenceSignalsStabilize (References, Timer); 

#elif (FLIGHT_MODE == FLIGHT_MODE_TRAJECTORY) 

  ReferenceSignalsTrajectory (References, Timer); 

#endif // FLIGHT_MODE 

  // Generate the complete array of states 

  // Use X[9] and X[11] since this controller does not generate X and Y  

#if (FLIGHT_MODE == FLIGHT_MODE_STABILIZE) 

  // X[8] and X[10] provide the references for X and Y  

  GenerateXrStabilize (References, X[8], X[10], Xr, Xrp, 0, 1, 0);  

#elif (FLIGHT_MODE == FLIGHT_MODE_TRAJECTORY) 

  // X1r and X3r provide the references for Roll and Pitch  

  GenerateXrTrajectory (X1r, X3r, References, Xr, Xrp, 0, 1, 0); 

#endif // FLIGHT_MODE 

  // With Xr and X defined, calculate the error between them 

  UAVErrorCalculation (X, Xr, XrV, Xrp, k, Z, Zp, 0); 

 

  // Calculate the total speed combination 

  OmegaCalculation (Wm_rps, Omega); 

 

  // Call the controller block for obtaining the control vector U 

#if (FLIGHT_MODE == FLIGHT_MODE_STABILIZE) 

   

#if (UAV_CONTROLLER_TYPE == BACKSTEPPING_CONTROLLER) 

  BacksteppingLinearControlStabilize (Mass, k, *Omega, X, Xrp, Z, Zp, U); 

#elif (UAV_CONTROLLER_TYPE == SLIDING_MODE_CONTROLLER) 

  SlidingModeControlStabilize (Mass, k, *Omega, X, Xrp, Z, Zp, U); 

#elif (UAV_CONTROLLER_TYPE == SUPER_SWISTING_CONTROLLER) 

  SuperTwistingControlStabilize (Mass, k, kDv, *Omega, X, Xrp, Z, Zp, U); 

#endif // UAV_CONTROLLER_TYPE 
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#elif (FLIGHT_MODE == FLIGHT_MODE_TRAJECTORY) 

 

#if (UAV_CONTROLLER_TYPE == BACKSTEPPING_CONTROLLER) 

  BacksteppingLinearControlTrajectory (Mass, k, *Omega, X, Xrp, Z, Zp, U, &X1r, &X3r); 

#elif (UAV_CONTROLLER_TYPE == SLIDING_MODE_CONTROLLER) 

  SlidingModeControlTrajectory (Mass, k, *Omega, X, Xrp, Z, Zp, U, &X1r, &X3r); 

#elif (UAV_CONTROLLER_TYPE == SUPER_SWISTING_CONTROLLER) 

  SuperTwistingControlTrajectory (Mass, k, kDv, *Omega, X, Xrp, Z, Zp, U, &X1r, &X3r); 

#endif // UAV_CONTROLLER_TYPE 

 

#endif // FLIGHT_MODE 

 

  // Calculate the speed reference with the control vector U and the inverse 

  // matrix InvM 

  CalcWr (U, InvMatrix, Wr_rps, Wr_rpm); 

 

  // Calculate the derivative of Wr_rpm to be used in the motor control  

  // algorithm 

  LevantDiffWr (Wr_rpm, Wrp_rpm, 0); 

 

  // Convert RPMs to radians per second 

  MotorRpmToRadps (Wr_rpm, Wrp_rpm, Wm_rpm, Wr_radps, Wrp_radps, Wm_radps); 

 

  // Motor speeds error calculation 

  MotorSpeedError (Wr_radps, Wm_radps, Z_motor_radps, Z_motor_rpm); 

 

  // With the angular speed reference, the next step is to calculate the  

  // motor control for obtaining the voltage (PWM duty cycle) to be applied  

  // in the voltage-current and voltage-speed transfer functions 

  MotorControlBackstepping (Z_motor_radps, Wr_radps, Wrp_radps, Wm_radps,  

                            MotorControlGain, Va, Va_raw); 

} 

Fig. D.24 UAV controller flow. 

