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Resumen 

En este trabajo se estudió una topología punto-a-punto, compuesta por un buffer maestro, su 

paquete, dos líneas de transmisión de longitudes L1 y L2 con una resistencia en serie en el PCB, 

y un buffer esclavo, donde la respuesta considerada para el sistema fue el tiempo de vuelo de las 

señales digitales provenientes de los buffers. Las simulaciones por lo general se realizaban 

utilizando un simulador SPICE modelando la topología en secciones. Para disminuir los recursos 

computacionales durante procesos de optimización, se obtuvieron modelos sustitutos utilizando el 

diseño de experimentos, ya que no existe un modelo analítico del sistema completo. 

Para construir el modelo sustituto se realizaron experimentos de cribado. Tres factores no-

controlables tuvieron un efecto significativo en el tiempo de vuelo de la señal del buffer maestro: 

la impedancia característica (Zo) de las líneas de transmisión del PCB y las condiciones de 

operación de los dos buffers. Estos factores también fueron significativos para la señal procedente 

del buffer esclavo, así como la Zo de las líneas de transmisión del paquete. 

Se comparó el ajuste de diseños compuestos centrales rotables y “face-centered”, considerando 

un error máximo de 15%. Los diseños “face-centered” fueron menos complejos y proporcionaron 

un mejor ajuste del modelo, sin embargo fueron menos poderosos en la extrapolación de las 

predicciones. Los diseños rotables estuvieron limitados en el intervalo permitido para las 

longitudes de L1 y L2. 

Mediante los modelos sustitutos desarrollados para las interconexiones se representó un bus 

síncrono, el “Serial Peripheral Interface” (SPI), que requiere un análisis de tiempo para evaluar 

la longitud máxima permitida de las líneas de transmisión. Un algoritmo Nelder-Mead con función 

de penalización añadida se utilizó para optimizar las longitudes L1 y L2 del modelo sustituto, 

mantenimiento los márgenes de tiempo igual o mayores que cero. Las longitudes óptimas se 

validaron utilizando simulaciones SPICE. 
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Summary 

A point-to-point topology was studied in this work, consisting of a master buffer, its package, two 

transmission lines of lengths L1 and L2 with a series resistor on the PCB, and a slave buffer. The 

considered response for the system was the flight time of digital signals coming out of the buffers. 

Simulations usually were done using a SPICE simulator by modelling the topology in sections. To 

decrease computational resources during optimization processes, surrogate models were obtained 

using design of experiments since no analytical model of the complete system exists.  

In order to build the surrogate model, screening experiments were done. Three uncontrollable 

factors proved to have a significant effect on the flight time of the signal from the master buffer: 

the characteristic impedance (Zo) of the PCB transmission lines and the operating conditions of 

both buffers. These three factors were also significant for the signal coming from the slave buffer, 

in addition to the Zo of the package transmission lines. 

Face-centered and rotatable central composite designs for both the master and slave signals were 

compared to see which had a better fit, with a 15% maximum error. The face-centered designs 

were less complex and provided a better model fit, however they were less powerful at 

extrapolating predictions. The rotatable designs were limited in the allowable range for the 

lengths of L1 and L2. 

The surrogate models developed for the interconnects allowed to represent a Serial Peripheral 

Interface (SPI), which is a synchronous bus, and requires a timing analysis to assess the maximum 

allowed length of the transmission lines. A Nelder-Mead algorithm with an added penalty function 

was used to optimize the surrogate model lengths L1 and L2, while maintaining the timing margins 

equal to or larger than zero. Optimal lengths were validated using SPICE simulations. 
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Introduction 

Design guidelines are developed for the interconnections of server platforms that support 

the latest generation of Intel processors and chipsets at the group "Enterprise Platform Signal 

Integrity" at Intel. Typically, these guidelines are made for differential and single-ended signals, 

the latter of which have a subset of interfaces that are considered low speed, and operate at a 

maximum frequency of 200MHz. These low speed signals serve several different purposes and 

can have different topologies for a single interface.   

Today there is an inefficient design methodology for the guidelines for the single-ended 

low speed interconnections. The design process involves time domain simulations of specific 

cases, in which voltage levels are measured for some types of signals, or propagation time for 

others. A simulation file in SPICE format is written for each of the different existing topologies, 

and 32 cases are simulated per topology, corresponding to the combinations of five process 

variables (the most common being characteristic impedances and voltage levels). These variables 

are chosen without any study to see which variables have more effect on the system. The 

simulations are relatively fast, each case is simulated in less than 10 minutes (more complex 

topologies may have longer simulation times) however the analysis done for the simulations works 

only for the specific topology simulated. When a change in a variable is required, the 32 cases of 

the topology need to be simulated and analyzed again. 

In this thesis, a methodology is defined to obtain surrogate model of single-ended low-

speed interconnects for server platforms, that are useful in simplifying optimization tasks. The 

methodology involves selecting the variables with the greatest impact on the response of the 

system, and using mathematical modeling and design of experiments techniques to develop the 

surrogate models.  

Surrogate modeling refers to the modelling of a complex system at less computational cost. 

Unlike the complex system, the “surrogate” should be easier to evaluate, whereby the accuracy 

and range of applicability are traded off. Sampling is an essential part of surrogate modeling, and 

includes two important modeling criteria. The first is the number of elements in the vectors, and 

the second is the range of the variables. The number of elements of the sample vectors can 
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substantially change the complexity of the final surrogate models [Yelten-12]. In the first chapter, 

an experimental design will be used for the selection of important variables to consider for the 

system studied. In Chapter 2 the range of the variables will be decided.  

Surrogate modeling that aims to describe the whole possible ranges of the inputs is more 

computationally expensive to develop and use, and requires a large number of samples. This 

number can be optimized by using a well-defined sampling plan [Yelten-12]. In Chapter 2 different 

types of design of experiments will be considered to develop a mathematical model that accurately 

represents the behavior of the system from the chosen variables in Chapter 1, using the least 

possible samples.  

Accuracy of the surrogate models should be carefully quantified as this what decides the 

usefulness of the models developed. Test vectors, different from the sample vectors, must be 

created that will be used to validate the surrogate models [Yelten-12]. In Chapter 2, the models 

obtained from the different types of experiments, are validated and the error between the response 

of actual system and the estimated response, is then quantified using the root mean square error 

(RMSE). Furthermore, the surrogate models obtained will be validated in the design space. Finally, 

in Chapter 3 the models obtained in Chapter 2 will be used in a practical application of 

optimization, and the optimized results will be validated in a SPICE simulation. 
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1. Screening Experiment 

Interconnections of server platforms are made for differential and single-ended signals, the 

latter of which have a subset of low speed interfaces that serve for several different purposes and 

have different topologies. A simple point-to-point topology has been chosen to be studied in this 

work, consisting of a master device, the master’s package, two transmission lines of lengths L1 

and L2 with a series resistor on the printed circuit board (PCB), and a slave device. For this system, 

the response to be considered is the flight time of digital signals, which is the time that it takes the 

signal to go through all the components starting from one device all the way to the other. Fig. 1-1 

shows the point-to-point topology as seen from the side view. 

Manufacturing electronic circuit prototypes of any topology for its analysis would be costly 

and time consuming. CAD tools (circuit analysis programs assisted by computer) provide a simple 

and cost-effective electronic circuit simulation environment. By simulating the circuits, errors can 

be detected and different components can be explored. The simulation of an electronic system can 

also be helpful to deepen the knowledge of the behavior of the circuit. 

 
Fig. 1-1 Typical point-to-point topology seen from the side view showing the master and slave 

devices, master package, and printed circuit board. 

Printed Circuit Board

Master

Package
(including 

socket 

effects)

Slave
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1.1. Model of the Topolgy 

Simulating the complete topology in Fig. 1-1 would require expensive 3D modelling and 

simulation. To decrease computational resources, the topology is divided into sections and 

modelled separately. Behavioral models are extracted for the Ron value of the pull-up and pull-

down transistors of the buffers for both master and slave. 3D and 2D simulation is used to extract 

parameter values for distributed element models for the transmission lines of the package and the 

PCB. Lumped element models are used for the passive components such as resistors. Fig. 1-2 

shows the simplified topology. 

All the different simulation models that make up the system’s topology are linked together 

in a simulation program. In electronics, the worldwide standard circuit simulator is called SPICE 

(Simulation Program with Integrated Circuit Emphasis). SPICE was developed at UC Berkley and 

was made available to the public in July 1975. SPICE was designed to determined unknown 

parameters using Kirchhoff current equations in nodal analysis. It is an all-purpose simulation 

program for non-linear DC analysis, non-linear transient analysis, and linear AC analysis. The 

simulated circuits can contain resistors, capacitors, inductors, magnetic coupling, current and 

voltage sources, transmission lines, switches, and semiconductor devices [Savant-98]. SPICE 

simulates the behavior of electronic circuits and tries to emulate signal generators, as well as 

measurement equipment like oscilloscopes, multimeters, curve tracers and frequency spectrum 

analyzers.  

SPICE simulators provide the analysis of the electronic circuit’s performance by using 

Monte Carlo analysis, parametric sweeps, as well as optimization methods. In order to perform a 

simulation the first thing to do is to generate a netlist, which is a textual representation of the 

electronic circuit with all components interconnected. Using models as the ones listed above for 

 
Fig. 1-2 Simplified point-to-point topology showing master and slave devices, master package, 

transmission lines of lengths L1 and L2, and a serial resistor. 
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each component, the netlist is then converted by the simulator into mathematical matrices that will 

be solved according to the specified type of analysis. 

In the design process it is sometimes impractical to base the analysis on simulations of the 

electronic circuit. Each time a component’s value needs to be changed, the entire simulation needs 

to be run again, and depending on the complexity of the circuit this can take up to hours. Many 

times new models need to be generated for each new simulation, adding time to the process. For 

these reasons, it is sometimes more convenient to do the analysis using surrogate models. 

In general, a process or system can be represented by the model in Fig. 1-3, that consists 

of a combination of resources that transform an input into an output, which has one or more 

observable response variables. Some of the system’s properties x1,x2,…,xp are controllable, 

whereas other variables z1,z2,…,zq are uncontrollable [Montgomery-13]. This model enables the 

system to be viewed as a black box that represents very closely the behavior of the original system 

within a determined range of its input variables. The idea of a substitute model is to use this 

alternative representation to analyze the system, without having to simulate the entirety of it again. 

Systems like the one chosen in this work are subject to Process, Voltage, and Temperature 

(PVT) variations that have a direct effect on all the components in the circuit. For the system in 

Fig. 1-2 voltage and temperature have a direct effect on the impedance of the buffers modelling 

the master and slave. Temperature and process variations have a direct effect on the characteristic 

impedance (Zo) of the transmission lines in the circuit. Process variations directly affect the value 

 
Fig. 1-3 General model of a process or system showing the output, the input, controllable and 

uncontrollable factors. 

Process/System

x1 x2 xp...

z1 z2 zq...

