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Abstract— In this paper a sliding-mode observer based on
the equivalent control method for discontinuous functionsfor a
class of non-linear systems is proposed. The observer structure
and its existence conditions are presented. Besides, a class of
high order sliding operators with the properties of uniform
(w.r.t. initial conditions) finite time convergence and with
reduction of chattering effect are exposed. The use of these
operators in the observer design allows the calculation of the
equivalent control and the observer convergence uniformlyin
finite time. A simulation example is presented to illustratethe
proposed method.

I. I NTRODUCTION

Sliding mode approaches have been widely used for
the problems of dynamic systems control and observation
due to their characteristics of finite time convergence,
robustness to uncertainties and insensitivity to external
bounded disturbances [1], [2]. In observers based on sliding
mode the sliding motion is obtained by means of a
discontinuous term depending on the output error, into the
controlling or observing system [3]. Additionally, by using
the sign of the error to drive the sliding mode observer, the
observer trajectories become insensitive to many forms of
noise. Hence, some sliding mode observers have attractive
properties similar to those of the Kalman filter (i.e. noise
resilience) but with simpler implementation [4].

Several researchers have dealt with the issue of designing
sliding-mode observers for different applications [5],
including the classical problem of non-linear state estimation
[6]. Note that the sliding modes techniques are based on the
idea of the sliding manifold, that is an integral manifold with
finite reaching time [7]. This manifold can be implemented
by different methods including use of discontinuous function
or continuous with discontinuous derivatives (so called
higher order sliding modes). Let us note, that this issue of
implementation, as demonstrated clearly by Utkin in [1] and
earlier works is computational and depends on the system
behavior in the boundary layer of the sliding manifold. Thus,
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the main difficulty and innovations in continuous-time sliding
mode research is in the choice of the manifold rather than
in the reaching phase that belongs more to numerical issue.

Indeed, once the sliding manifoldσ(x) = 0 is chosen,
the derivative(s)σ(k) of the functionσ along the system
trajectories can be expressed as function of control that has
exactly same dimension asσ. Practically in all cases the
sliding control and observers are implemented via digital
computers, so, actually, discrete-time sliding mode is used,
which is a version of a deadbeat control that makesσ to
converge to zero in finite time. Let us note, that this algorithm
can be dynamic, i.e. include past values ofσ(tk) and in
continuous-time will look as integrals of a function ofσ.

In this work, our purpose is to discuss an observer design
based over the equivalent control method for a class of
observable SISO systems with some matching conditions on
the input. This method has been treated previously in [3] and
[8]. Subsequently, for the calculation of equivalent control,
we propose the use of uniform exact high order sliding mode
differentiators [9], [10]; and, the for observer convergence,
the use of the Generalized Super-Twisting Algorithm [11],
[12] is proposed. These high order sliding operators provides
the observer with the properties of uniform (w.r.t. initial
conditions) finite time convergence and with reduction of
chattering effect.

In the following, in section II some mathematical
preliminaries are given. In section III an observer design
based over the equivalent control method for a class of
observable SISO systems with some matching conditions on
the input is proposed. An example of the proposed observer
for synchronization of a chaotic system is presented in IV.
Finally, in section V some conclusions are given.

II. M ATHEMATICAL PRELIMINARIES: SLIDING MODE

OBSERVERSBASED ON EQUIVALENT CONTROL METHOD

In this section, we present the mathematical concepts
required to formulate an observer design based over
the equivalent control method. Basic topics of sliding
mode observers based on equivalent control method. These
concepts are required for the observer design (and, by
extension, to maintain its properties) to be proposed in
section III.

Let us consider the following SISO system

ẋ = f (x) + g (x)u (1)

y = h (x)

wherex ∈ R
n is the state,u ∈ R is the input,y ∈ R is

the output andf , g, h are sufficiently differentiable function
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vectors.
For the system (1), let us define the vector of output

derivatives,H (x), as follows:

H (x) =











h1 (x)
h2 (x)

...
hn (x)











=











h (x)
Lfh (x)

...
Ln−1
f h (x)











, (2)

and theObservability matrix, O (x), as:

O (x) =
∂H (x)

∂x
=











dh (x)
dLfh (x)

...
dLn−1

f h (x)











(3)

whereLi
fh (x) represents thei-th Lie derivative ofh (x) in

the f vector field direction. In addition, let us suppose the
following condition:

Condition 1: The system (1) is globally observable, in the
sense that the observability rank condition

rank(O (x)) = n. (4)

is fulfilled for all x ∈ R
n.

Following the observer structure given in [3], for the
case of systems without input,g ≡ 0, to estimate the state
variables of the system (1) using the measurementsy, an
observer of the form

˙̂x = O−1 (x̂)M (x̂)SL {V (t)−H (x̂)} (5)

is proposed, whereSL{·}, is a causal operator (”Sliding
Operator”) such thatV (t) − H (x̂) → 0 in finite time, i.e.
for t ≥ t1, wheret1 > 0 is some time moment.