/************************************************************************/ 

/* Voltage-speed transfer function in state-space shape                 */ 

/************************************************************************/ 

void 

SpeedTranferFunction ( 

  double  U[MAX_MOTORS],  //Input 

  double  X1[MAX_MOTORS], //Input/Output 

  double  X2[MAX_MOTORS], //Input/Output 

  double  Y[MAX_MOTORS],  //Output 

  uint8_t ClearStatic     //Input 

  ) 

{ 

  uint8_t Index; 

  double  X1p; 

  double  X2p; 

 

  for (Index = 0; Index < MAX_MOTORS; Index++) { 

    // Speed derivative 

    X1p = -(double)11.16*X1[Index] - (double)0.4724*X2[Index] + U[Index]; 

    // Current derivative 

    X2p = 1*X1[Index]; 

 

    Y[Index] = (double)175098.7044*X1[Index] + (double)9082.095516*X2[Index] + 

(double)967.41*U[Index]; 

     

    IntegrateSpeedX1p (X1p, &X1[Index], Index, ClearStatic); 

    IntegrateSpeedX2p (X2p, &X2[Index], Index, ClearStatic); 

  } 

} 

 

Fig. D.25 Voltage to speed transfer function routine. 



 

 160 

/************************************************************************/ 

/* Function that calculates the states of the UAV system with its       */ 

/* mathematical model                                                   */ 

/************************************************************************/ 

void 

MathematicalModelUAV ( 

  double Mass, double X[MAX_STATES], double Xr[MAX_STATES],  

  double W_rps[MAX_MOTORS], double Omega 

  ) 

{ 

         uint8_t Index; 

         double  Xp[MAX_STATES] = {0}; 

         double  Matrix[CONTROLLER_SIGNALS][MAX_MOTORS]; 

         double  U[CONTROLLER_SIGNALS]={0},W_rps_square[MAX_MOTORS], Ux, Uy; 

  static double  XTemp[MAX_STATES] = {0}; 

  GetMatrix (Matrix); 

  // Obtain the square of the speed using RPS 

  for (Index = 0; Index < MAX_MOTORS; Index++) { 

    W_rps_square[Index] = pow (W_rps[Index], 2); 

  } 

  // Assign the integrated values of the states from the previous 

  // execution to X, to be used in the calculations of this run 

  for (Index = 0; Index < MAX_STATES; Index++) { 

    X[Index] = XTemp[Index]; 

  } 

  // Obtain the controller signals 

  CalcU (Matrix, W_rps_square, U); 

  Ux = (cos (X[0])*sin (X[2])*cos (X[4]) + sin (X[0])*sin (X[4])); 

  Uy = (cos (X[0])*sin (X[2])*sin (X[4]) - sin (X[0])*cos (X[4])); 

  //Roll 

  Xp[0]  = X[1]; 

  Xp[1]  = X[3]*X[5]*a_var0 + X[3]*a_var1*Omega + b_var0*U[1]; 

  //Pitch 

  Xp[2]  = X[3]; 

  Xp[3]  = X[1]*X[5]*a_var2 + X[1]*a_var3*Omega + b_var1*U[2]; 

  //Yaw 

  Xp[4]  = X[5]; 

  Xp[5]  = X[3]*X[1]*a_var4 + b_var2*U[3]; 

  //Z 

  Xp[6]  = X[7]; 

  Xp[7]  = -Gravity + (cos (X[0])*cos (X[2]))*(1/Mass)*U[0]; 

  //X 

  Xp[8]  = X[9]; 

  Xp[9]  = Ux*(1/Mass)*U[0]; 

  //Y 

  Xp[10] = X[11]; 

  Xp[11] = Uy*(1/Mass)*U[0]; 

  // Integrate Xp 

  for (Index = 0; Index < MAX_STATES; Index++) { 

    IntegrateXp (Xp[Index], &XTemp[Index], Index, 0); 

  } 

} 

Fig. D.26 Multi-rotor mathematical model code.  
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E. SOURCE CODE OF THE GUI FOR SYSTEM MONITORING 

// Populate the serial COMs drop-down box 

SerialPort[] portNames = SerialPort.getCommPorts(); 

for (Index = 0; Index < portNames.length; Index++) { 

  PortList.addItem(portNames[Index].getSystemPortName()); 

} 

// Configure the connect button and use another thread to listen for data 

ConnectButton.addActionListener(new ActionListener() { 

  @Override public void actionPerformed(ActionEvent arg0) { 

    if (ConnectButton.getText().equals("Connect")) { 

      // Attempt to connect to the serial port 

      ChosenPort = SerialPort.getCommPort( 

                     PortList.getSelectedItem().toString()); 