Input
Output

y

Controllable factors

Uncontrollable factors



1. SCREENING EXPERIMENT 

 6 

of the passive elements. These factors in practice are uncontrollable and are assumed to stay within 

an allowable range, or tolerance from the nominal value, and thus have a maximum and a minimum 

value (these values are called corners). The uncontrollable factors and their permissible range for 

the point-to-point topology discussed in this work are presented in TABLE I. For this work, the 

controllable factors chosen are the lengths of the transmission lines on the PCB. The length of the 

transmission lines in the package are not considered design factors as the lengths are fixed and 

cannot be changed.  

The simulation models for the buffers used in this work use IBIS files containing behavioral 

and electrical characteristics of the input and output buffers. Models using IBIS files do not follow 

conventional modelling ideas as a schematic symbol or polynomial expression. An IBIS file 

consists of tabular data of current-voltage relationship values (which give the Ron value of the pull-

up and pull-down transistors of the buffer), as well as the voltage-time relationship at the output 

pins under rising and falling switching conditions. The files are generated for three different corner 

conditions: nominal, minimum, and maximum. In a nominal condition, the data is obtained for 

nominal supply voltage and nominal temperature; in a minimum condition, the data is obtained 

with the minimum supply voltage, and maximum temperature; and for a maximum condition, 

maximum supply voltage and minimum temperature are used [Casamayor-04]. For this reason, a 

single simulation parameter is used to select operating conditions of the IBIS data, therefore the 

TABLE I 

UNCONTROLLABLE FACTORS FOR POINT-TO-POINT TOPOLOGY 

 

Factor Minimum Nominal Maximum 

Voltage 3.135 V 3.3 V 3.465 V 

Temperature 0 °C 50 °C 110 °C 

Buffer pull-up impedance 20 ohm 25 ohm 30 ohm 

Buffer pull-down impedance 15 ohm 20 ohm 25 ohm 

Series resistor value 31.35 ohm 33 ohm 34.65 ohm 

Zo of board routing 42.5 ohm 50 ohm 57.5 ohm 

Zo of package routing 46 ohm 50 ohm 54 ohm 
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factors in TABLE II are used in the simulation for this experiment, instead of the ones listed in 

TABLE I. 

1.2. Basics on Design of Experiments  

For complex systems like electronic circuits, there is usually no analytical model of the 

complete system. In such cases, design of experiments comes in handy. Experiments are used to 

study the performance of processes and systems, and well-designed experiments can lead to 

empirical models that can be manipulated as if they were analytical models [Montgomery-13]. 

In any system, some variables may have a larger influence over the system’s response than 

others. This is why before submitting the system to an experiment that will hopefully result in a 

useful empirical model, the first step in experimental design is to run a screening experiment to 

see which factors are the most important and use only those in subsequent experiments. The most 

efficient way to screen the design factors is to conduct a factorial experiment. In this strategy, a 

complete trial of the experiment consists in all possible combinations of the levels of the factors 

TABLE II 

UNCONTROLLABLE FACTORS CHOSEN FOR SIMULATION 

 

Factor Minimum Nominal Maximum 

master_corner 

3.135 V, 110 °C and 

operating conditions 

at minimum value 

3.30 V, 50 °C and 

operating conditions at 

typical value 

3.465 V, 0 °C and 

operating conditions at 

maximum value 

slave_corner 

3.135 V, 110 °C and 

operating conditions 

at minimum value 

3.30 V, 50 °C and 

operating conditions at 

typical value 

3.465 V, 0 °C and 

operating conditions at 

maximum value 

Series resistor 

value 
31.35 ohm 33 ohm 34.65 ohm 

Zo of board 

routing 
42.5 ohm 50 ohm 57.5 ohm 

Zo of package 

routing 
46 ohm 50 ohm 54 ohm 
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involved. The effect of a factor is the change in the response produced by a change in the level of 

the factor. The level of the factors is the number of values that are assigned to each factor in the 

experiment. When the effect of a factor depends on the level of another factor, it is said that an 

interaction exists between these factors [Montgomery-13]. 

The most common type of experimental designs used in screening experiments are factorial 

designs of only 2 levels, since “this type of design provides the smallest number of runs which k 

factors can be studied in a complete factorial design” [Montgomery-13]. The levels in these 

designs are usually called “low” and “high”, and correspond to the minimum and maximum values 

chosen for each factor. The factors are scaled so that the low level is assigned to a value of -1 and 

the high level is assigned to a value of +1. Factors are usually denoted by uppercase letters 

(interactions of factors are called words because they are denoted by the uppercase letters of the 

combined factors), lowercase letters are used for the high level of the factor, and the letter is 

omitted for the lower level. A complete trial requires 2x2…x2=2k observations, thus this type of 

design is called a 2k design. Since only two levels are used for each factor, the response is assumed 

to be approximately linear over the chosen range of the factor levels. The statistical model for the 

general 2k design includes Ck,1 combinations of main effects, Ck,2 combinations of two-factor 

interactions, Ck,3 combinations of three-factor interactions, Ck,4 combinations of four-factor 

interactions, and so on up to Ck,k combinations of k-factor interactions [Montgomery-13]. 

For even a small number of factors, the total number of runs in a trial of a 2k design is large. 

Sometimes the number of replicates that the experimenter is able to do is restricted due to limited 

resources, or because the experiment can only use simulation data. Because of this, occasionally 

only a single replicate of the design can be run. A risk when dealing with an unreplicated factorial 

experiment is that the model may be fitted to noise. This can be mitigated by increasing the distance 

between the low (-) and high (+) levels of the factors. Another problem with only one replicate, is 

that there is no internal estimate of statistical error [Montgomery-13].  

Li, Sudarsanam, and Frey studied in [Li-06], a set of 46 published experiments from a 

variety of fields that included 113 response variables in all. They used a General Linear Model to 

estimate factor effects, all the experiments were full two-level factorials with between three and 

seven factors. They studied the effect sparsity in the 113 responses. In the study they found that 

more than a third of all main effects were classified as active (having an important influence on 

the response). Only about 7.4% of all two-factor interactions were active, and the percentage drops 
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as the number of factors in the interactions rise, thus providing evidence for the validity of the use 

of the effect sparsity principle in unreplicated designs. Effect sparsity is the observation that most 

systems are dominated by some of the main effects and low-order interactions [Li-06].  

Using the effect sparsity principle it can be assumed that certain high-order interactions are 

negligible, and their mean squares can be combined to estimate the error. However, real high-order 

interactions can occasionally occur. When analyzing unreplicated designs, examining a normal 

probability plot of the estimate of the effects is recommended by Cuthbert Daniel [Daniel-59].  

Daniel’s method requires the experimenter to make a judgment about what is an outlier and 

what is not [Daniel-59]. To remove this element of subjectivity, Lenth proposes an objective 

method for deciding which effects are active in the analysis of unreplicated experiments [Lenth-

89]. Lenth’s method consists in estimating a standard-error-like quantity, called the pseudo 

standard error, or PSE, defined in (1-1). To find the critical value (the cutoff value) for statistically 

significant effects, the PSE is multiplied by a critical t-value with degrees of freedom equal to the 

total number of effects divided by 3, as in (1-2). The factor effects can then be plotted in a normal 

plot with a reference line having a slope equal to the PSE. The effects that are negligible are 

normally distributed, with mean zero and variance 2  and will tend to fall along the PSE line, 

whereas significant effects will have nonzero means and will not lie along the line [Lenth-89].  

  isc
cmedianPSE

i 05.2
5.1


  (1-1) 

dftPSEvaluecritical ,05.0_ 
 

(1-2) 

where 

3/_ effectstotaldf   (1-3) 

icmedianS  5.10  (1-4) 

effectsestimatedci    

When 3- and higher-factor interactions are considered negligible (making use of the effect 

sparsity principle), frequently half or more runs in a trial do not give useful information regarding 

the important effects of the factors and their interactions, and therefore are waste. In these cases, a 

fractional factorial design is used, where, as the name implies, only a fraction of the full factorial 

design is used. When all possible combinations of factors and levels are not evaluated in the 

experiment, certain factor and interaction effects will be confounded (or aliased) together, meaning 

the estimate of an effect includes the influence of one or more other effects and cannot be attributed 
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unambiguously to a single factor or interactions [Mason-03]. The experiment design chosen should 

allow a clear evaluation of main effects and interaction effects thought to be strong (especially 2-

factor interactions since these are not usually considered negligible) [Box-05]. 

A fractional factorial design containing 2k-p runs is called a (1/2) p fraction of the 2k design, 

and requires p independent generators. A generator is a relationship between factors in a fractional 

factorial experiment that determines how the fraction of runs is selected from the full factorial 

design. The defining relation of a design is made of all the design generators, and is used to 

calculate the alias structure that describes the confounding in the fractional factorial design 

[Support.minitab-15]. A reasonable criterion is to select the generators such that the resulting 2k-p 

design has the highest possible resolution. A design is of resolution R if no p-factor effect is aliased 

with another effect containing less than R – p factors. In general, the resolution of a two-level 

fractional factorial design is equal to the number of letters (factors) in the shortest word in the 

defining relation [Montgomery-13]. TABLE III lists the most common types of resolutions 

available. 

1.3. Design of Experiments for the Selected Topology  

TABLE III 

TYPES OF RESOLUTION FOR FRACTIONAL DESIGNS [Kuehl-01] 

 

Type Explanation 

Resolution 

III 

These are designs in which no main effects are aliased with any other main 

effect, but main effects are aliased with two-factor interactions, and two-factor 

interactions may be aliased with each other. 

Resolution 

IV 

These are designs in which no main effect is aliased with any other main effect 

or with any two-factor interactions, but two-factor interactions are aliased with 

each other. 

Resolution 

V 

These are designs in which no main effect or two-factor interaction is aliased 

with any other main effect or two-factor interaction, but two-factor interactions 

are aliased with three-factor interactions. 
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The time that takes the signal to go through all the components starting from the master all 

the way to the slave, is called flight time, and is a function of the propagation delay of the 

components as in (1-5) (see Fig. 1-2) [Balasubramaniam-01]. The flight time for the system studied 

here is a function of the propagation delay of the series resistors, and the propagation delay and 

length of the transmission lines. This last delay is a function of the characteristic impedance of the 

transmission lines per unit length.  

2__1__ 2__1_ LoflengthttLoflengthtt LpdresistorpdLpdfllight   (1-5) 

The uncontrollable design factors in TABLE II affect the propagation delay of the different 

components, and thus have an effect on the overall flight time of the system. In this work, a 

screening experiment is performed in order to identify those uncontrollable factors that have the 

most influence on the flight time of the system. The transmission line lengths are considered fixed 

for the purpose of the screening experiment, at 2.5 in for L1, and 3.5 in for L2.  

Based on the factors in TABLE II, if a full 25 factorial design were chosen for this screening 

experiment, 32 runs of the experiment would be needed. As explained above, this means 16 out of 

the total 32 runs (C5,3 three-factor interactions, C5,4 four-factor interactions, and one 5-factor 

interaction) are waste if the effect sparsity principle is used. For this reason a 25-1 fractional 

factorial design is chosen for the experiment, since it is a Resolution V design. For this 25-1 design 

the generator chosen is ABCDE  (the other option for the generator in a 25-1 design is 

ABCDE  ). 

