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Abstract— In this paper a sliding-mode observer based on the main difficulty and innovations in continuous-time siigl
the equivalent control method for discontinuous functionsfor a  mode research is in the choice of the manifold rather than

class of non-linear systems is proposed. The observer stilte iy the reaching phase that belongs more to numerical issue.
and its existence conditions are presented. Besides, a dasf Indeed the slidi ifoldl — 0is ch
high order sliding operators with the properties of uniform ndeed, once the sliding manifold(x) = 0 is chosen,

(wrt. initial conditions) finite time convergence and wih the derivative(s)s*) of the functiono along the system
reduction of chattering effect are exposed. The use of these trajectories can be expressed as function of control thet ha
operators in the observer design allows the calculation offte  exactly same dimension as. Practically in all cases the
equivalent control and the observer convergence uniformlyin sliding control and observers are implemented via digital
finite time. A simulation example is presented to illustratethe . . - .
proposed method. computers, so, actually, discrete-time sliding mode isduse
which is a version of a deadbeat control that maketo
I. INTRODUCTION converge to zero in finite time. Let us note, that this aldpnit
Sliding mode approaches have been widely used fGE .be dyr_lgmlc, €. mcludg past valuesaiﬁk)- and in
) . continuous-time will look as integrals of a function f
the problems of dynamic systems control and observation In this work, our purpose is to discuss an observer design
due to their characteristics of finite time CONVErgence, . over tr'1e equivalent control method for a class of
robustness to uncertainties and insensitivity to externa@ N . . "
bounded disturbances [1], [2]. In observers based on gfidi observable SISO systems with some matching conditions on
mode the slidin motio’n is. obtained by means ?)f The input. This method has been treated previously in [3] and
: . 9 . y . ]. Subsequently, for the calculation of equivalent cohtr
discontinuous term depending on the output error, into t We propose the use of uniform exact high order sliding mode
controlling or observing system [3]. Additionally, by ugin . :
' differentiators [9], [10]; and, the for observer convergen
e use of the Generalized Super-Twisting Algorithm [11],

the sign of the error to drive the sliding mode observer, th
observer trajectories become insensitive to many forms ? 21 is proposed. These high order sliding operators prwid

noise. Hence, some sliding mode observers have attractiyé . ; ? L
. S . . ~“the observer with the properties of uniform (w.r.t. initial
properties similar to those of the Kalman filter (i.e. noise L L X .
b L . . conditions) finite time convergence and with reduction of
resilience) but with simpler implementation [4].

i . . _chattering effect.
Several researchers have dealt with the issue of deS|gn|ngIn the following, in section Il some mathematical

sliding-mode  observers for different applications [5]’preliminaries are given. In section Il an observer design

IgC“:\(Ij(I)?g':rr:ztifjiﬁ;lnpr(;?é%ngsogerl%rilIzizr:rtgtgaiing":n tEased over the equivalent control method for a class of
[6]. 9 q Bservable SISO systems with some matching conditions on

idea of the sliding manifold, that is an integral manifoldtwi : :
o o ; ) . he input is proposed. An example of the proposed observer
finite reaching time [7]. This manifold can be implemente or synchronization of a chaotic system is presented in IV.

by dlffergnt methqu mpludmg use of dlspon_tlnuous fumrct Finally, in section V some conclusions are given.
or continuous with discontinuous derivatives (so called
higher order sliding modes). Let us note, that this issue of Il. M ATHEMATICAL PRELIMINARIES: SLIDING MODE

implementation, as demonstrated clearly by Utkin in [1] andDBSERVERSBASED ON EQUIVALENT CONTROL METHOD

earlier works is computational and depends on the system|n this section, we present the mathematical concepts
behavior in the bOUndary Iayer of the Slldlng manifold. T,hUSrequired to formulate an observer design based over
_ the equivalent control method. Basic topics of sliding
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vectors. UnderCondition 2, to estimate the state variables of the
For the system (1), let us define the vector of outputystem (1) using the measuremeptsan observer of the

derivatives,H (x), as follows: form
hi (x) h(z) =071 (@) M () SLAV () - H (&)} +g(@)u  (7)
ha (x) Lgh(x) is used.
H(z) = : = : ’ @ It is worth to note that the observer design consists of two
h,, '(x) L’fl’lnh (z) problems:(i) the selection of tr_le “_Sl_iding Operato8L{-}
such thatV (¢t) — H () — 0 in finite time and (i) the
and theObservability matrix O (z), as: finite time calculation of the output derivatives vecior(t).