      ChosenPort.setComPortTimeouts(SerialPort.TIMEOUT_SCANNER, 0, 0); 

      // BAUD_RATE, 8 bits to transmit, 1 stop bit, no parity bits  

      ChosenPort.setComPortParameters(BAUD_RATE, 8, 1, 0);  

      if (ChosenPort.openPort()) { 

        ConnectButton.setText("Disconnect"); 

        PortList.setEnabled(false); 

      } 

    } else { 

      // Disconnect from the serial port 

      ChosenPort.closePort(); 

      PortList.setEnabled(true); 

      // Restore the button string to Run if pressed "Stop" 

      ConnectButton.setText("Connect"); 

    } 

  } 

}); 

Fig. E.1 Serial communication initialization in the GUI. 

// Create a new thread that listens for incoming text and graphs the data 

Thread ThreadRx = new Thread() { 

  @Override public void run() { 

    PrintGraph ( 

      SpeedsDataset1, SpeedsDataset2, SpeedsDataset3, SpeedsDataset4, 

      CurrentsDataset,  

      AnglesDataset1, AnglesDataset2, AnglesDataset3, 

      PositionsDataset1, PositionsDataset2, PositionsDataset3,  

      ControlOutputDataset,  

      MotorControlOutputDataset,  

      ExtraData, 

      SpeedMonitoringChart1, SpeedMonitoringChart2,  

      SpeedMonitoringChart3, SpeedMonitoringChart4,  

      CurrentMonitoringChart, 

      AnglesMonitoringChart1, AnglesMonitoringChart2,AnglesMonitoringChart3, 

      PositionsMonitoringChart1, PositionsMonitoringChart2,  

      PositionsMonitoringChart3, Window); 

  } 

}; 

ThreadRx.start();// Start the previously created thread 

Fig. E.2 Function definition of the serial communication thread for receiving data and plot 

it, created within the UART button connection listener. 

/************************************************************************/ 

/* Routine to display the graph with the reference and scanned data     */ 

/************************************************************************/ 

public static void  

PrintGraph ( 

  XYSeriesCollection SpeedsDataset1, XYSeriesCollection SpeedsDataset2, 

  XYSeriesCollection SpeedsDataset3, XYSeriesCollection SpeedsDataset4, 

  XYSeriesCollection CurrentsDataset, 

  XYSeriesCollection AnglesDataset1, XYSeriesCollection AnglesDataset2, 
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  XYSeriesCollection AnglesDataset3,  

  XYSeriesCollection PositionsDataset1, XYSeriesCollection PositionsDataset2, 

  XYSeriesCollection PositionsDataset3, 

  XYSeriesCollection ControlOutputData, 

  XYSeriesCollection MotorControlOutputData, 

  XYSeriesCollection ExtraData, 

  JFreeChart         SpeedMonitoringChart1, JFreeChart SpeedMonitoringChart2, 

  JFreeChart         SpeedMonitoringChart3, JFreeChart SpeedMonitoringChart4, 

  JFreeChart         CurrentMonitoringChart, 

  JFreeChart         AnglesMonitoringChart1, JFreeChart AnglesMonitoringChart2, 

  JFreeChart         AnglesMonitoringChart3, 

  JFreeChart         PositionsMonitoringChart1, JFreeChart PositionsMonitoringChart2, 

  JFreeChart         PositionsMonitoringChart3, 

  JFrame             Window 

  ) 

{ 

  Scanner  SerialData = new Scanner(ChosenPort.getInputStream()); 

  String[] Line; 

  double[] Numbers; 

  int      Index, Length, DataCounter, StartXAxisValue, EndXAxisValue; 

 

  // The following line scans for upcoming data starting with "\n" 

  while (SerialData.hasNext()) { 

    try { 

      // Start the data counter index to 0 

      DataCounter = 0; 

      // Separate the whole string into sub-strings that are divided by "," character 

      Line = SerialData.nextLine().split(","); 

      Length = Line.length; 

      //Numbers = new int[Length]; 

      Numbers = new double[Length]; 

      // In case of receiving a data package that is different in size compared 

      // to what is expected, fill the array of Numbers with zeros and do nothing 

      if (Length != DATA_TO_READ) { 

        //Fill with zeros 

        for (Index = 0; Index < Length; Index++) { 

          Numbers[Index] = 0; 

        } 

      } else { 

        // Convert serial data into integers for plotting 

        for (Index = 0; Index < Length; Index++) { 

          // Number in RPM 

          Numbers[Index] = Double.parseDouble(Line[Index]); 