For this work, factor and interaction effects are calculated with JMP® Pro 9.0.3 statistical 

software1. As explained before, the factors are denoted by uppercase letters, lowercase letters are 

used for the high level of the factor and the letter is omitted for the lower level. When all the factors 

are at the lower level, the symbol (1) is used. It is often convenient to write down the treatment 

combinations (combination of the levels of the factors) in standard order or Yate’s order, starting 

with (1), then putting one letter at a time followed by all combinations with letters that have been 

previously added [Dodge-08]. This translates into writing in the k-th column of the design, 2k-1 

minus signs followed by 2k-1 plus signs [NIST/SEMATECH-15]. 

The design for this experiment is constructed by writing down the design for a full 25-1 

factorial in Yate’s order. The generator chosen for the design is then solved for the missing column 

                                                 
1 JMP®, Version Pro 9.0.3, 2011, SAS Institute Inc., Cary, NC.    
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of the design (corresponding to the E factor). TABLE IV shows the design generated in JMP® for 

the 152   screening design.  

1.4. Flight Time Measurement 

To measure flight time, intuitively a probe would be set at the driver’s output and another 

at the receiver’s input, and the flight time would be the difference in time between these two points. 

However, there are reflections that bounce back to the driver, resulting in a degraded signal at the 

driver’s output. If the flight time were measured from this point, it would be an incorrect 

measurement. Flight time in simulation is more accurately defined as “the amount of time that 

elapses between the point where the signal on an output buffer driving a reference load crosses the 

threshold voltage and the time where the signal crosses the threshold voltage at the receiver in the 

system” [Hall-00]. This means, a simulation reference load is required to measure the flight time 

TABLE IV 

DESIGN TABLE FOR SCREENING EXPERIMENT 

 

Run Pattern 

A 

(slave_ 

corner) 

B 

(resistor 

value) 

C 

(Zo board 

TLs) 

D 

(master_ 

corner) 

E=ABCD 

(Zo PKG 

TLs) 

1 (1) −−−− + -1 -1 -1 -1 1 

2 a +−−−− 1 -1 -1 -1 -1 

3 b −+−− − -1 1 -1 -1 -1 

4 ab ++−− + 1 1 -1 -1 1 

5 c −−+− − -1 -1 1 -1 -1 

6 ac +−+− + 1 -1 1 -1 1 

7 bc −++− + -1 1 1 -1 1 

8 abc +++− − 1 1 1 -1 -1 

9 d −−−+ − -1 -1 -1 1 -1 

10 ad +−−+ + 1 -1 -1 1 1 

11 bd −+−+ + -1 1 -1 1 1 

12 abd ++−+ − 1 1 -1 1 -1 

13 cd −−++ + -1 -1 1 1 1 

14 acd +−++ − 1 -1 1 1 -1 

15 bcd −+++ − -1 1 1 1 -1 

16 abcd ++++ + 1 1 1 1 1 
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correctly. Fig. 1-4 a) shows the placement of probes on the topology for the simulation and the 

waveform of the signal at each probe. Fig. 1-4 b) shows the difference between the waveform at 

the driver’s output, and the waveform at the reference load.  

The receiver buffers in a digital system are designed to distinguish between a high and a 

low logic state at a threshold voltage. However, due to process variations and system noise, the 

threshold voltage may change. This variation produces a threshold region that typically extends 

100 to 200 mV above and below the threshold voltage. The upper and lower limits of the threshold 

region are referred to as VIH and VIL, respectively. To ensure the integrity of the data being 

transmitted, the system must be able to deliver high logic states that remain above VIH, and low 

logic states that remain below VIL [Hall-00].  

The flight time should be evaluated at VIL, Vthreshold, and VIH according to Fig. 1-5 and (1-

6), where only the worst case (largest value) of the three measurements is used. When using the 

flight times in time-margin equations, the worst case flight time should be inserted. However in 

practice, for simplicity flight time is measured only at one threshold, usually at Vthreshold or at VIH, 

depending on the behavior of the signal. For the system analyzed in this work, the flight time is 

measured at Vthreshold, since measuring at VIH is very pessimistic, and can limit unrealistically the 

solution space of the system. 

 
Fig. 1-4 Flight time measurement. a) Placement of probes for simulation b) waveforms of the 

signal at probes. 
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After the 16 runs from TABLE IV are simulated, the flight times are measured from the 

simulation results, and are introduced into JMP® as the response of the system, in order to 

calculate the estimated factor effects. TABLE V shows the calculated effect estimates from JMP® 

















reflrxl

refmrxm

refhrxh

fllight

TT

TT

TT

caseWorstt

__

__

__

 

 

(1-6) 

The data for this experiment comes from simulation. As previously explained, this means 

that only one replicate of the design can be obtained since further replicates will result in the exact 

same data. Therefore high-order interactions are considered negligible and used to calculate the 

statistical error. To verify that those high-order interactions can indeed be considered negligible, 

Lenth’s method is followed to construct a normal probability plot of the estimated effects.  

First, the estimated effects in TABLE V are sorted into increasing order of the absolute 

values excluding the intercept effect. The median of the new list in TABLE VI is then multiplied 

by 1.5 according to (1-4).  

 

 
Fig. 1-5 Flight time measurement in waveforms. 
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Lenth takes this value as a preliminary estimate and refines the effects lists by excluding 

all effects exceeding 2.5 times this estimate.  

018458.05.2 0  s    

Excluding factors with estimated effect larger than 0.018458 gives TABLE VII. The 

median of the remaining effects is multiplied by 1.5 to obtain the PSE value. The PSE is multiplied 

by a critical t-value ( dft ,05.0 ) with degrees of freedom equal to the total number of effects divided 

by 3, according to (1-2) and (1-3).  

TABLE V 

FACTOR EFFECTS CALCULATED WITH JMP® 

 

Term Estimate 

Intercept 1.649283 

A 0.032367 

B 0.009993 

C -0.05322 

D -0.17275 

E -0.00401 

A*B 0.001479 

A*C -0.00526 

A*D -0.01649 

A*E 0.001162 

B*C -0.00191 

B*D -0.00492 

B*E 0.003663 

C*D 0.028695 

C*E -0.00142 

D*E 0.000755 
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  00549.0003663.05.15.1
05.2


 isc

cmedianPSE
i

   

53/15_deg  dffreedomrees    

015.25,05.0 t    

011072.0_ 5,05.0  tPSEvaluecritical    

All factors and interactions with effects smaller than the critical value of 0.011072 are 

negligible in the design; factors A, C, D, and the interactions AD and CD have significant effects, 

and the rest of the factors and interactions can be considered negligible as they fall along the 

reference line having a slope equal to the PSE. Therefore, slave_corner, Zo of the board 

transmission lines, and master_corner are the active factors in this design. 

For the digital signal coming from the slave buffer, a screening experiment was performed 

similar to the one previously explained for the master signal to see which of the uncontrollabe 

factors in TABLE II are negligible for the design. The design table for this experiment is the same 

as TABLE IV. TABLE IX shows the estimated screening factor effects calculated for the signal 

coming from the slave buffer. As previously explained, Lenth’s method is followed to decide 

which parameters can be considered negligible for further experiments. The critical value from 

Lenth’s method is 0.010068, meaning only the factors A, C, D, E, and interactions AD, CD, have 

significant effects, while the rest of the factors and interactions can be considered negligible. 

Therefore, master_corner, Zo of the board transmission lines, slave_corner, and Zo of the package 

transmission lines are the active factors in this design. For further experiments, six factors in total 

will be used for the slave signal model, the four active factors plus the lengths L1 and L2. 
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TABLE VII 

EFFECTS SMALLER THAN 05.2 s  

 

Term Absolute value  

of estimate 

D*E 0.000755 

A*E 0.001162 

C*E 0.001417 

A*B 0.001479 

B*C 0.001913 

B*E 0.003663 

E 0.004011 

B*D 0.004922 

A*C 0.005263 

B 0.009993 

A*D 0.016494 

median 0.003663 

 

TABLE VI 

FACTOR EFFECTS SORTED INCREASINGLY 

 

Term Absolute value  

of estimate 

D*E 0.000755 

A*E 0.001162 

C*E 0.001417 

A*B 0.001479 

B*C 0.001913 

B*E 0.003663 

E 0.004011 

B*D 0.004922 

A*C 0.005263 

B 0.009993 

A*D 0.016494 

C*D 0.028695 

A 0.032367 

C 0.05322 

D 0.172745 

median 0.004922 
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TABLE VIII 

SCREENING FACTOR EFFECTS FOR THE MISO DATA LINE 

 CALCULATED WITH JMP® 

 

Term Estimate 

Intercept 1.6619301 

A 0.0292255 

B 0.0099757 

C -0.049679 

D -0.167983 

E -0.013259 

A*B 0.0008955 

A*C -0.004626 

A*D -0.015952 

A*E 0.000396 

B*C -0.001715 

B*D -0.004401 

B*E 0.003331 

C*D 0.0271223 

C*E -0.000433 

D*E 0.0026336 
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1.5. Conclusions 

In this chapter, the uncontrollable and controllable factors were chosen for the system being 

studied. From the uncontrollable factors of the system, the ones with significant main effects on 

the flight times of the signal coming from the buffers were identified using screening experiments. 

These experiments provided information only on the direct additive effects and pairwise 

interactions effects of the factors. No replication was used in the experiments, as the data used 

came from SPICE simulations. For this reason, Lenth’s method for unreplicated experiments was 

followed to decide which factors could be considered to have a negligible effect on the response 

of the system.  

From the five uncontrollable factors chosen to be investigated, three were concluded to 

have active effects on the flight time of the master, i.e., the operating conditions of both buffers 

and the characteristic impedance of the PCB transmission lines. These three factors were also 

determined to have active effects on the flight time of the slave signal, along with the characteristic 

impedance of the package transmission lines.  
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2. The Surrogate Model 

The screening experiments done so far consist of trial runs at the lower-bound and upper-

bound level setting combinations of the ranges of the factors, providing information on the direct 

additive effects of the variables and pairwise interactions effects [Verseput-00]. Once the main 

design factors have been selected in the screening experiment, the next step is to fit a mathematical 

model to the data that represents the system. 

2.1. Constructing the Model 

It is a good idea that the design selected provide curvilinear factor effects in addition to the 

direct additive and interaction effects, in case the system does not present a linear behavior. This 

cannot be done with a linear design, and thus a second-order model in the form of (2-1) is needed 

[Myers-02].  
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(2-1) 

where x are the design variables, k is the number of design variables, y is the predictor that involves 

the design variables, ε  represents the error in the system, and β the regression coefficients.  

To determine the parameters of the quadratic regression in (2-1) a design needs to have at 

least three levels for each factor and 1+2k+k(k-1)/2 runs [Myers-02]. 3k factorial designs can be 

used to estimate quadratic regression models, however the number of runs required in this type of 

designs can be huge, making the design ultimately impractical. A popular type of second-order 

design is the Central Composite Design (CCD). This experimental scheme uses a 2k complete or 

resolution V fractional factorial, combined with nc center points, plus 2k axial points where the 

parameters are given in terms of a distance from the central point called the axial distance α; 

TABLE IX lists the axial points. The center runs provide information about the curvature of the 

system and can be used for an internal estimate of statistical error. If curvature is found in the 

system, the axial points allow an efficient estimation of the quadratic terms [Myers-02]. 
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It is important for the second order model to provide good predictions throughout the region 

of interest. One way to ensure this is to require that the model have a consistent and stable variance 

of the predicted response throughout the region of interest, in other words, that the design be 

rotatable. A CCD can be made rotatable by choosing α as (2-2).  