Drakunov [3] showed that using the structures (5) and (7),

dh () the recursive form
O(@) = =5~ = ; ®) vigi (8) = {SL{vs () = ha (&)} )., ®)
dL}zflh (x) withi=1,...,n—1, and with{} , denoting arequivalent

. . o _ value operatorof a discontinuous function in sliding mode
where Lh (z) represents thé-th Lie derivative ofa (z) in - [1] for the vector V (¢) calculation, a suitable choice of
the f vector field direction. In addition, let us suppose thevs (z), m, () as an upper bound of; ; (z) with i =

following condition: 1,...,n — 1 and m, (&) of Lh(x), and the first order
Condition 1: The system (1) is globally observable, in the“Sliding Operator’ S£ defined by thesign function, the
sense that the observability rank condition observers in equations (5) and (7) converge in finite time,
i.e. > — r) = i+i =
rank(O (z)) = n. @) i.e. fort > t; the errorV (t) — H (&) = 0 andv;4; (t)

{Sﬁ {Ui (t) — h; (j)}}eq = hi+1 (I) with 7 = 1,....n—1,
is fulfilled for all € R™. and wheret; > 0 is some time moment.

Following the observer structure given in [3], for the Letus note, thatin [3] theign function simply was used
case of systems without inpuj,= 0, to estimate the state as one of the ways enabling reachability of the desiredralidi
variables of the system (1) using the measuremgntan Manifold o = V'(¢) — H (&) = 0, but the essence of the

observer of the form suggested observer idea was in the way the sliding manifold
. ) is designed. As was mentioned in the Introduction, the issue
=07 (&) M (2)SL{V () — H (2)} (5)  of eliminating chattering belongs to the boundary layer of

the sliding manifold, i.e. how to implement “nonidealities
in the terminology of the fundamental work [1].

To eliminate chattering issues and, thus, obtain more
accurate calculation of the equivalent control may be done
B N ~ using other means. In this paper we propose the use of
S.'C{g} N col (8{:{51_},...,8,6{571}),_ M{(z) . high order uniform robust sliding operators with the aim
diag(mq (z),...,my, (£)) is a n x n diagonal matrix : . . .

) - . . : to improve the calculation of the equivalent control and, in
with positive entries which are the gains of the observerdd.. ide the ob th unif
and the vectol (t) defined as addition, to provide the observer with uniform convergence

w.r.t. initial conditions [11], i.e. fort > ¢,, wheret, > 0
V (t) =col(vy (t),...,v, (1)) (6) is some time momend/ (t) — H (&) — 0 regardless of the
) o o initial conditions.
contains the SyStem Output and their first- 1 derivatives To ensure the uniform Convergence of the observer
in thle formoy (t) = y(t), v2(t) = §(¢), ... andw, (t) =  w.rt. initial conditions both, the “Sliding Operator” fahe
y" ) (8). calculation of the output derivatives vectidr(t) and “Sliding

In the case of the sliding mode observer for the systemperator” which ensured’ (t) — H (i) — 0 in finite
with input, additional matching conditions are needed fofime, must be uniform w.r.t. initial conditions. These two
the observation error to be independent of the input. S@onditions are satisfied using the recently proposed “Exact
addressing the relationship between system and inputs, thed Uniformly Convergent Arbitrary Order Differentiator”

is proposed, wher&L{-}, is a causal operator ("Sliding
Operator”) such thaV (¢t) — H (&) — 0 in finite time, i.e.
for ¢t > t1, wheret; > 0 is some time moment.