        } 

        // Start the data counter index to 0 

        DataCounter = 0; 

        // SPEEDS DATASETS 

        // Add the numbers to the speed reference dataset 

        for (Index = 0; Index < SpeedsDataset1.getSeriesCount(); Index++) { 

          SpeedsDataset1.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the numbers to the speed reference dataset 

        for (Index = 0; Index < SpeedsDataset2.getSeriesCount(); Index++) { 

          SpeedsDataset2.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the numbers to the speed reference dataset 

        for (Index = 0; Index < SpeedsDataset3.getSeriesCount(); Index++) { 

          SpeedsDataset3.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the numbers to the speed reference dataset 

        for (Index = 0; Index < SpeedsDataset4.getSeriesCount(); Index++) { 

          SpeedsDataset4.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the motor currents to the datasets 

        for (Index = 0; Index < CurrentsDataset.getSeriesCount(); Index++) { 

          CurrentsDataset.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 
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        } 

        // ANGLES DATASETS 

        // Add the Roll angle to the datasets 

        for (Index = 0; Index < AnglesDataset1.getSeriesCount(); Index++) { 

          AnglesDataset1.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the Pitch angle to the datasets 

        for (Index = 0; Index < AnglesDataset2.getSeriesCount(); Index++) { 

          AnglesDataset2.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the Yaw angle to the datasets 

        for (Index = 0; Index < AnglesDataset3.getSeriesCount(); Index++) { 

          AnglesDataset3.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // POSITIONS DATASETS 

        // Add the Z position to the datasets 

        for (Index = 0; Index < PositionsDataset1.getSeriesCount(); Index++) { 

          PositionsDataset1.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the X position to the datasets 

        for (Index = 0; Index < PositionsDataset2.getSeriesCount(); Index++) { 

          PositionsDataset2.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the Y position to the datasets 

        for (Index = 0; Index < PositionsDataset3.getSeriesCount(); Index++) { 

          PositionsDataset3.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // CONTROLLERS DATASETS 

        // Add the controllers output numbers to the datasets 

        for (Index = 0; Index < ControlOutputData.getSeriesCount(); Index++) { 

          ControlOutputData.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the motor controllers output numbers to the datasets 

        for (Index = 0; Index < MotorControlOutputData.getSeriesCount(); Index++) { 

          MotorControlOutputData.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        // Add the extra data to the dataset 

        for (Index = 0; Index < ExtraData.getSeriesCount(); Index++) { 

          ExtraData.getSeries(Index).add(XActual, Numbers[DataCounter]); 

          DataCounter++; 

        } 

        XActual++; // Increase the index counter (sample number) 

        // If the number of samples is higher than the specified, start setting new ranges 

        // (this is for displaying the graph as cached) 

        if (XActual > 1000) { 

          // Get the new X axis labels for cached printing 

          EndXAxis = SpeedsDataset1.getSeries(0).getX(SpeedsDataset1.getItemCount(0)- 

                     1).intValue(); 

          StartXAxis = EndXAxisValue-1000; 

          // Set the new X axis range 

          SpeedMonitoringChart1.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          SpeedMonitoringChart2.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          SpeedMonitoringChart3.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          SpeedMonitoringChart4.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          CurrentMonitoringChart.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          AnglesMonitoringChart1.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          AnglesMonitoringChart2.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          AnglesMonitoringChart3.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          PositionsMonitoringChart1.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          PositionsMonitoringChart2.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

          PositionsMonitoringChart3.getXYPlot().getDomainAxis().setRange(StartXAxis, EndXAxis); 

        } 

        // Write the CSV file with the data sets 
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        WriteToCSV (SpeedsDataset1, SpeedsDataset2, SpeedsDataset3, SpeedsDataset4, 

                    CurrentsDataset, AnglesDataset1, AnglesDataset2, AnglesDataset3,  

                    PositionsDataset1, PositionsDataset2, PositionsDataset3, 

                    ControlOutputData, MotorControlOutputData, ExtraData); 

      } 

      // If the index of the datasets is greater than 1000, and the modulus 1000 is 0 (2000,  

      // 3000, etc.), then clear the first 1000 elements in the datasets 

      if ((XActual > 1000) && ((XActual % 1000) == 0)) { 

        // Remove the first 1000 elements in the datasets 

        for (Index = 0; Index < SpeedsDataset1.getSeriesCount(); Index++) { 

          SpeedsDataset1.getSeries(Index).delete(0, 999); 