4/1)( fn  (2-2) 

where nf  is the number of points used in the factorial portion of the design [Montgomery-13]. 

In a rotatable CCD, all points at the same distance from the center point have the same 

prediction error; factorial and axial points fall on different concentric spheres and in consequence 

have different prediction error.  

It is not important to have exact rotatability in a design. If the region of interest is found to 

be spherical, a good choice of α is to set it at  

k  (2-3) 

where k is the number of factors. This value of α puts all the factorial and axial points on the 

surface of a sphere of radius k  [Montgomery-13]. 

Another choice of the axial distance is α=1. This is used when the region of interest and 

the region of operability are the same, so the axial points occur at the center of the faces rather 

than outside as it happens in a spherical region, resulting in a face-centered cube design [Kuehl-

01]. 

TABLE IX 

AXIAL POINTS FOR CCD [Myers-02] 

 

1x  2x   kx  

  0  0 

  0  0 

0    0 

0    0 

       

0 0    

0 0    
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Rotatable and spherical designs allow uniform prediction error and extension of the design 

region, but require 5 levels for each factor. Face-centered designs are less complex, they require 

only 3 levels of each factor, but are not as powerful at extrapolating predictions. Fig. 2-1 shows 

the geometry of rotatable, spherical, and face-centered designs. 

In a central composite design, each factor has the high level (+1) and low level (-1) from 

the factorial design. In addition to these levels, each factor has an intermediate level (0) that 

corresponds to the nominal value of the factor, and two new levels are added that correspond to 

the axial distances -α and +α. 

A second-order regression model is fitted to the system to represent the flight time of the 

digital signal coming from the master buffer of Fig. 1-2 using a CCD. From the screening 

experiment performed using the point-to-point topology, slave_corner, Zo of the board 

transmission lines, and master_corner were determined to be the active factors in the design, and 

the lengths of the PCB transmission lines, the values for L1 and L2 were fixed. The distance 

between master and slave is the largest factor in the flight time, and is dependent on the length of 

the transmission lines of the interconnection, L1 and L2. Thus, the regression model in this work 

 

a)                            b) 

 

Fig. 2-1 Types of central composite designs. a) Rotatable CCD if 4/1)( fn  Spherical CCD if 

k  b) Face-centered CCD 

Factorial points 

Center point 

Axial points 
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is required to consider the lengths L1 and L2 as design variables in addition to the design factors 

chosen from the screening experiment. TABLE X shows the variables used in the CCD experiment 

for the master signal.  

For the CCD experiment a Resolution V design is chosen as it requires fewer runs than the 

complete design and will still result in an adequate regression model. One center point is used for 

the experiment as the data for the experiment comes from simulation only. The design for this 

experiment is constructed by writing down the design for a 25-1 factorial, the 10 axial points, and 

the central point. For easiness in the analysis, when dealing with master_corner and slave_corner 

factors, the voltage value of the corresponding operating conditions will be used. 

For a 25-1 CCD it doesn’t matter if the design is completely rotatable or assumed to be 

spherical, because using (2-2) and (2-3), the value of α is the same in both assumptions. For a 

rotatable design: α=(25-1)1/4=2, and for a spherical design: 24α  . 

A quadratic regression model will be fitted to the system in Fig. 1-2 using α=2 and then 

using α=1 to see what kind of design better fits the system.  

TABLE XI 

DESIGN FACTORS AND LEVELS FOR THE CENTRAL COMPOSITE DESIGN FOR 

THE TX SIGNAL 

 

Factor Symbol Value at  

 = -2 

Value at  

-1 

Value at 

0 

Value at  

+1 

Value at  

 = 2 

slave_corner A 2.97V 3.13V 3.3V 3.465V 3.63V 

master_corner B 2.97V 3.13V 3.3V 3.465V 3.63V 

Zo of board routing  C 42ohm 46ohm 50ohm 54ohm 58ohm 

Length of L1 D 0.01in 2.005in 4in 5.995in 7.99in 

Length of L2 E 0.01in 3.505in 7in 10.495in 13.99in 

 

 

 

 

 

TABLE X 

DESIGN FACTORS FOR CCD 

Factor 

master_corner 

slave_corner 

Zo of board routing 

Length of L1 

Length of L2 
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Starting with the design where α=2, TABLE XI shows the design levels for each of the 

factors, and TABLE XII shows the experiment design generated in JMP®. When the 27 simulation 

TABLE XII 

DESIGN TABLE FOR THE ROTATABLEL CCD EXPERIMENT FOR THE TX SIGNAL 

 

Run Pattern 

A B C D E 

(slave_ 

corner) 

(master_ 

corner) 

(Zo of board 

routing) 

(Length of 

L1) 

(Length of 

L2) 

1 −−−− − -1 -1 -1 -1 -1 

2 +−−− + 1 -1 -1 -1 1 

3 −+−− + -1 1 -1 -1 1 

4 ++−− − 1 1 -1 -1 -1 

5 −−+− + -1 -1 1 -1 1 

6 +−+− − 1 -1 1 -1 -1 

7 −++− − -1 1 1 -1 -1 

8 +++− + 1 1 1 -1 1 

9 −−−+ + -1 -1 -1 1 1 

10 +−−+ − 1 -1 -1 1 -1 

11 −+−+ − -1 1 -1 1 -1 

12 ++−+ + 1 1 -1 1 1 

13 −−++ − -1 -1 1 1 -1 

14 +−++ + 1 -1 1 1 1 

15 −+++ + -1 1 1 1 1 

16 ++++ − 1 1 1 1 -1 

17 a0000 -2 0 0 0 0 

18 A0000 2 0 0 0 0 

19 0a000 0 -2 0 0 0 

20 0A000 0 2 0 0 0 

21 00a00 0 0 -2 0 0 

22 00A00 0 0 2 0 0 

23 000a0 0 0 0 -2 0 

24 000A0 0 0 0 2 0 

25 0000a 0 0 0 0 -2 

26 0000A 0 0 0 0 2 

27 0 0 0 0 0 0 
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runs from TABLE XII are completed, the flight times are measured from the simulation results 

and are introduced into JMP® as the response of the system. In a central composite design, the 

estimates calculated with JMP® are considered the regression model coefficients, instead of the 

effect estimates as in a screening experiment. TABLE XIII shows the calculated estimated 

regression coefficients.  

From (2-1) and the coefficients in TABLE XIII , the quadratic regression model for the 

design with α=2 of the system in Fig. 1-2 is shown in (2-4). 

TABLE XIII 

REGRESSION ESTIMATED COEFFICIENTS FOR THE ROTATABLE CCD 

EXPERIMENT FOR THE TX SIGNAL 

 

Term Estimate 

Intercept 2.444906 

A 0.029035 

B -0.12862 

C -0.05867 

D 0.362372 

E 0.632873 

A*B -0.01763 

A*C -0.00512 

B*C 0.030336 

A*D 0.000382 

B*D -0.00681 

C*D -0.00577 

A*E -0.00031 

B*E -0.00897 

C*E -0.00781 

D*E -0.00326 

A*A 0.017206 

B*B 0.0214 

C*C 0.020996 

D*D 0.017288 

E*E 0.01124 
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(2-4) 

Before accepting the regression model in (2-4) as an adequate model for the system being 

studied, the model fit must be evaluated. “A well-fitted regression model will result in predicted 

values close to the observed data values” [Grace-Martin-15]. JMP® provides an Actual by 

Predicted plot that shows how well the model fits the data. This type of plot shows the actual 

response values versus the response values predicted by the models. JMP® also provides the value 

for the main statistics to evaluate model fit: P-value, R-squared (RSq), and RMSE. All three are 

based on the total sum of squares (SST) that measures how far the observed data is from the mean, 

and the sum of squares error (SSE) that measures how far the observed data is from the predicted 

values. If there are a levels for each factor, and n observations under the i-th treatment, SSE and 

SST are calculated according to (2-5) and (2-6) [Montgomery-13] 
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(2-6) 

where ijy  is the j-th observation taken under the factor level i, .iy  represents the average of the 

observations under the i-th treatment, and ..y  represents the grand average of all observations. 

Note that the “dot” subscript implies summation over the subscript that it replaces [Montgomery-

13].  

R-squared (RSq) is the percentage of variance in the response accounted for by the model. 

It ranges from zero to one, with zero indicating that the model does not predict well, and 1 

indicating perfect prediction. R-squared is calculated according to (2-7) [Montgomery-13]. 

SST

SSE
RSq  1  

(2-7) 

A disadvantage with the RSq is that every time a predictor is added to the model, the RSq 

value will always increase, and the model may appear to have a better fit. As more predictors are 
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added to the model looking for a better RSq, it begins to model random noise in the data, producing 

a high RSq with bad predictability. This is where the adjusted R-squared comes in. It is a modified 

version of RSq that has been adjusted for the number of predictors in the model. It will increase 

only if the term added improves the model, and will actually decrease if the model is not improved 

by the new term. The adjusted R-squared (RSq(adj)) will always be smaller than the R-squared and 

is calculated according to (2.8) [Allen-10] 
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(2-8) 

The P-value is related to the F-test, which evaluates the null hypothesis that all regression 

coefficients are equal to zero, meaning it is an intercept-only model, as opposed to the alternative 

that at least one coefficient is not. It indicates if the RSq value is reliable. A low P-value indicates 

the null hypothesis can be rejected, meaning the model does provide a better fit than an intercept-

only model would [Grace-Martin-15].  

The RMSE is the square root of the mean square error. It is a measure of the stochastic 

component or error, and estimates the concentration of the observed data around the fitted 

equation. A large value of RMSE implies that a large amount of variance in the dependent variable 

is not explained by the model, therefore lower values indicate a better fit [Grace-Martin-15].  

