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1. Abstract

A charge pump circuit capable of operating at different switching speed is presented. The switching speed 
control is added to a typical charge pump circuit by mean of enable switches which allow drive different 
currents. Charge pump circuit is implemented in AMI 0.5µm CMOS technology. Simulations were performed 
using Spectre from CadenceTM. Simulation results show clearly an increase in the slope of charging or 
discharging curves of load capacitor during the pumping-up and pumping-down phases. 
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2. Introduction

Charge-pump (CP) circuit is a building block of A/D and D/A converters, dynamic random access memory
circuits, switched-capacitor circuits and phase locked loop (PLLs). In a PLL system CP circuit consists of two 
transistor switch which generate up and down current pulses to adjust voltage controlled oscillator (VCO) 
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control voltage on filter capacitor. Three important issues of on-chip CP circuits are output voltage ripple, 
power efficiency and area efficiency [1]. Because large output ripple degrades the performance of the circuit 
that the CP is powering, for most applications, a low output ripple is desired. CPs with very low power 
efficiency cancel the benefit of scaling the supply voltage down and are not desirable for portable applications. 
Area efficiency is desirable for many applications as smaller chip areas are less expensive to fabricate. Among 
different PLL topologies, charge-pump phase locked loop (CPPLL) is widely used in modern wireless 
communication systems due to the phase-lock advantages, namely their larger system gain, faster frequency 
detecting reactions, larger range acquisition and a perfect zero static phase error [2], and also offering 
programmability features, this last allowing to satisfy the needs set by modern RF reconfigurable systems, 
able to work under different protocols & standards. An ideal CPPLL model has a perfect zero input phase 
error, but taking the mismatch into account, certain phase error is introduced in practical circuits. That means 
the matching precision of CP is directly related to the phase error of the whole PLL system. Non ideal 
behavior of CP can contributes significantly to PLL output jitter [2, 3] and precision of A/D, D/A converters 
and switched capacitor filters is affected by the switch-induced error voltage. Non idealities come mainly from 
charge sharing, charge injection and clock feedthrough in MOS analog switches of CPs, so transistors’ switch 
sizing is a key design variable in order to get best performance of CPs. Different approaches to the reduction 
of the switch induced error have been proposed in references [4 – 10]. In a PLL system, if phase detector 
circuit detects change in phase it provides information to CP which converts phase error information into 
current to generate control voltage of VCO. Up (down) CP current pulses lead to charge (discharge) the filter 
capacitor. The voltage step during the charge (discharge) is directly related with CP current, then by 
controlling the magnitude of CP current one could control the charge/discharge speed of filter capacitor and 
this offers an effective way of enable PLL operation at different frequencies. In this work, a charge-pump 
topology with two current levels is presented. Design approach of CP circuit is described in section III. In 
section IV, simulation results will be given. Finally, the conclusion is drawn in section V. 

3. Charge-pump circuit

A block diagram of a CPPLL synthesizer system is illustrated in Fig. 1. From this figure, one can note five main blocks: 
phase /frequency detector (PFD), charge-pump (CP), low pass filter (LPF), and voltage controlled oscillator (VCO) and 
frequency divider. Among them, the CP consists of two switched current sources that pump charge into or out of the LPF 
according to the output signal from the PFD. I1 is designed as charging current (IUP) whereas I2 is identified as a 
discharging current (IDW) , and they are nominally equal. Basic operation is as follows: if QA = QB = 0, S1 and S2 are 
open and Vctrl remains constant.  If QA = 1 and QB = 0, then S1 closes whereas S2 is open and IUP charges the filter 
capacitor (Cp). Conversely, if QA = 0 and QB = 1, S2 closes and S1 opens, then IDW discharges Cp. Thus, if for instance, 
Vout lags Vin, QA continues to produce pulses and Vctrl rises steadily towards VDD.  