          SpeedsDataset2.getSeries(Index).delete(0, 999); 

          SpeedsDataset3.getSeries(Index).delete(0, 999); 

          SpeedsDataset4.getSeries(Index).delete(0, 999); 

        } 

        // Remove the first 1000 elements in the dataset 

        for (Index = 0; Index < CurrentsDataset.getSeriesCount(); Index++) { 

          CurrentsDataset.getSeries(Index).delete(0, 999); 

        } 

        // Remove the first 1000 elements in the datasets 

        for (Index = 0; Index < AnglesDataset1.getSeriesCount(); Index++) { 

          AnglesDataset1.getSeries(Index).delete(0, 999); 

          AnglesDataset2.getSeries(Index).delete(0, 999); 

          AnglesDataset3.getSeries(Index).delete(0, 999); 

        } 

        // Remove the first 1000 elements in the datasets 

        for (Index = 0; Index < PositionsDataset1.getSeriesCount(); Index++) { 

          PositionsDataset1.getSeries(Index).delete(0, 999); 

          PositionsDataset2.getSeries(Index).delete(0, 999); 

          PositionsDataset3.getSeries(Index).delete(0, 999); 

        } 

        // Remove the first 1000 elements in the dataset 

        for (Index = 0; Index < ControlOutputData.getSeriesCount(); Index++) { 

          ControlOutputData.getSeries(Index).delete(0, 999); 

        } 

        // Remove the first 1000 elements in the dataset 

        for (Index = 0; Index < MotorControlOutputData.getSeriesCount(); Index++) { 

          MotorControlOutputData.getSeries(Index).delete(0, 999); 

        } 

        // Remove the first 1000 elements in the dataset 

        for (Index = 0; Index < ExtraData.getSeriesCount(); Index++) { 

          ExtraData.getSeries(Index).delete(0, 999); 

        } 

      } 

    } catch (Exception ex) { 

      System.out.println(ex); 

      System.out.println("Error when printing graph"); 

    } 

  } 

  SerialData.close(); 

} 

Fig. E.3 Serial communication and data logging thread function. 

/************************************************************************/ 

/* Routine to write the data generated into a CSV file                  */ 

/************************************************************************/ 

public static void  

WriteToCSV ( 

  XYSeriesCollection SpeedsDataset1, XYSeriesCollection SpeedsDataset2, 

  XYSeriesCollection SpeedsDataset3, XYSeriesCollection SpeedsDataset4, 

  XYSeriesCollection CurrentsDataset, XYSeriesCollection AnglesDataset1,  

  XYSeriesCollection AnglesDataset2, XYSeriesCollection AnglesDataset3, 

  XYSeriesCollection PositionsDataset1,XYSeriesCollection PositionsDataset2, 

  XYSeriesCollection PositionsDataset3,XYSeriesCollection ControlOutputData, 

  XYSeriesCollection MotorControlOutputData, XYSeriesCollection ExtraData 

  ) { 

  int Index, DataCounter, LastTimer, LastIndex; 

  if (LogFile != null) { 

    // Use StringBuilder instead of StringBuffer for performance and sync 
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    StringBuilder CsvData = new StringBuilder(""); 

    DataCounter = 0; // Reset the data counter index to 0 

    LastTimer = SpeedsDataset1.getEndX(// Get the last index in the dataset 

                  0, SpeedsDataset1.getItemCount(0)-1).intValue(); 

    LastIndex = SpeedsDataset1.getSeries(0).getItemCount()-1; 

    CsvData.append(LastTimer*STEP_SIZE); // Add the time column 

    CsvData.append(","); 

    // Add the motor references and speeds data 

    for (Index = 0; Index < SpeedsDataset1.getSeriesCount(); Index++) { 

      // Use the LastIndex to get the last speed value in the dataset 

      CsvData.append( 

        SpeedsDataset1.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    for (Index = 0; Index < SpeedsDataset2.getSeriesCount(); Index++) { 

      CsvData.append( 

        SpeedsDataset2.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    for (Index = 0; Index < SpeedsDataset3.getSeriesCount(); Index++) { 

      CsvData.append( 

        SpeedsDataset3.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    for (Index = 0; Index < SpeedsDataset4.getSeriesCount(); Index++) { 