In (5), the operator S£{-} have the form

following condition is needed. [10] for the calculation ofi/ (¢) and the “Generalized Super
Condition 2: For anyz € R, the vector Twisting Algorithm” [11], [13] to ensure the convergence
oH (z) of V (t) — H (i:) to zero in finit(_e time. The_z application_of
O g9(z) the two “Sliding Operators” is illustrated in the following

section.

does not depend on, it means
IIl. SLIDING MODE OBSERVERUSING HIGH ORDER

o [3H (z) (I)} —0 UNIFORM ROBUST SLIDING OPERATORS

Oz | Oz This section presents two “Sliding Operators™ an
for all x € R. uniformly convergent arbitrary order differentiat6f> and
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the generalized super twisting algorithgS7T. Besides, by the practical uniform convergent differentiator [10]
its applications in the calculation of equivalent controt f

n+l4+a
improvement of sliding mode observer introduced in Section o = —ko |20 — y[ """ sign(zo0 — y) + 21,
Il in equations (5) and (7). Also, the stability analysis foe 2=~k |20 — m% sign(zo — 1) + 22,
observer is presented.
(10)
. ntltna |

A. Implementation of SD for V (¢t) Calculation Via In-1= ~kn-1lz0 =yl " sign(zo —y) + zn,
Uniformly Convergent Arbitrary-Order Differentiator in = —kn |20 — y| T sign(zo — y)

Real-time differentiation is a well-known problem, andwWhereko, ...k, are gains to be selected, with> 0 small
between all the approaches that have been proposed &gd the gains selected such as the matrix
obtain time derivatives for a given signal, sliding modeduhs ko 1 0 ... 0
methods have demonstrated high accuracy and robustness k0 1 ... 0
for the calculation of higher order exact derivatives [9]. A= )
For this objective, an arbitrary-order differentiator &dsn : o oo
a recursive scheme and which provides the best possible —k, O ... 0 O

asymptotic accuracy in presence of input noises and de&scref itz then error converges uniformly in the initial

sampling i_s proposed in_[14]. B_ased in this _scherr!e, 'Bondition to a compact sed. Finally, to obtain an uniform
[10] an uniformly convergent arbitrary order differentiat o qct finjte-time convergent differentiator, the finite ¢éim
is introduced; we will use this differentiator as one of th%iﬁerentiator (9) can be combined with the practical unifo
possibilities forSD for the caIcEJIatlon of the vectdr (¢). convergent differentiator (10). Due that both differettia
_Let the system output(t) € C" [0, 00) be a functionto be converge independently, this combination can be done in
differentiated and let < 7, then then-th order differentiator  several ways [10]. For this case, the convergence time to
is defined in two parts as follows: A was calculated via simulation. Once a time (10) drives
Part 1: The observer must fulfills two proprieties, thethe system ta4, it is switched to (9).
first one is finite-time exactness, it means that error cigaer  See [14] and [10] for further details on the estimation of
in finite-time despite the disturbance. This requirement i8me of convergence, the error bounds for the sign@) and
provided by the arbitrary-order differentiator [14] their derivatives in presence of noise or discrete sampalimey
other properties and constraints of the differentiator.

Z0 = Co, ) B. The Super-Twisting algorithm based “Sliding Operator”
Co = —AnLw |zo —y| ™ sign(zo —y) + 21 SL Design
21 = (1, Another way to implement &£, and for this case, in

order to enabling reachability of the desired sliding malaif
o = 0 and, in addition, ensure the uniform convergence of
the observer w.r.t. initial conditions, is the use secordeor
sliding mode algorithm for control and observation is the so