From dynamic behavior of CPPLL the relationship between Vctrl, IUP (IDW) and phase difference  is deduced as follows 
[11]: 
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This means that Vctrl rises in steps proportional to the ratio IUP/CP every period Tin (see Fig. 2). As an example, suppose a 
10MHz clock frequency, a Cp = 5pF, and IUP = 10uA, the resulting voltage step height is 100mV.  As Eq. 1 reveals if one 
doubles IUP, the slope of Vctrl vs t curve should be doubled, that is, the voltage step height now is 200mV. Thus we can 
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take advantage of this behavior to adjust the speed for charging or discharging filter capacitor [12]. In other words, we can 
utilize IUP current as an extra variable control to set up the speed response of the PLL system.  

Fig.1: typical CPPLL synthesizer system. Fig. 2: step response of CPPLL synthesizer. 

4. Proposed charge-pump circuit

Conceptual representation of CP circuit in which magnitude currents IUP (IDW) can be adjusted is shown in Fig. 3a. 
Traditional CP circuit is composed by S1, S2 switch array and transistors MB1, MB2, MB4 MB5, and MB7. MB1 sets IUP 
(IDW) current through current source composed by MB2, and MB4 (MB5 and MB7). In order to provide CP circuit an 
option to drive different IUP (IDW) current, enables switches are implemented (Fig. 3b). Basic principle of operation is as 
follows: when enable signal is applied “enab_b” switch is closed and transistor MB6 turns-on. If MB6 and MB7 are 
equally sized IUP current is doubled and consequently the charge speed of filter capacitor is doubled. This also holds for 
the complementary part, i. e., IDW doubling current when MB3 is turned-on by closing “enab”. The “enable” switch is 
composed by transistors Me1 and Me2 while Me3 and Me4 forms switch “enab_b”. Switches S1 and S2 were 
implemented with transmission gate topology in order to minimize injection current and clockfeedthrough phenomena. 
The whole circuit is presented in fig. 3b. Transistor MB1, MB2, MB3, MB4 MB5, MB6 and MB7 were sized in order to 
drive 10uA DC current (Eq. 2) whereas MS1 to MS4 were sized in terms of 1kΩ of on-resistance switches (Eq. 3). Me1 to 
Me4 transistors were sized to set a VG voltage of MB6 (MB3) 100mV higher than VTH. Process parameters i. e., VTH, KP, 

, etc., were extracted by Spectre simulations using AMI C5N technology. Table 1 summarizes the transistor dimensions 
of CP circuit shown in Fig. 3. Notice the reduced number of transistors as well as their small dimensions implies low area 
in layout.  
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Fig.3: (a) Conceptual representation of CP circuit for driving different IUP (IDW) currents, (b) Final charge pump schematic approach. 
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Table 1: Charge Pump circuit parameter 

Block Transistor W (um) L (um) 
Bias MB1, MB2, MB3, 

MB4, MB5, MB6, 
MB7  

2.1MB1,2,3,4 

3.3MB5,6,7 

1.2 

S1 switch MS1, MS2 1.5 0.6 
S2 switch MS3, MS4 1.65 0.6 
IUP enable switch Me1, Me2,  1.5 0.6 
IDW enable switch Me3, Me4,  1.5 0.6 

5. Simulation results

Transient simulations have been performed using a 0.5µm CMOS process from AMI C5N technology provided by 
MOSIS and Spectre simulator provided by CadenceTM. Fig. 4a presents a closed up image during the pumping-up phase 
for the two IUP current levels. As can be noticed from Fig. 4a, the step sizes of Vctrl are quite matched with model given 
by Eq. 1, that is, step size doubles when IUP is doubled. Similar behavior was observed during the pumping-down phase 
(Fig. 4b). Also a higher slope can be observed for the charge intervals in the whole pumping up or pumping down phase 
(Fig. 5) which validates this approach. 

Fig. 4: Simulation results of proposed charge pump circuit (VDD = 3V, f= 10MHz): (a) Pumping-up, (b) pumping down. 
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Fig.5: Charge pump simulation results. 

6. Conclusions

This paper proposed a new structure of high performance CMOS charge pump for phase-locked loop synthesizer. 
According to the test results, with the help of enable switch added to the traditional charge pump circuit IUP (IDW) current 
can be chosen to fix the charge/discharge speed of filter capacitor. The proposed CP has a wide current match range, a 
high matching precision. This CMOS charge pump structure can be applied in a CPPLL with high performance. 
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