Fig. 2-2 shows the Actual by Predicted plot generated in JMP® for the rotatable CCD 

experiment using α=2. This plot shows the actual flight time values measured from SPICE 

simulations, and the flight time values predicted by the rotatable model. The red diagonal line is 

the line of fit; it shows where the simulated flight times are identical to the predicted ones. The 

dashed horizontal blue line is set at the mean of the simulated flight times. The dashed red curves 

are the confidence bands for the mean [Jmp-16]. JMP® also provides a summary of fit, where RSq 

is 0.987, RSq(adj) is 0.942, and the RMSE is 0.173. From these values, it can be accepted that the 

model has an acceptable fit.  
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TABLE XIV shows the design levels for each of the factors for the face-centered design 

where α=1, and TABLE XV shows the experiment design generated in JMP®. As before, when 

the 27 simulation runs from TABLE XV are completed, the flight times are measured from the 

simulation results and are introduced into JMP® as the response of the system. TABLE XVI shows 

the calculated estimated regression coefficients 

 

 

 

 

 

 

Fig. 2-2 Actual by Predicted plot generated in JMP® for the signal coming from the master buffer 

for the rotatable CCD. The red diagonal line is the line of fit, the dashed horizontal blue 

line is set at the mean of the simulated flight times, and the dashed red curves are the 

confidence bands for the mean [Jmp-16]. 
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TABLE XIV 

DESIGN FACTORS AND LEVELS FOR CCD WITH 1  

 

Factor Symbol Value at  

 = -1 

Value at 

0 

Value at  

 =+1 

master_corner A 3.135V 3.3V 3.465V 

slave_corner B 3.135V 3.3V 3.465V 

Zo of board routing  C 46ohm 50ohm 54ohm 

Length of L1 D 0.01in 4in 7.99in 

Length of L2 E 0.01in 7in 13.99in 
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TABLE XV 

DESIGN TABLE FOR THE CCD EXPERIMENT WITH 1  

 

Run Pattern 

A B C D E 

(slave_ 

corner) 

(master_ 

corner) 

(Zo of board 

routing) 

(Length of 

L1) 

(Length of 

L2) 

1 −−−− − -1 -1 -1 -1 -1 

2 +−−− + 1 -1 -1 -1 1 

3 −+−− + -1 1 -1 -1 1 

4 ++−− − 1 1 -1 -1 -1 

5 −−+− + -1 -1 1 -1 1 

6 +−+− − 1 -1 1 -1 -1 

7 −++− − -1 1 1 -1 -1 

8 +++− + 1 1 1 -1 1 

9 −−−+ + -1 -1 -1 1 1 

10 +−−+ − 1 -1 -1 1 -1 

11 −+−+ − -1 1 -1 1 -1 

12 ++−+ + 1 1 -1 1 1 

13 −−++ − -1 -1 1 1 -1 

14 +−++ + 1 -1 1 1 1 

15 −+++ + -1 1 1 1 1 

16 ++++ − 1 1 1 1 -1 

17 a0000 -1 0 0 0 0 

18 A0000 1 0 0 0 0 

19 0a000 0 -1 0 0 0 

20 0A000 0 1 0 0 0 

21 00a00 0 0 -1 0 0 

22 00A00 0 0 1 0 0 

23 000a0 0 0 0 -1 0 

24 000A0 0 0 0 1 0 

25 0000a 0 0 0 0 -1 

26 0000A 0 0 0 0 1 

27 0 0 0 0 0 0 
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From (2-1) and the coefficients in TABLE XVI, the quadratic regression model with α=1 

of the system in Fig. 1-2 is shown in equation (2-9). 

EE.DD.CC.BB.

AA.DE.CE.BE.

AE.CD.BD.AD.

BC.AC.AB.E.

DC.B.A..FlightTime
centeredfaceTx

1048600407750029490062640

000542002211001460011040

006650017800235000270

006750020590015705211

537.104701349003206433
_












 

 

 

(2-9) 

Fig. 2-3 shows the Actual by Predicted plot generated in JMP® for the CCD experiment. 

From the values that JMP® gives for model fit – RSq of 0.9999, RSq(adj) of 0.9996, RMSE of 

0.0227 – the model fit can be assumed adequate, and better than the model with α=2.  

 

TABLE XVI 

REGRESSION ESTIMATED COEFFICIENTS FOR CCD WITH 1  

 

Term Estimate 

Intercept 3.6429211 

A 0.0319181 

B -0.134997 

C -0.047024 

D 1.5370699 

E 1.5214034 

A*B -0.015726 

A*C -0.020587 

B*C 0.0067479 

A*D 0.0027028 

B*D -0.023491 

C*D -0.01779 

A*E 0.0066554 

B*E -0.01104 

C*E -0.014589 

D*E -0.022106 

A*A 0.0005425 

B*B 0.0626414 

C*C -0.029485 

D*D -0.040775 

E*E -0.10486 
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A second-order regression model is also fitted to the slave signal, using both a rotatable 

and a face-centered central-composite designs. Using (2-2), for a rotatable design of six factors, 

an alpha of 2.378 will be used. 

Fig. 2-4 shows the Actual by Predicted plot generated in JMP® for the rotatable design, 

with an RSq of 0.991527, an RSq(adj) of 0.9781, and an RMSE of 0.1376. The rotatable regression 

model for the slave signal is shown in (2-10). 

FFEEDD

CCBBAAEF

DFCFBFAF

DECEBEAE

CDBDADBC

ACABFE

DCBAFlightTime
rotatableRx

013548.0009988.001326.0

016717.001229.0013584.000127.0

00108.0000227.00012.000312.0

00556.001097.00028.00130.0

0114.00031.00156.00071.0

0347.00208.0013.0646.0

647.0076.0035.0155.05525.3
_















 

 

 

(2-10) 

 

 

Fig. 2-3 Actual by Predicted plot generated in JMP® for the signal coming from the master buffer 

for the face-centered CCD. The red diagonal line is the line of fit, the dashed horizontal 

blue line is set at the mean of the simulated flight times, and the dashed red curves are 

the confidence bands for the mean [Jmp-16]. 
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Fig. 2-5 shows the Actual by Predicted generated for the face-centered design, with an RSq 

of 0.99974, an RSq(adj) of 0.999327, and an RMSE of 0.0512. The face-centered regression model 

for the slave signal is shown in (2-11). 

 

FFEE

DDCCBBE

AAEFDF

CFBFAF

DECEBE

AECDBD

ADBCAC

ABFED

CBAFlightTime
centeredfaceRx

000337.000983.0

008688.0023057.00557.5

04742.0004579.000219.0

00487.0003985.00055047.0

0475.003233.001054.0

05293.00359.00147.0

0633.000586.00183.0

0170.00156.0579.1582.1

059.0033.0162.05802.3
_




















 

 

 

(2-11) 

Table TABLE XVII shows the estimated regression coefficients for the rotatable designs 

for the slave signal (using α=2), and the master signal (using α=2.378) lines. TABLE XVIII shows 

the estimated regression coefficients for the face-centered designs for the master and slave signals. 

 

 

Fig. 2-4 Actual by Predicted plot generated in JMP® for the rotatable design for the slave 

signal. The red diagonal line is the line of fit, the dashed horizontal blue line is set at 

the mean of the simulated flight times, and the dashed red curves are the confidence 

bands for the mean [Jmp-16]. 
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TABLE XVII 

REGRESSION ESTIMATED COEFFICIENTS FOR THE ROTATABLE CCD 

EXPERIMENT FOR THE TX AND RX SIGNAL 

 

2  378.2  

Clock/MOSI MISO 

Term Estimate Term Estimate 

Intercept 2.444906 Intercept 3.552567 

A 0.029035 A -0.15534 

B -0.12862 B 0.034939 

C -0.05867 C -0.07604 

D 0.362372 D 0.647463 

E 0.632873 E 0.645641 

A*B -0.01763 F -0.01272 

A*C -0.00512 A*B -0.02079 

B*C 0.030336 A*C 0.034663 

A*D 0.000382 B*C -0.00711 

B*D -0.00681 A*D -0.01559 

C*D -0.00577 B*D 0.003138 

A*E -0.00031 C*D -0.01114 

B*E -0.00897 A*E -0.01301 

C*E -0.00781 B*E 0.0028 

D*E -0.00326 C*E -0.01097 

A*A 0.017206 D*E 0.005557 

B*B 0.0214 A*F 0.003123 

C*C 0.020996 B*F -0.0012 

D*D 0.017288 C*F 0.000227 

E*E 0.01124 D*F -0.00108 

  E*F -0.00127 

  A*A 0.013584 

  B*B 0.012294 

  C*C 0.016717 

  D*D 0.01326 

  E*E 0.009988 

  F*F 0.013548 
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TABLE XVIII 

REGRESSION ESTIMATED COEFFICIENTS FOR THE FACE-CENTERED CCD 

EXPERIMENT FOR THE TX AND RX SIGNAL 

 

1  

Clock/MOSI MISO 

Term Estimate Term Estimate 

Intercept 3.6429211 Intercept 3.5802104 

A 0.0319181 A -0.16224 

B -0.134997 B 0.0327594 

C -0.047024 C -0.059352 

D 1.5370699 D 1.5821536 

E 1.5214034 E 1.5792014 

A*B -0.015726 F -0.015648 

A*C -0.020587 A*B -0.01704 

B*C 0.0067479 A*C 0.0183019 

A*D 0.0027028 B*C -0.005857 

B*D -0.023491 A*D -0.063305 

C*D -0.01779 B*D 0.014694 

A*E 0.0066554 C*D -0.035919 

B*E -0.01104 A*E -0.052929 

C*E -0.014589 B*E 0.0105379 

D*E -0.022106 C*E -0.032328 

A*A 0.0005425 D*E 0.0475127 

B*B 0.0626414 A*F 0.0055047 

C*C -0.029485 B*F -0.003985 

D*D -0.040775 C*F 0.0048729 

E*E -0.10486 D*F -0.002191 

  E*F -0.004579 

  A*A 0.0474232 

  B*B 5.57E-05 

  C*C -0.023057 

  D*D 0.0086827 

  E*E -0.00983 

  F*F -0.000337 
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Fig. 2-5 Actual by Predicted plot generated in JMP® for the face-centered design for the slave 

signal. The red diagonal line is the line of fit, the dashed horizontal blue line is set at 

the mean of the simulated flight times, and the dashed red curves are the confidence 

bands for the mean [Jmp-16]. 
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2.2. Validating the Model 

The models obtained are validated only for the master signal, since the same procedure was 

followed to obtain the models for the slave signal.  

Starting with the rotatable design, it is validated with the factor ranges at a distance no 

larger than ±1, since the manufacturing process assures master_corner, slave_corner, and the Zo 

of the transmission lines will stay within their high and low values, and will never go beyond that 

range. The design levels and values of the factors for the validation of the model are shown in 

TABLE XIX. Two intermediate levels (-0.5 and 0.5) were added for master_corner, slave_corner, 

and the length of the transmission lines, to evaluate the model in other points that were not included 

in the simulation runs for the design in TABLE XII.  

All possible combinations for factors and levels in TABLE XIX result in 1875 runs. To 

validate the model, all the combinations are input into the quadratic regression model in (2-4) with 

the help of Matlab scripts, and flight times are measured from the 1875 simulated runs. The 

absolute difference between the measured and the estimated flight times is presented as the error 

of the model. A 15% error is considered acceptable for this model. For better visualization, the 

1875 combinations are organized in matrix form and the error of the model is presented as a 

contour plot in Fig. 2-6, with the levels of Zo of board routing, length of L1 and L2 in the y-axis 

(shown in TABLE XX), and the levels for master_corner and slave_corner in the x-axis (shown in 

TABLE XXI). The contour plot shows no error is greater than 15% for the CCD with α=2. 

However, with this design there is a limitation in the allowable range for the lengths of L1 

and L2, making the total length of the interconnection allowed from 5.51 in to 16.49 in. 