1 n—2
G = =M1 L7 [21 = o[ "7 sign(z1 — Co) + 22

Zn-1 = G-t ) ) called “Generalized Super-Twisting AlgorithngS7 [11],
o1 = —MLZ |25y — Goma? SigN(20—1 — Cu2) + 22 [13]
2 = —AoLsign(z, — Cu1) ¢ (o) =v1(0) +42(0), (11)
where
where z; is the estimation of the true signgl? (). The
differentiator provides finite time exact estimation under 1?1 (0) = = M1 (0)
ideal condition when neither noise nor sampling are present Y9 (0) = — Magps (0) (12)

The parametersy = 1.1, \; = 1.5, Ao =2, A\3 = 3, Ay = 5,
As = 8 are suggested for the construction of differentiator@nd
up tq.the_5-th order. For the gain. case, the following o1 (o) :u1|a|%sign(a) +u2|a|%sign(0)
condition is provided: N 3
Condition 3: The n + 1-th Lie derivative ofh (z) in the ¢2 (o) :&sign(a) +2ud0 + S pslo)®sign(o)  (13)

f vector field directionL}”lh (x), must be bounded by the 2 2 _
constantl, > 0. with 1 > 0, uo > 0 scalars,M; = diag(my1,...,Mm1n)

and M, = diag(mz1,...,msa,) are twon x n diagonal
condition, i.e. the convergence time of the differentiatdt matrices with positive entries which are the gains of the

. 1 1
be uniformly bounded by a constant which does not depenggser\l/er, thelfunctlor@o)2 IS ex.tendled to. the fOI’n§2- -
on the initial observation error. This requirement is paed Ol (Ef oo 7&3) for the expressiofr|2, a similar definition

Part 2: The uniform convergence with respect to initial
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for (o)% and in the expressions of the form|?sign(o) the (10), calculate the vectdr (¢) as in (14) and the vector

product is element to element. W (t) as in (15).
Using the combination of the finite time differentiator (9) 3) Based on the equations (11)-(16), define the “Sliding
with the practical uniform convergent differentiator (1t)e Operator”

vectorV (¢) results follows: SL{o} =W (t) + 1 () + s (o)

V(t) = col(y, z1,..., zn-1) (14) 4) Finally, the resultant observer for the system (1)
instead of the recursive form (8) which generally use ctassi ~ Without input,g = 0, is presented in equation (5).
low-pass filters for the definition of thg}, operator. Also, On the other hand, to estimate the state variables of
the vectorW (t) is defined as: the system (1) with the input fulfilling th€ondition
2 and using the measuremeptghe proposed observer
W (t) =col(z1,...,2n) (15) have the form provided by equation (7).
Now, based on the equations (11)-(15), the followind. Observer Convergence
“Sliding Operator” is defined For the observer (5) and (7), under the diffeomorphism
SL{o} =W (t) + 91 (0) + s (o) (16) defined by the vecto (x) and the observability matrix

O, the modified observation error, can be written in the
Remark 1:For the design of the “Sliding Operator” transformed states = H (z) — H (&), in particular
defined in (16), instead of the discontinuous terms (13)