      CsvData.append( 

        SpeedsDataset4.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    // Add the motor currents data 

    for (Index = 0; Index < CurrentsDataset.getSeriesCount(); Index++) { 

      CsvData.append( 

        CurrentsDataset.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    // Add the Euler angles data 

    for (Index = 0; Index < AnglesDataset1.getSeriesCount(); Index++) { 

      CsvData.append( 

        AnglesDataset1.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    for (Index = 0; Index < AnglesDataset2.getSeriesCount(); Index++) { 

      CsvData.append( 

        AnglesDataset2.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    // Add the Euler angles data 

    for (Index = 0; Index < AnglesDataset3.getSeriesCount(); Index++) { 

      CsvData.append( 

        AnglesDataset3.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    // Add the UAV positions data 

    for (Index = 0; Index < PositionsDataset1.getSeriesCount(); Index++) { 

      CsvData.append( 

        PositionsDataset1.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    for (Index = 0; Index < PositionsDataset2.getSeriesCount(); Index++) { 

      CsvData.append( 

        PositionsDataset2.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    for (Index = 0; Index < PositionsDataset3.getSeriesCount(); Index++) { 

      CsvData.append( 

        PositionsDataset3.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    // Add the controllers output data 

    for (Index = 0; Index < ControlOutputData.getSeriesCount(); Index++) { 

      CsvData.append( 
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        ControlOutputData.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    // Add the motor controllers output data 

    for (Index=0;Index < MotorControlOutputData.getSeriesCount(); Index++) { 

      CsvData.append( 

        MotorControlOutputData.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    // Add the extra data 

    for (Index = 0; Index < ExtraData.getSeriesCount(); Index++) { 

      CsvData.append( 

        ExtraData.getSeries(Index).getY(LastIndex).doubleValue()); 

      CsvData.append(","); 

    } 

    CsvData.append("\n"); 

    LogFile.write(CsvData.toString()); // Write data 

    LogFile.flush(); 

  } 

} 

Fig. E.4 CSV data captured file write routine. 
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F. DAUGHTER-BOARD FIRMWARE 

/************************************************************************/ 

/* ADC initialization function                                          */ 

/************************************************************************/ 

void  

ADC_init ( 

  void 

  )  

{ 

  PORTC &= 0xC0; //Disable pull ups in port C5/4/3/2/1/0 

  PORTD &= 0x3F; //Disable pull ups in port D7/6 

  ADMUX = 0; //AREF (internal Vref turned off), 10-bit precision, ADC0 act. 

  //ADC en., manual triggering, ADC int. en., ADC clock to XTAL/2 = 8 MHz      

  ADCSRA = ((1 << ADEN) | (1 << ADIE) | (1 << ADPS0));  

  DIDR0 = 0xFF; //Digital inputs disabled on ADC7/6/5/4/3/2/1/0 

  ADCSRA |= (1 << ADSC); // Start first conversion 

} 

Fig. F.1 ADC initialization code setting manual triggering, 10-bit conversion precision, 

and 1 MHz ADC clock. 

/************************************************************************/ 

/* ADC conversion interrupt                                             */ 

/************************************************************************/ 

ISR (ADC_vect) 

{ 

  uint8_t  channelVal; 

  uint32_t lowVal; 

  // Wait for the conversion complete in case it is set 

  while (ADCSRA & (1<< ADSC)); 

  channelVal = ADMUX & 0xF; 

  // Update the ADC sum variable with the high and low bytes of conversion 

  lowVal = ADCL; 

  adc_sum[channelVal] += (ADCH << 8) | lowVal; 

  adcSamples += 1; // Increase the ADC sample counter 

  // If number of samples desired has been reached, clear the counter 

  if (adcSamples == NUM_ADC_SAMPLES) { 

    // Save the sum of the samples in the structure for sending through UART 

    motorParameters[channelVal].adcValue = adc_sum[channelVal]; 

    adc_sum[channelVal] = 0; 

    // When the last ADC channel has been reached, finish the ADC sampling  

    if ((channelVal + 1) == MAX_MOTORS) { 

      adcSamplingTaskStatus = TASK_STATUS_FINISHED; 

    } 

    // Update the active ADC channel to the next 

    ADMUX = (channelVal<(MAX_MOTORS - 1))?(channelVal + 1):(ADMUX & ~(0xF)); 