In (5), the operator SL{·} have the form
SL{ξ} = col(SL{ξ1}, . . . ,SL{ξn}), M (x̂) =
diag(m1 (x̂) , . . . ,mn (x̂)) is a n × n diagonal matrix
with positive entries which are the gains of the observer
and the vectorV (t) defined as

V (t) = col(v1 (t) , . . . , vn (t)) (6)

contains the system output and their firstn − 1 derivatives
in the form v1 (t) = y (t), v2 (t) = ẏ (t), . . . and vn (t) =
y(n−1) (t).

In the case of the sliding mode observer for the system
with input, additional matching conditions are needed for
the observation error to be independent of the input. So,
addressing the relationship between system and inputs, the
following condition is needed.

Condition 2: For anyx ∈ R, the vector

∂H (x)

∂x
g (x)

does not depend onx, it means

∂

∂x

[

∂H (x)

∂x
g (x)

]

= 0

for all x ∈ R.

UnderCondition 2, to estimate the state variables of the
system (1) using the measurementsy, an observer of the
form

˙̂x = O−1 (x̂)M (x̂)SL {V (t)−H (x̂)}+ g (x̂)u (7)

is used.
It is worth to note that the observer design consists of two

problems:(i) the selection of the “Sliding Operator”SL{·}
such thatV (t) − H (x̂) → 0 in finite time and(ii) the
finite time calculation of the output derivatives vectorV (t).
Drakunov [3] showed that using the structures (5) and (7),
the recursive form

vi+i (t) = {SL {vi (t)− hi (x̂)}}eq (8)

with i = 1, . . . , n− 1, and with{}eq denoting anequivalent
value operatorof a discontinuous function in sliding mode
[1] for the vectorV (t) calculation, a suitable choice of
M (x̂), mi (x̂) as an upper bound ofhi+1 (x) with i =
1, . . . , n − 1 and mn (x̂) of Ln

fh (x), and the first order
“Sliding Operator” SL defined by thesign function, the
observers in equations (5) and (7) converge in finite time,
i.e. for t ≥ t1 the errorV (t) − H (x̂) = 0 and vi+i (t) =
{SL{vi (t)− hi (x̂)}}eq = hi+1 (x) with i = 1, . . . , n− 1,
and wheret1 > 0 is some time moment.

Let us note, that in [3] thesign function simply was used
as one of the ways enabling reachability of the desired sliding
manifold σ = V (t) − H (x̂) = 0, but the essence of the
suggested observer idea was in the way the sliding manifold
is designed. As was mentioned in the Introduction, the issue
of eliminating chattering belongs to the boundary layer of
the sliding manifold, i.e. how to implement “nonidealities”
in the terminology of the fundamental work [1].

To eliminate chattering issues and, thus, obtain more
accurate calculation of the equivalent control may be done
using other means. In this paper we propose the use of
high order uniform robust sliding operators with the aim
to improve the calculation of the equivalent control and, in
addition, to provide the observer with uniform convergence
w.r.t. initial conditions [11], i.e. fort ≥ tu, wheretu > 0
is some time moment,V (t)−H (x̂) → 0 regardless of the
initial conditions.

To ensure the uniform convergence of the observer
w.r.t. initial conditions both, the “Sliding Operator” forthe
calculation of the output derivatives vectorV (t) and “Sliding
Operator” which ensuresV (t) − H (x̂) → 0 in finite
time, must be uniform w.r.t. initial conditions. These two
conditions are satisfied using the recently proposed “Exact
and Uniformly Convergent Arbitrary Order Differentiator”
[10] for the calculation ofV (t) and the “Generalized Super
Twisting Algorithm” [11], [13] to ensure the convergence
of V (t) − H (x̂) to zero in finite time. The application of
the two “Sliding Operators” is illustrated in the following
section.

III. SLIDING MODE OBSERVERUSING HIGH ORDER

UNIFORM ROBUST SLIDING OPERATORS

This section presents two “Sliding Operators”: an
uniformly convergent arbitrary order differentiatorSD and
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the generalized super twisting algorithm,GST . Besides,
its applications in the calculation of equivalent control for
improvement of sliding mode observer introduced in Section
II in equations (5) and (7). Also, the stability analysis forthe
observer is presented.

A. Implementation of SD for V (t) Calculation Via
Uniformly Convergent Arbitrary-Order Differentiator

Real-time differentiation is a well-known problem, and
between all the approaches that have been proposed to
obtain time derivatives for a given signal, sliding mode based
methods have demonstrated high accuracy and robustness
for the calculation of higher order exact derivatives [9].
For this objective, an arbitrary-order differentiator based in
a recursive scheme and which provides the best possible
asymptotic accuracy in presence of input noises and discrete
sampling is proposed in [14]. Based in this scheme, in
[10] an uniformly convergent arbitrary order differentiator
is introduced; we will use this differentiator as one of the
possibilities forSD for the calculation of the vectorV (t).