 

TABLE XIX 

LEVELS FOR ROTATABLE MODEL VALIDATION 

 

Factor Symbol Value at  

-1 

Value at  

-0.5 

Value at 

0 

Value at  

+0.5 

Value at  

+1 

slave_corner A 3.135V 3.2175V 3.3V 3.3825V 3.465V 

master_corner B 3.135V 3.2175V 3.3V 3.3825V 3.465V 

Zo of board routing  C 46ohm - 50ohm - 54ohm 

Length of L1 D 2.005in 3.7525in 4in 4.9975in 5.995in 

Length of L2 E 3.505in 5.2525in 7in 8.7475in 10.495in 
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TABLE XX 

Y-AXIS COMBINATIONS FOR CONTOUR PLOTS 

 

Label Zo L1 L2  Label Zo L1 L2 

Cn1 -1 -1 -1  Cn39 0 0 0.5 

Cn2 -1 -1 -0.5  Cn40 0 0 1 

Cn3 -1 -1 0  Cn41 0 0.5 -1 

Cn4 -1 -1 0.5  Cn42 0 0.5 -0.5 

Cn5 -1 -1 1  Cn43 0 0.5 0 

Cn6 -1 -0.5 -1  Cn44 0 0.5 0.5 

Cn7 -1 -0.5 -0.5  Cn45 0 0.5 1 

Cn8 -1 -0.5 0  Cn46 0 1 -1 

Cn9 -1 -0.5 0.5  Cn47 0 1 -0.5 

Cn10 -1 -0.5 1  Cn48 0 1 0 

Cn11 -1 0 -1  Cn49 0 1 0.5 

Cn12 -1 0 -0.5  Cn50 0 1 1 

Cn13 -1 0 0  Cn51 1 -1 -1 

Cn14 -1 0 0.5  Cn52 1 -1 -0.5 

Cn15 -1 0 1  Cn53 1 -1 0 

Cn16 -1 0.5 -1  Cn54 1 -1 0.5 

Cn17 -1 0.5 -0.5  Cn55 1 -1 1 

Cn18 -1 0.5 0  Cn56 1 -0.5 -1 

Cn19 -1 0.5 0.5  Cn57 1 -0.5 -0.5 

Cn20 -1 0.5 1  Cn58 1 -0.5 0 

Cn21 -1 1 -1  Cn59 1 -0.5 0.5 

Cn22 -1 1 -0.5  Cn60 1 -0.5 1 

Cn23 -1 1 0  Cn61 1 0 -1 

Cn24 -1 1 0.5  Cn62 1 0 -0.5 

Cn25 -1 1 1  Cn63 1 0 0 

Cn26 0 -1 -1  Cn64 1 0 0.5 

Cn27 0 -1 -0.5  Cn65 1 0 1 

Cn28 0 -1 0  Cn66 1 0.5 -1 

Cn29 0 -1 0.5  Cn67 1 0.5 -0.5 

Cn30 0 -1 1  Cn68 1 0.5 0 

Cn31 0 -0.5 -1  Cn69 1 0.5 0.5 

Cn32 0 -0.5 -0.5  Cn70 1 0.5 1 

Cn33 0 -0.5 0  Cn71 1 1 -1 

Cn34 0 -0.5 0.5  Cn72 1 1 -0.5 

Cn35 0 -0.5 1  Cn73 1 1 0 

Cn36 0 0 -1  Cn74 1 1 0.5 

Cn37 0 0 -0.5  Cn75 1 1 1 

Cn38 0 0 0      
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TABLE XXI 

X-AXIS COMBINATIONS FOR CONTOUR PLOTS 

 

Label slave master 

Cm1 -1 -1 

Cm2 -0.5 -1 

Cm3 0 -1 

Cm4 0.5 -1 

Cm5 1 -1 

Cm6 -1 -0.5 

Cm7 -0.5 -0.5 

Cm8 0 -0.5 

Cm9 0.5 -0.5 

Cm10 1 -0.5 

Cm11 -1 0 

Cm12 -0.5 0 

Cm13 0 0 

Cm14 0.5 0 

Cm15 1 0 

Cm16 -1 0.5 

Cm17 -0.5 0.5 

Cm18 0 0.5 

Cm19 0.5 0.5 

Cm20 1 0.5 

Cm21 -1 1 

Cm22 -0.5 1 

Cm23 0 1 

Cm24 0.5 1 

Cm25 1 1 
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Fig. 2-6 Contour plot of the error of the quadratic regression model for the rotatable CCD 

experiment using 2 . Cn## correspond to the combinations of the levels of Zo of the 

board routing, lengths L1 and L2. Cm## are the combinations of the levels for 

master_corner and slave_corner. 
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For the face-centered model two intermediate levels (-0.5 and 0.5) are added for the design 

levels and values of the factors are shown in TABLE XXII. All possible combinations for factor 

and levels in TABLE XXII result in 1875 runs, and the same procedure is followed as with the 

rotatable design with α=2. A 15% error is considered acceptable for this model. The 1875 

combinations are organized in matrix form and the error of the model is presented as a contour 

plot in Fig. 2-7, with the levels of Zo of board routing, length of L1 and L2 in the y-axis (as shown 

in TABLE XX), and the levels for master_corner and slave_corner in the x-axis (as shown in 

TABLE XXI). Although this model presents a better fit to the data, it is worse at predicting values 

than the model with α=2. This can be seen in Fig. 2-7 where there are bright yellow areas that 

present the largest error. From the 1875 combinations tried in the verification, with α=2 no 

combination had an error larger than 15%. For the case of α=1, 6 combinations present an error 

larger than 15%. This means that if there is a need for accuracy of the prediction, the model with 

α=2 should be used, however, if more range for the lengths of L1 and L2 is required, the model 

with α=1 can be used in exchange for a bit less accuracy. 

 

 

 

 

 

 

 

TABLE XXII 

LEVELS FOR FACE-CENTERED MODEL VALIDATION 

 

Factor Symbol Value at  

-1 

Value at  

-0.5 

Value at 

0 

Value at  

+0.5 

Value at  

+1 

master_corner A 3.135V 3.2175V 3.3V 3.3825V 3.465V 

slave_corner B 3.135V 3.2175V 3.3V 3.3825V 3.465V 

Zo of board routing  C 46ohm - 50ohm - 54ohm 

Length of L1 D 0.01 in 2.005 in 4 in 5.995 in 7.99 in 

Length of L2 E 0.01 in 3.505 in 7 in 10.495 in 13.99 in 
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Fig. 2-7 Contour plot of the error of the quadratic regression model for the CCD experiment using 

1 . Cn## correspond to the combinations of the levels of Zo of the board routing, 

lengths L1 and L2. Cm## are the combinations of the levels for master_corner and 

slave_corner. 
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2.3. Applying the Model 

The circuit in Fig. 1-2 can be used to simulate many different busses, like the Serial 

Peripheral Interface (SPI) which is one of the miscellaneous I/Os. The SPI is a synchronous data 

link for serial communication, with a programmable configuration that allows to gluelessly 

interface one master and one or several slaves. Since SPI is a synchronous bus, it is necessary to 

perform a timing analysis to comply with setup and hold margins required by both the master and 

the slave.  

The SPI bus consists typically of a clock signal that provides the reference timing to 

synchronize the data transfer, data lines (2 or 4 uni- or bidirectional depending on the operating 

mode), and one Chip Select (CS) for each slave [Texas Instruments-12]. SPI can operate in 3 

different modes: single mode, where IO0 is called MOSI (Master-Output Slave-Input 

unidirectional data line), and IO1 is called MISO (Master-Input Slave-Output unidirectional data 

 
Fig. 2-8 Block diagram of synchronous timing techniques. a) common-clock bus b) source 

synchronous bus. 

Data 
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line), dual mode, where IO0 and IO1 are bi-directional data lines, and quad mode, where in 

addition to IO0 and IO1, there are two other bidirectional data lines, IO2 and IO3 [Texas 

Instruments-12]. No matter the operating mode, the same timing analysis must be applied for this 

bus.  

There are two types of synchronous timing techniques, common-clock and source 

synchronous. In a common-clock timing scheme, a separate clock generator is used to synchronize 

the master and the slaves in the bus, as shown in Fig. 2-8 a). In a source synchronous timing 

scheme, the clock signal is sent from the master instead of a separate source, as shown Fig. 2-8 b) 

[Hall-00]. 

For a WRITE operation (data transfer from the master to the slave), the SPI bus is typically 

programmed so that data is sent out of the master on the first rising edge of the clock, and latched 

to the input of the slave device at the immediate next falling edge of the clock. This transaction 

follows a source synchronous timing scheme. On a rising edge of the Clock signal, the master 

outputs a data bit after a small delay called Tco_master. That data bit needs to arrive at the slave before 

a determined amount of time (setup time requirement) before the immediate next falling edge of 

the clock reaches the slave input. The margin in time that the bit will have to comply with that 

setup time requirement is called the setup time margin, and is the time that the Clock signal stays 

high (Tclk_high), plus the time it takes the falling edge of the Clock signal to arrive at the slave input 

(Tflight_clock_master-to-slave), minus the Tco_master, minus the time it takes the data bit to arrive at the slave 

input (Tflight_data_master-to-slave), minus the setup time requirement of the slave (Tsetup_slave). This 

process is observed in Fig. 2-9, and translates into the setup time margin equation in (2-10).  

The data bit sent from the master is latched to the input of the slave on the falling edge of 

the Clock signal, and needs to remain stable for a determined amount of time (hold time 

requirement) after the falling edge of the Clock arrived at the input of the slave. The margin in 

time that the bit will have to comply with that hold time requirement is the time that the Clock 

signal stays low (Tclk_low), plus the Tco_master, plus the time it takes the data bit to arrive at the slave 

input (Tflight_data_master-to-slave), minus the time it takes the falling edge of the Clock signal to arrive 

at input of the slave (Tflight_clk_master-to-slave), minus the hold time requirement of the slave (Thold_slave). 

This process is shown in Fig. 2-10 and gives equation (2-11). 

  
esetup_slav

slave-to-_masterflght_datamaxco_master_slave-to-ck_masterflight_cloclock_highinsetup_marg

T

 - T - T -  T  TT1 
 

(2-12) 
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hold_slaveslave-_masterflight_clkminco_master_slave-a_masterflight_datclk_lownhold_margi T- T - T  T    TT1   (2-13) 

 

 
Fig. 2-9 Setup margin derivation for WRITE operation.  

 
 

Fig. 2-10 Hold margin derivation for WRITE operation. 
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For a READ operation (data transfer from the slave back to the master), the SPI bus can be 

programmed so that data is sent out of the slave device on the rising edge of the Clock signal at 

the slave, and latched to the input of the master on the next rising edge of the Clock signal. This 

transaction is somewhat similar to a common-clock scheme since the slave will output a data bit 

when an external Clock signal reaches its input.  

When the rising edge of the Clock signal coming from the master reaches the slave input, 

the slave outputs a data bit after a small delay called Tco_slave. That data bit needs to arrive at the 

master before a determined amount of time (setup time requirement) before the next rising edge 

of the clock at the master. The margin in time that the bit will have to comply with that setup time 

requirement, is the cycle time of the Clock signal (Tcycle), minus the time it takes the falling edge 

of the Clock signal to arrive at the slave input (Tflight_clock_master-to-slave), minus the Tco_slave, minus the 

time it takes the data from the slave to arrive at the input of the master (Tflight_data_slave-to-master), minus 

the setup time requirement of the master. This process is observed in Fig. 2-11 and translates into 

the setup time margin equation in (2-12). 