the following expressions could be used, regarding their ¢ =H(x) - H (%) (21)
respective limitations which in general are the lack leading to
of uniform convergence w.r.t. initial conditions and the o (@) q
chattering phenomena in (17). hl (x)
« .The first order operator defined by théyn function, Q_x
as is shown [3]: o
. e = hi — [W(t) + 91 + 22
o1 (o) =sign(o) é (:v) (W (1) + 91 + o] (22)
2 (0) =0 a7) :
_ . hn-1 (2)
« The second order operator defined by the Classical hin ()
Super-Twisting Algorithm [15]: B N
P 99 [1 ] that is
¢1 () =|o|>sign(c) [ e T [ hi(z) — 21 — Y11 — P21 |
¢2 (0) :sign(o—) (18) ég hg (:v) — 29 — ¢1,2 — wg,g
o« The second order operator defined by the Super- : :
Twisting Algorithm with Linear Terms [16]: é; = h; (z) — 2 — 1 — 2
61 () =|o|2sign(c) + M Mao — My 1) (0) : . :
b2 (0) =sign(o) + M| Mo (19) n—1 hn—1 (%) = 2n—1 = Y1,n-1 — V2,01
. . . L én | hn (SC) — Zn — wl,n - wQ,n
with M5 and M, defined in the same sense bf; and B (23)
M. where wl,i = m1,i¢1 (’Ui (t) —h; (@)) and 1&2@ =
« The second order operator defined by a first version o, ;¢, (v; (t) — h; (2)) withi = 1,...,n.
the Generalized Super-Twisting Algorithm [13]: The convergence df (¢) does not depend on the observer,
) =pu|o|Esign(o) + (20) but in Condition 3. Therefore, under the fulfillment of this
o1 (o _“120 gn(o) + neo ; condition, there is a timg; > 0 (which not depends on
_FH1 2 1 initial error of the differentiator) such as if > t4, then
==—sign(o) + 2 + = Zsign . dr
02 (0) =75 SIOn(9) - 2p20  GupalolEsion(o) Ul T L) and W () = B (o).
with 7 > 0, pe > 0 scalars. Then, fort > t4, equation (23) becomes
C. Observer Design Z; :ii; : ZZ;
For the system (1) the observer design procedure is defined : " : 7
in the following steps: K :
€; = —1111,1' - 1112,1' (24)

1) From the system equations (1), calculate the vector of
output derivativesH (z). : :

2) Using the combination of the finite time differentiator €n_1 —1n—1 — Y2,n—1
(9) with the practical uniform convergent differentiator én —1n — Pan




vyhere Y1, = mip1 (hi (x) —hi (£)) = mq,¢1(e;) and representation of the Rossler system in the way of (1) is

Yo = maipa (hi (x) —hi () = ma¢2 (e;) with i = azi + xo 0

1,...,n. _ o N f(x) = —T1 — X3 +1 0 Ju (26)
Let us note that the equation (24) is in the trivial form b+ 3 (22 — ¢ 1

of the Super-Twisting. Therefore, with a suitable choice of
the gain L and the matriced\f;, M,, the system (24) is B
Globally Uniformly Finite Time Stable, i.e, the convergenc h(z) = 1. (27)

of the observation error system (24) to zero is achieved in a Noting thatCondition 2is fulfilled and using the equations
finite time t,s > t4 which does not depends on the initial (28) and (29), we have designed and observer with the form
conditions and every selection of the matridds, M, with  shown in (5) and with the “Sliding Operator” defined by

positive elements on the diagonal. the Generalized Super-Twisting Algorithm (13) and (16, it
Remark 2:A very similar convergence analysis can bestate will be denoted bycsra. The values of the system
done if for the design of the “Sliding Operator” definedconstants arex = 0.2, b = 02 andc = 5.7,

in (16), instead of the discontinuous terms (13) the termBhe parameter values for the differentiator dre= 455,
defined from (17) to (20) are used. Due to the lack of uniformd: = 1.1, A2 = 1.5, and A\, = 3. For comparison purposes,
convergence w.r.t. initial conditions of this operatordyon another observer based on the “Sliding Operator” defined

Globally Finite Time Stable can be demonstrated. by the Classic Super-Twisting Algorithm (18) and (16) is
Remark 3:The use of a sliding mode differentiator designed, its state will be denoted byr 4.
provides two important properties: For both observers, from (26) and (27) the Lie derivatives

1) For the calculation of the vectdr (¢), in contrast of the output are:

to (8), the expressions does not depends i) h=ux;

yielding that the stability of the solutions for (t) Lsh = axy + 2 (28)

does not depends on the observer. '
2) The sliding mode differentiator allows the finite time

exact calculation of the vectolV (¢). When it is the corresponding observability matrix is

L?h =a(ax1 + x2) — 1 — X3,

included in the “Sliding Operator” defined in (16) 1 0 0
results on the independence of the matrix galis, o a 1 0 (29)
M, of z as is shown in equation (23), providing Global 2-1 a -1