    _delay_us (0.5); // Wait 1 ADC clock before the next conversion 

    adcSamples = 0; // Clear counter 

  } 

  ADCSRA |= (1 << ADSC); // Start conversion manually 

} 

Fig. F.2 ADC conversion interrupt showing the storage of the results in the adc_sum array, 

and the change of the channel reference for conversion.  
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/************************************************************************/ 

/* USART initialization function                                        */ 

/************************************************************************/ 

void  

USART_init ( 

  void 

  ) 

{ 

  UCSR0A = 0; // No parity error 

  // Receive interrupt enable, Receiver enable, Transmitter enable, 8-bits 

  // to receive/transmit 

  UCSR0B = ((1 << RXCIE0) | (1 << RXEN0) | (1 << TXEN0));  

  // Asynchronous USART, Parity mode disabled, 8-bits to receive/transmit 

  UCSR0C = ((1 << UCSZ01) | (1 << UCSZ00));  

  UBRR0 = 1; // UBRRn = 16E6/(16*500000) - 1= 16E6/8E6 - 1 = 2 - 1 = 1 

} 

Fig. F.3 USART initialization function as asynchronous communication, with data 

reception interrupts enabled and 8 bits to be received/transmitted. 

/************************************************************************/ 

/* GPIO ports initialization function                                   */ 

/************************************************************************/ 

void 

GPIO_init (void) { 

  //PCINT0:2 are occupied by PB0, PB1 and PB2 

  //PCINT3:4 are used for pin voltage level change interrupts 

  //PCINT6:7 are occupied by crystal oscillator pins 

  //PCINT8:13 are occupied pins by ADC0:6 

  //PCINT16:17 are occupied by Rx and Tx UART pins 

  //PCINT18:21 and 23 are used for pin voltage level change interrupts 

  //Port D pins D7 (ext. data Tx int.), D5, D4, D3 and D2 as inputs 

  DDRD &= ~((1 << DDD7)|(1 << DDD5)|(1 << DDD4)|(1 << DDD3)|(1 << DDD2)); 

  PCICR = 0; // Do not enable interrupts yet until the scheduler takes care 

  PCMSK0 = 0; //Do not set these int. pins now, sensor handler does it 

  //Interrupt on voltage level change in port D pin D7 and D2 (first motor) 

  PCMSK2 = (1 << PCINT23) | (1 << PCINT18);  

} 

Fig. F.4 General-purpose input-output (GPIO) initialization function for Port D pin D3 as 

input and for voltage level change interrupt. 

/************************************************************************/ 

/* Receive interrupt from USART                                         */ 

/************************************************************************/ 

ISR (USART_RX_vect)  

{ 

  uint8_t AdcQuantity = USART_Receive (); 

  TransmitDataASCII (AdcQuantity); 

} 

Fig. F.5 USART receive interrupt executing the receive sequence, and transmitting the 

data required to the UAV controller.  
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/************************************************************************/ 

/* PORT D pin D3 voltage level change interrupt                         */ 

/************************************************************************/ 

ISR (PCINT2_vect) { 

  DisableAdcInterrupts (); 

  TransmitDataRaw ('4'); 

  EnableAdcInterrupts (); 

} 

Fig. F.6 Port D pin D3 interrupt executing the transmission of data to the UAV controller. 

/************************************************************************/ 

/* Routine to disable ADC interrupts when doing other task              */ 

/************************************************************************/ 

void DisableAdcInterrupts (void) { 

  ADCSRA &= ~(1 << ADIE); 

} 

Fig. F.7 ADC conversion interruption disabling routine to discard ADC data array 

corruption while transmitting. 

/************************************************************************/ 

/* Enable ADC int. once the task being executed finishes, start ADC conv*/ 

/************************************************************************/ 

void EnableAdcInterrupts (void) { 

  ADCSRA |= (1 << ADIE); 

  ADCSRA |= (1 << ADSC);  

} 

Fig. F.8 ADC conversion interruption enabling routine for restoring interrupts, once the 

transmission task has been completed, and start conversion bit setting. 