The data bit sent from the slave is latched to the input of the master on the rising edge of 

the Clock signal, and needs to remain stable for a determined amount of time (hold time 

requirement) after that rising edge of the Clock signal at the master. The margin in time that the 

bit will have to comply with that hold time requirement is the time it takes the rising edge of the 

Clock signal to arrive at the slave input (Tflight_clk_master-to-slave), plus the Tco_slave, plus the time it 

takes the data bit to arrive at input of the master (Tflight_data_slave-to-master), minus the hold time 

requirement of the master (Thold_smaster). This process is shown in Fig. 2-12 and gives equation (2-

13). 

ersetup_mast

master-a_slaveflight_dataxco_slave_mslave-_masterflight_clkcycleinsetup_marg

T

-T-T-T-TT2 
 

(2-14) 

rhold_mastemaster-a_slaveflight_datinco_slave_mslave-_masterflight_clknhold_margi T- T  T  TT2   (2-15) 

In order to analyze the SPI interface timing requirements using (2-10), (2-11), (2-12), and 

(2-13), flight times for the clock and data lines are needed.  
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Fig. 2-11 Setup margin derivation for READ operation. 

 
 

Fig. 2-12 Hold margin derivation for READ operation. 
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The coefficients in will be used for the regression model of the clock line, as well as the MOSI 

data line, as the digital signals will follow the same path out of the master buffer, only at a different 

frequency.  

2.4. Conclusions 

In this chapter, central composite designs (CCD) were used to fit mathematical models that 

considered the curvilinear factor effects for the signal coming from the master buffer as well as for 

the signal coming from the slave buffer. Two types of CCD were compared in terms of their model 

fit and their ability to make good predictions outside of the experimental region. Both models were 

validated comparing their results with simulations of the system. The face-centered model was less 

complex and provided a better model fit but was not as powerful at extrapolating predictions. The 

rotatable model was good at predicting, but it presented a limitation for the allowable range for the 

lengths L1 and L2. This makes the face-centered design a better option if more range for the lengths 

is required, in exchange for a bit less accuracy when extrapolating. These quadratic regression 

models were used to represent the CLK, MOSI and MISCO lines of a Serial Peripheral Interface 

(SPI), in order to be used as the flight time information in a timing margin analysis. 
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3. Direct Optimization of SPI Interface Using 

Surrogate Models 

In Chapter 2, surrogate models were properly adjusted and validated, which describe the 

response surfaces modeled for the topology in Fig. 1-2, for clock, MOSI, and MISO lines of the 

SPI interface. These models can be used to explore the combination of levels of the factors that 

result in an optimal value of the response. The model should describe at least 70% of the response 

behavior in terms of Radj for it to be used for optimization purposes [Gutierrez Pulido-12]. 

The algorithm chosen for an optimization task will depend on the type of problem, the 

nature of the algorithm, the quality of solutions required, the available computing resources, time 

limitations, availability of the algorithm for implementation, among others [Zhang-13]. 

Numerical algorithms for nonlinear optimization can be either gradient-based methods or 

direct search methods. Examples of gradient-based methods include sequential programming 

method, augmented Lagrangian method, and the interior point method. Direct search methods 

include methods such as Nelder-Mead, genetic algorithms, differential evolution, and simulated 

annealing. Gradient-based methods use first derivatives (gradients) or second derivatives 

(Hessians), while direct search methods do not make use of derivative information. Though direct 

search methods tend to converge more slowly, they can be more tolerant to the presence of noise 

in the function and constraints [Wolfram-16]. 

3.1. Nelder-Mead Algorithm 

The Nelder-Mead simplex algorithm is the most widely used direct search method for 

solving the unconstrained optimization problem of finding the minimum value of the objective 

function )(xf  [Gao-10] 

)(min xf
x

 (3-1) 

Although it is not a true global optimization algorithm, in practice it tends to work 

reasonably well for problems that do not have many local minima [Wolfram-16].  
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For a function of n variables, the algorithm maintains a set of n+1 points forming the 

vertices of a simplex (a generalized triangle in n-dimensional space). For simplicity, a simplex in 

the n-dimension space is referred to as n-simplex. Therefore, a 1-simplex is a line segment, a 2-

simplex is a triangle, a 3-simplex is a tetrahedron, and so on [Zhang-13]. The algorithm is a pattern 

search that compares function values at the three vertices of a triangle [Mathews-14]. 

The Nelder-Mead algorithm uses four types of transformations to form a new simplex in 

each step: reflection away from the worst vertex (the one with the largest function value), shrinkage 

towards the best vertex (the one with the smallest function value), expansion and contraction that 

allow the working simplex to change in size and shape [Singer-09]. 

In [Gavin-16] an easy explanation of the algorithm is given as follows. Consider a simplex 

of three points [u,v,w] in the 21 xx   plane, the triangle connecting them, and the objective function 

evaluated at the three points, )(uf , )(vf , and )(wf . Point u is the best point, point v is the next-

to-worst point, and point w is the worst point.  

After constructing the initial n-simplex, the next step in the Nelder-Mead algorithm is to 

evaluate the objective function at the vertices, ranking the objective values and re-ordering the 

vertices such that 

)()()( wfvfuf   (3-2) 

The next step is to reflect the worst point, w, through the centroid of the remaining points 

to obtain the reflected point r, and evaluate the objective function )(rf  at this new point. 

Following this, if  

)()()( vfrfuf   (3-3) 

then the worst point w is replaced with the reflected point r, and then the algorithm proceeds to 

check convergence. Otherwise, if  

)()( ufrf   (3-4) 

then the reflected point r is extended further past the average of  u and v to point e. The objective 

function )(ef  is evaluated now at the extended point. If the objective value at point e, is better 

than the objective value at point r, then the worst point w is replaced with the extended point e and 

convergence is checked for. Otherwise, the worst point w is replaced with point r, and then 

convergence is checked for.  
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In the case that  

)()( vfrf   (3-5) 

then a smaller value of the objective function might be found between points w and r. The 

algorithm then contracts the worst point w to a point c between points w and r, and evaluate ).(cf  

Typical values of c are one-quarter (inside contraction 1c ) and three-quarters (outside contraction 

0c ) of the way from w to r. If  

)]()(),(min[ 01 vfcfcf   (3-6) 

then the worst point w is replaced with the better contraction point, and check for convergence. 

Otherwise, the simplex is shrunk into the best point, u, and check for convergence.  

If convergence is not yet reached, the next iteration begins sorting the vertices of the 

simplex again, unless the number of function evaluations has exceeded a specific limit, in which 

case the algorithm is terminated. 

 Convergence is reached if the parameter differences between adjacent vertices is less than 

p  times the parameter average of adjacent vertices 

p
wvvu

wvvu






],[],[

],[],[
max2  

(3-7) 

and the objective function at all vertices is within f  times the best objective value. 

f
uf

wfvfuf





910)(

)](),([)(
max2  

(3-8) 

 The Nelder-Mead algorithm can be extended to constrained minimization problems by 

adding a penalty function. This is accomplished by adding a term to the objective function that 

highly increases the objective value in case of constraint violation 

)()(min xcPxf
x

  (3-9) 

where )(xf  is the objective function to minimize, )(xP  is the penalty function, and c is the 

penalty parameter [Freund-14]. 

FMINSEARCH is the Matlab implementation of the Nelder-Mead method; it finds the 

minimum of the objective function, a scalar function of several variables. It starts at the point 0x  
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(initial seed value selected) and returns a value *x  that is the local minimizer of the objective 

function, 

)(minarg* xfx
x

  (3-10) 

The algorithm forms the initial simplex by choosing the starting point 0x  as one of the 

initial simplex vertices. The remaining n vertices are generated using iiex 0 , where ie  is the 

unit vector in the ith coordinate, and i  is chosen as in equation (3-11) [Gao-10] 














0)(00025.0

0)(05.0

0

0

i

i

i
xif

xif
  

(3-11) 

FMINSEARCH uses TolFun, TolX, MaxIter, and MaxFunEvals parameters to terminate 

the algorithm when one of the following criteria is met [Gao-10]: 

(T1) TolFunff lini  12max  and TolXxx lini 
 12max  

(T2) The number of iterations has exceeded MaxIter 

(T3) The number of function evaluations exceeds MaxFunEvals 

3.2. Implementing the Algorithm 

The SPI interface is a synchronous data link, therefore a timing analysis needs to be done 

to determine the possible lengths for the clock and data lines. This timing analysis consists in 

calculating the margin equations (2-10), (2-11), (2-12) and (2-13), using flight time information 

from calculations or simulation.  

Using the coefficients in TABLE XVII and TABLE XVIII to calculate flight times for the 

timing margins in (2-10) to (2-13), an optimization task is done in order to find the maximum 

lengths of L1 and L2 for the clock and data lines while maintaining the four timing margins equal 

to, or larger than zero. The objective function for the optimization task is that all four timing 

margins must be equal to or more than zero.  

Timing margin T2hold_margin from equation (2-13) will remain positive if the following is 

true: 

1. 0T inco_slave_m   or inco_slave_mmaster-a_slaveflight_datslave-_masterflight_clk T T   T   
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2. rhold_mastemaster-a_slaveflight_datinco_slave_mslave-_masterflight_clk TT  T  T   

T2hold_margin will be left out of the objective function as it will be assumed that the above points will 

be met.  

The objective function can be further simplified if the total length of the clock line is the 

same as the total length of each data line, then timing margin T1setup_margin from equation (2-10) 

and timing margin T1hold_margin from equation (2-11) become independent of length, since the clock 

line flight time and the data lines flight times cancel each other out. To enable this, an upper-bound 

constraint will be added to the objective function, where each data line length is allowed to be 

unmatched to the clock line length by no more than 250 mils.  

The objective function can then involve only T2setup_margin, which is the only timing margin 

left that could become negative as the lengths of L1 and L2 become maximized. Thus, the objective 

function is written as (3-12) 


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























0T2
T2

1

0T21
T2

)(

insetup_marg

1

insetup_marg

insetup_marg

1

insetup_marg

if

if

xf




 

(3-12) 

where T2setup_margin is the setup margin calculated using (2-12), and 1  is a very small positive 

number, 1e-4. T2setup_margin 8.4557 will become negative if the transmission lines are too long. The 

objective function looks for the smallest value of T2setup_margin without it becoming negative.  

Since Nelder-Mead method will be used for the optimization task, a penalty function must 

be introduced in order to subject the objective function to a constraint. The penalty functions to be 

used are defined by 

1)(1 






 


ub

MOSIclk

x

lengthlength
xP  

(3-13) 

1)(2 






 


ub

MISOclk

x

lengthlength
xP  

(3-14) 

where clklength  is the total length of the clock line, 
MOSIlength  and 

MISOlength  are the total lengths 

of the data lines, and 
ubx  is the upper-bound constraint of 250 mils.  
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3.3. Optimization Results Using Fminsearch 

Six optimization runs were performed using different seed values for the value of L1 for 

clock and data lines, for both the rotatable (α=2 for clock and MOSI lines, and α=2.378 for MISO 

line) and the face-centered (α=2 for clock, MOSI and MISO lines) regression models. The value 

of L2 of all three lines was maintained fixed to simplify the optimization efforts, as there are many 

combinations of L1 and L2 values that will result in an optimized objective function. The 

optimized length values are shown in TABLE XXIII and TABLE XXIV. The four optimized 

timing margins are shown for each run, as well as the value of the objective function )(xf  at the 

optimized values (feval), the number of iterations (iter) and number of function evaluations 

(funcCount) taken.  