Stability to the observer. . ) _
_and the gain matrices ar®/; = diag(1055) and M, =
Remark 4:Every bounded and observable SISO lineas

system fulfills from Condition 1 to Condition 3. Giving

5 M.
’ bt For simulation,u = 5 + sin (10¢), the initial conditions
a straight application to the proposed observer.

for this system were: (0) = [5510]" and éggra (0) =

. Zs74 (0) =[000]". In addition, for numerical integration

IV. APPLICATION CASE: ROSSLERCHAOTIC SYSTEM Euler method with a step dfo x —3 was used. Figures 1,
SYNCHRONIZATION 2 and 3 show the simulation results for the system (26).

We highlight in this section the utility and the advantages The stateiggra, converges tar, in finite time of 0.6
of the observer design based over the equivalent contr ?conds, until statésr4, converges tar, in finite time of
method of the previous recalls in the resolution of th -1 seconds.
observation problem. At first, we use a system an observer
for synchronization of a chaotic system previously treated
in the literature [17]. The problem of synchronization of
chaotic systems can be seen as an observer design probler ]
The Rossler systenj18] is a system conformed by three SIS
non-linear ordinary differential equations. For a givehae 5
parameters, these differential equations define a coniswuo
time dynamical system that exhibits chaotic behavior. ®ie s
of equations (25) shows a state representation of the &ossl
system. Let the forced Rossler system, defined as follows

(dotted)

ST

T = ax1 + To

E
El
3

Ty = —x1 — T3 (25)
23 =b+x3(x2 —¢)+u

ay (

Fig. 1. Realr; (Solid), observed:gsra, (Dashed) and observeithr 4,
Assuming the statg = z; as the output, the SISO system(Dotted) states for system (25)


https://www.researchgate.net/publication/3323010_An_Observer_Looks_at_Synchronization?el=1_x_8&enrichId=rgreq-ea544a9c-a232-42b8-9924-e0d8aaf3754e&enrichSource=Y292ZXJQYWdlOzIyMDAxNzIwODtBUzoxNjcyMzE1ODEzMzU1NTJAMTQxNjg4MjUyNDQ0Mg==

Then Zgsra, reaches tary in finite time of aboutl.6
seconds and:sr4, converges tare in finite time of 2.8
seconds. Note thatcsra, andzsra, reachzs only after
TasTa, andZgra, converges to their respective states.

ST (dotted)

3 Classic

and @

neralized ST (dashed)

2 (solid), &2 Ge

Fig. 2. Realr2 (Solid), observed:gsTa, (Dashed) and observeitsr 4,
(Dotted) states for system (25)

Finally, at a time ofl.7 secondsZgsra, converges ta;s
andZgsra, converges tacs at a time of3.1 seconds.

Fig. 3. Realrs (Solid), observed:g s, (Dashed) and observeitsr 4,
(Dotted) states for system (25)

In the results shown in the figures 1, 2 and 3, both

observers have exact finite time convergence.

25

20

15

10

Convergence time [Seconds]

° 10

Norm of initial conditions (Log10 Scale)

Fig. 4.
norm

Convergence time of both observers by growing ingt@ndition

All in-text references

However, as shown in figure 4, the convergence time of
the observer based on the Classic Super-Twisting Algorithm
(dotted line) grows unboundedly with the norm of the initial
condition, while the convergence time of the observer based
on the Generalized Super-Twisting Algorithm (dashed line)
is asymptotically bounded by a constant for growing norm
of the initial condition (solid line). It could be shown thiae
terms defined from (17) to (20) have the similar unbounded
behavior of Classic Super-Twisting Algorithm.

V. CONCLUSION

We show in this paper the design of a high order sliding
mode observer for nonlinear systems using the equivalent
control method. The generalized super-twisting algorithm
and the uniform exact sliding mode differentiator were
employed in order to ensure uniform finite time convergence
of the observer and the reduction of chattering effect.
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