/************************************************************************/ 

/* This routine takes the number of ADC values to be sent through USART */ 

/************************************************************************/ 

void TransmitDataRaw (uint8_t NumDataToTransmit) { 

  uint8_t index, data = NumDataToTransmit; 

  DisableAdcInterrupts (); 

  // If the data received is a digit (ASCII), then subtract '0' from it 

  if ((data >= '0') || (data <= '9')) { 

    data -= '0';  

    // Send if the digit is not greater than the maximum number of ADCs 

    if (data <= MAX_ADC) { 

      TransmitPackage (data); 

    } 

  } 

  EnableAdcInterrupts (); 

} 

Fig. F.9 Data transmission routine that shows the disabling of ADC interrupts, the 

transmission of the data package, and the re-enabling of the ADC interrupts. 
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/************************************************************************/ 

/* Timers initialization function                                       */ 

/************************************************************************/ 

void Timer_init (void) { 

  // (Timer 1) Normal port operation mode, OC1A and OC1B pins disconnected 

  TCCR1A = 0;  

  // (2^16)*(0.5us) = 65536*(0.5us) = 32.768ms (time it takes to overflow) 

  TCCR1B = (1 << CS11); //16E6/Prescaler = 16E6/8 = 2 MHz = 0.5us period 

  TIMSK1 = (1 << TOIE1); // Timer 1 overflow interrupt enable 

} 

Fig. F.10 Timer 1 initialization function, with the period set to 0.5 μs. 

/************************************************************************/ 

/* Routine to set the flag to sample the time for the interrupt pin     */ 

/************************************************************************/ 

void CheckIfSamplingIsRequired (void) { 

           uint8_t portPin; 

  volatile uint8_t *port = 0; 

  LookupSensorIndex (motorSensorActive, port, &portPin); 

  if (*port & (1 << portPin)) 

    UpdatePortPinSampleTime (motorSensorActive); 

} 

/************************************************************************/ 

/* Routine to check if data request has been received from the UAV      */ 

/************************************************************************/ 

void CheckDataRequestStatus (volatile uint8_t *port, 

                                      uint8_t dataRequestPin) { 

  uint8_t newDataRequestPinStatus = *port & (1 << dataRequestPin); 

  if (oldDataRequestPinStatus != newDataRequestPinStatus) { 

    oldDataRequestPinStatus = newDataRequestPinStatus; 

    // Set the flag to send the data to the UAV controller 

    isDataRequired = 1; 

  } 

} 

/************************************************************************/ 

/* PORT B pins voltage level change interrupt                           */ 

/************************************************************************/ 

ISR (PCINT0_vect) { 

  // Prevent to check the pin for speed sampling if data request is active 

  if (!isDataRequired) 

    CheckIfSamplingIsRequired (); 

} 

/************************************************************************/ 

/* PORT D pins voltage level change interrupt                           */ 

/************************************************************************/ 

ISR (PCINT2_vect) { 

  CheckDataRequestStatus (&VOLTAGE_CHANGE_PORTD, DATA_REQUEST_PIN); 

  // Prevent to check the pin for speed sampling if the data request is set 

  if (!isDataRequired) 

    CheckIfSamplingIsRequired (); 

} 

Fig. F.11 Pin voltage level change interrupts routines and the main functions involved.  
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/************************************************************************/ 

/* Function that takes care of enabling/disabling ADC and GPIO pin      */ 

/* voltage level change interrupts in a scheduler fashion to not have   */ 

/* overlaps                                                             */ 

/************************************************************************/ 

void 

SchedulerHandler ( 

  void 

  ) 

{ 

  // If ADC sampling task has completed, set the task in halt, set the speed  

  // sampling task in running, disable ADC conversion interrupts, enable pin  

  // level change interrupts and clear the stage for the motor sensor active 

  if (adcSamplingTaskStatus == TASK_STATUS_FINISHED) { 

    adcSamplingTaskStatus = TASK_STATUS_HALT; 

    speedSamplingTaskStatus = TASK_STATUS_RUNNING; 

    time_capture_stage[motorSensorActive] = AFTER_TIMER_OVERFLOW; 

    DisableAdcInterrupts (); EnablePinChangeInterrupts (); 

  } 

  // If the speed sampling has completed, set the task in halt, set the ADC  

  // conversion task in running, disable pin level change interrupts, and  

  // enable ADC conversion interrupts 

  if (speedSamplingTaskStatus == TASK_STATUS_FINISHED) { 

    speedSamplingTaskStatus = TASK_STATUS_HALT; 

    adcSamplingTaskStatus = TASK_STATUS_RUNNING; 

    DisablePinChangeInterrupts (); EnableAdcInterrupts (); 

  } 

} 

Fig. F.12 ADC conversion and pin voltage level change interrupt scheduler handler routine. 
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