For both designs, an average of the optimized lengths was calculated and a SPICE 

simulation was executed using those values. Flight times were measured as explained in Chapter 

2, and compared with the flight times estimated with the regression models.  
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TABLE XXIII 

OPTIMIZATION RESULTS FOR THE ROTATABLE CCD EXPERIMENT FOR THE 

CLOCK, MOSI AND MISO LINES 

 

  

Run 1 Run 2 Run 3 

Units Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Clock 
L1 9 19.313 18 19.310 17 19.385 in 

L2 fixed 3 -- 3 -- 3 -- in 

MOSI 
L1 9 19.311 18 19.314 18 19.525 in 

L2 fixed 3 -- 3 -- 3 -- in 

MISO 
L1 9 19.311 50 19.314 18 19.240 in 

L2 fixed 3 -- 3 -- 3 -- in 

T1setup_margin_optim 0.600 0.600 0.600 0.599 0.404 0.573 ns 

T1hold_margin_optim 4.800 4.800 4.800 4.801 4.996 4.828 ns 

T2setup_margin_optim 3.970 6.26E-07 -6.904 1.92E-06 0.717 5.70E-05 ns 

T2hold_margin_optim 8.859 12.830 19.734 12.830 12.113 12.830 ns 

feval -0.990 -0.981 -0.417  

iter/funcCount 207 / 383 132 / 243 103 / 192   

 

  

Run 4 Run 5 Run 6 

Units Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Clock 
L1 19 19.371 22 19.2348 14 19.267 in 

L2 fixed 3 -- 3 -- 3 -- in 

MOSI 
L1 19 19.490 22 19.0931 22 19.351 in 

L2 fixed 3 -- 3 -- 3 -- in 

MISO 
L1 22 19.253 40 19.3870 18 19.3558 in 

L2 fixed 3 -- 3 -- 3 -- in 

T1setup_margin_optim 0.600 0.504 0.600 0.628 -0.973 0.583 ns 

T1hold_margin_optim 4.800 4.896 4.800 4.772 6.373 4.816 ns 

T2setup_margin_optim -0.487 3.291E-05 -5.156 4.513E-10 1.302 1.328E-05 ns 

T2hold_margin_optim 13.318 12.830 17.976 12.830 11.528 12.830 ns 

feval -0.528 -0.3914 -0.644  

iter/funcCount 315 / 582 114 / 207 136 / 255   
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TABLE XXIV 

OPTIMIZATION RESULTS FOR THE FACE-CENTERED CCD EXPERIMENT FOR THE 

CLOCK, MOSI AND MISO LINES 

 

  

Run 1 Run 2 Run 3 

Units Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Clock 
L1 12 20.001 18 20.019 18 19.730 in 

L2 fixed 3 -- 3 -- 3 -- in 

MOSI 
L1 12 19.899 18 20.806 18 19.101 in 

L2 fixed 3 -- 3 -- 3 -- in 

MISO 
L1 12 20.105 42 20.089 17 20.0353 in 

L2 fixed 3 -- 3 -- 3 -- in 

T1setup_margin_optim 0.600 0.617  0.600 0.466 0.600 0.706 ns 

T1hold_margin_optim 4.800 4.783 4.800 4.932 4.800 4.694 ns 

T2setup_margin_optim 2.890 3.84E-05 -3.778 1.556E-05 0.917 6.465E-05 ns 

T2hold_margin_optim 9.940 12.830 16.608 12.830 11.913 12.830 ns 

feval -0.582 -0.518 -0.697  

iter/funcCount 157 / 389 238 / 442 233 / 435   

 

  

Run 4 Run 5 Run 6 

Units Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Seed  

value 

Optimized 

value 

Clock 
L1 25 20.084 14 20.054 18 19.3156 in 

L2 fixed 3 -- 3 -- 3 -- in 

MOSI 
L1 25 20.082 15 20.055 19 19.7486 in 

L2 fixed 3 -- 3 -- 3 -- in 

MISO 
L1 19 21.085 25 20.057 22 20.1518 in 

L2 fixed 2 -- 3 -- 3 3 in 

T1setup_margin_optim 0.600 0.6002 0.424 0.600 0.428 0.569 ns 

T1hold_margin_optim 4.800 4.7998 4.976 4.800 4.971 4.830 ns 

T2setup_margin_optim -0.629 1.428E-06 0.128 2.023E-6 -0.0101 4.534E-05 ns 

T2hold_margin_optim 13.459 12.8300 12.702 12.830 12.840 12.830 ns 

feval -0.994 -0.9798 -0.2374  

iter/funcCount 278 / 522 140 / 246 100 / 187   
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TABLE XXVI and TABLE XXV show the error between the simulated and estimated 

flight times and timing margins for the optimized lengths. For both the rotatable and face-centered 

designs, the estimated optimal flight time for the MISO line was more accurate than the estimated 

optimal ones for the Clock and MOSI lines. This could be due to the fact that for the MISO 

regression model six variables were used, rather than only five for the Clock and MOSI regression 

models. All optimization runs gave an optimized T2setup_margin_optim timing margin in the order of 

femtoseconds or less, as was expected when maximizing L1 and L2 lengths. An upper bound 

restriction was added to the objective function to ensure proper length matching between Clock 

and data lines, thus T1setup_margin_optim and T1hold_margin_optim have minimum error compared to 

T2setup_margin_optim and T2hold_margin_optim.  

 

 

 

 

 

 

 

TABLE XXV 

COMPARISON BETWEEN SIMULATED AND ESTIMATED FLIGHT TIMES AND 

TIMING MARGINS FOR THE FACE-CENTERED EXPERIMENT FOR THE CLOCK, 

MOSI AND MISO LINES 

 

 

L1  

(optimized 

average) 

L2  

(fixed) 

Estimated 

Flight time 

Simulated 

Flight time 
Error Units 

Clock 20.046 3 4.648 4.776 0.129 ns 

MOSI 20.004 3 4.641 4.769 0.128 ns 

MISO 20.073 3 4.684 4.679 0.005 ns 

 

  

Estimated 

Margin  

Simulated 

Margin  
Error Units 

T1setup_margin_optim 0.607 0.608 0.001 ns 

T1hold_margin_optim 4.793 4.792 0.001 ns 

T2setup_margin_optim -0.002 -0.125 0.124 ns 

T2hold_margin_optim 0.832 0.955 0.124 ns 
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3.4. Conclusions 

In this chapter Nelder-Mead optimization tasks with an added penalty function were 

performed to maximize the lengths of the CLK, MOSI and MISO lines of the SPI bus described 

in Chapter 2, while maintaining the timing margins equal to or larger than zero. Rotatable and 

face-centered designs were used in the optimization tasks. The optimal values were then validated 

in SPICE simulations. The setup and hold margins for a WRITE operation had minimum error 

compared to the margins for a READ operation due to the length matching constraint added with 

the penalty function that makes the timing margins for a WRITE operation practically insensitive 

to the lengths of the transmission lines. All optimization runs gave an optimized setup margin for 

the READ operation in the order of femtoseconds or less, as was expected when maximizing L1 

and L2 lengths. For both the rotatable and face-centered designs, the estimated optimal flight time 

for the MISO line was more accurate than the estimated optimal ones for the Clock and MOSI 

lines, this may be due to the fact that the MISO regression model considered six factors while the 

Clock and MOSI regression models considered only five.  

TABLE XXVI 

SIMULATED AND ESTIMATED FLIGHT TIMES COMPARISON AND TIMING 

MARGINS FOR THE ROTATABLE EXPERIMENT FOR THE CLOCK, MOSI AND MISO 

LINES 

 

 

L1  

(optimized 

average) 

L2  

(fixed) 

Estimated 

Flight time 

Simulated 

Flight time 
Error Units 

Clock 19.320 3 4.524 4.637 0.113 ns 

MOSI 19.369 3 4.533 4.647 0.115 ns 

MISO 19.449 3 4.568 4.567 0.001 ns 

 

  

Estimated 

Margin  

Simulated 

Margin  
Error Units 

T1setup_margin_optim 0.592 0.590 0.002 ns 

T1hold_margin_optim 4.808 4.810 0.002 ns 

T2setup_margin_optim 0.238 0.125 0.112 ns 

T2hold_margin_optim 0.5924 0.705 0.112 ns 
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Conclusions 

In this work, surrogate models were obtained to model the flight times of a point-to-point 

single-ended interconnect, in order to simplify optimization tasks when the models were used to 

represent a single-ended interface. To decide which factors were to be included in the models, 

screening experiments were done for both the signal coming out of the master buffer, and the signal 

coming back from the slave buffer. From the five uncontrollable factors chosen to be investigated, 

three were concluded to have active effects on the flight time of the master signal. i.e., the operating 

conditions of both buffers and the characteristic impedance of the PCB transmission lines. These 

three factors were also determined to have active effects on the flight time of the slave signal, 

along with the characteristic impedance of the package transmission lines.  

The screening experiments only provided direct additive and interaction effects. In order 

to include curvilinear effects in the surrogate models, central composite designs (CCD) were used. 

Two types of CCD were compared in terms of their model fit and their ability to make good 

predictions outside of the experimental region. Both models were validated comparing their results 

with simulations of the system. The face-centered design resulted in a better option if more range 

for the lengths is required, but was not as powerful as the rotatable model at extrapolating 

predictions.  

Using the surrogate models obtained (rotatable and face-centered), Nelder-Mead 

optimization tasks with an added penalty function were run to maximize the allowable lengths of 

the transmission lines of the SPI bus, while maintaining the timing margins equal to or larger than 

zero. The optimal values found were then validated using SPICE simulations. The timing margins 

for a WRITE operation were made practically insensitive to the lengths of the transmission lines 

with the length matching constraint added with the penalty function, making the error between the 

surrogate model margins and the simulated margins minimum. All optimization runs gave an 

optimized setup margin for the READ operation in the order of femtoseconds or less, as was 

expected when maximizing the lengths of the transmission lines. For both the rotatable and face-

centered designs, the estimated optimal flight time for the MISO line was more accurate than the 

estimated optimal ones for the CLK and MOSI lines, this may be due to the fact that the MISO 



 

 60 

regression model considered six factors while the CLK and MOSI regression models considered 

only five. 
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Future Work 

The methodology proposed in this thesis for obtaining a surrogate model of a single-ended 

interface to be used in optimization tasks can be taken to further interesting directions. Firstly, the 

methodology presented was applied only to a simple point-to-point topology. The same approach 

could be taken with more complex topologies to evaluate if the results in this case are acceptable.  

Following from the research presented in Chapter 2 to obtain surrogate models, 3rd order 

effects could be added to the regression models, or different types of design of experiments, such 

as Taguchi designs, could be explored.  

Finally, gradient-based methods or other direct search optimization methods such as 

genetic algorithms, could be explored and compared to choose the best one for the point-to-point 

topology proposed, or to more complex topologies. 
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