Let the system outputy (t) ∈ Cn̄ [0,∞) be a function to be
differentiated and letn ≤ n̄, then then-th order differentiator
is defined in two parts as follows:

Part 1: The observer must fulfills two proprieties, the
first one is finite-time exactness, it means that error converges
in finite-time despite the disturbance. This requirement is
provided by the arbitrary-order differentiator [14]

ż0 = ζ0,

ζ0 = −λnL
1
n |z0 − y|

n−1

n sign(z0 − y) + z1

ż1 = ζ1,

ζ1 = −λn−1L
1

n−1 |z1 − ζ0|
n−2

n−1 sign(z1 − ζ0) + z2

...

żn−1 = ζn−1, (9)

ζn−1 = −λ1L
1
2 |zn−1 − ζn−2|

1
2 sign(zn−1 − ζn−2) + zn

żn = −λ0Lsign(zn − ζn−1)

where zi is the estimation of the true signaly(i) (t). The
differentiator provides finite time exact estimation under
ideal condition when neither noise nor sampling are present.
The parametersλ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5,
λ5 = 8 are suggested for the construction of differentiators
up to the 5-th order. For the gainL case, the following
condition is provided:

Condition 3: The n + 1-th Lie derivative ofh (x) in the
f vector field direction,Ln+1

f h (x), must be bounded by the
constantL > 0.

Part 2: The uniform convergence with respect to initial
condition, i.e. the convergence time of the differentiatorwill
be uniformly bounded by a constant which does not depends
on the initial observation error. This requirement is provided

by the practical uniform convergent differentiator [10]

ż0 = −k0 |z0 − y|
n+1+α

n+1 sign(z0 − y) + z1,

ż1 = −k1 |z0 − y|
n+1+2α

n+1 sign(z0 − y) + z2,

... (10)

żn−1 = −kn−1 |z0 − y|
n+1+nα

n+1 sign(z0 − y) + zn,

żn = −kn |z0 − y|
1+α sign(z0 − y)

wherek0, . . . , kn are gains to be selected, withα > 0 small
and the gains selected such as the matrix

A =











−k0 1 0 . . . 0
−k1 0 1 . . . 0

...
...

...
...

...
−kn 0 . . . 0 0











is Hurwitz, then error converges uniformly in the initial
condition to a compact setA. Finally, to obtain an uniform
exact finite-time convergent differentiator, the finite time
differentiator (9) can be combined with the practical uniform
convergent differentiator (10). Due that both differentiators
converge independently, this combination can be done in
several ways [10]. For this case, the convergence time to
A was calculated via simulation. Once a time (10) drives
the system toA, it is switched to (9).

See [14] and [10] for further details on the estimation of
time of convergence, the error bounds for the signaly (t) and
their derivatives in presence of noise or discrete samplingand
other properties and constraints of the differentiator.

B. The Super-Twisting algorithm based “Sliding Operator”
SL Design

Another way to implement aSL, and for this case, in
order to enabling reachability of the desired sliding manifold
σ = 0 and, in addition, ensure the uniform convergence of
the observer w.r.t. initial conditions, is the use second order
sliding mode algorithm for control and observation is the so-
called “Generalized Super-Twisting Algorithm”GST [11],
[13]

ϕ (σ) = ψ1 (σ) + ψ2 (σ) , (11)

where

ψ1 (σ) =−M1φ1 (σ)

ψ̇2 (σ) =−M2φ2 (σ) (12)

and

φ1 (σ) =µ1|σ|
1
2 sign(σ) + µ2|σ|

3
2 sign(σ)

φ2 (σ) =
µ2
1

2
sign(σ) + 2µ2

2σ +
3

2
µ1µ2|σ|

2sign(σ) (13)

with µ1 ≥ 0, µ2 ≥ 0 scalars,M1 = diag(m1,1, . . . ,m1,n)
andM2 = diag(m2,1, . . . ,m2,n) are two n × n diagonal
matrices with positive entries which are the gains of the
observer, the function(•)

1
2 is extended to the formξ

1
2 =

col
(

ξ
1
2

1 , . . . , ξ
1
2
n

)

for the expression|σ|
1
2 , a similar definition
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for (•)
3
2 and in the expressions of the form|σ|psign(σ) the

product is element to element.
Using the combination of the finite time differentiator (9)

with the practical uniform convergent differentiator (10), the
vectorV (t) results follows:

V (t) = col(y, z1, . . . , zn−1) (14)

instead of the recursive form (8) which generally use classic
low-pass filters for the definition of the{}eq operator. Also,
the vectorW (t) is defined as:

W (t) = col(z1, . . . , zn) (15)

Now, based on the equations (11)-(15), the following
“Sliding Operator” is defined

SL{σ} =W (t) + ψ1 (σ) + ψ2 (σ) (16)

Remark 1:For the design of the “Sliding Operator”
defined in (16), instead of the discontinuous terms (13)
the following expressions could be used, regarding their
respective limitations which in general are the lack
of uniform convergence w.r.t. initial conditions and the
chattering phenomena in (17).

• .The first order operator defined by thesign function,
as is shown [3]:

φ1 (σ) =sign(σ)

φ2 (σ) =0 (17)

• The second order operator defined by the Classical
Super-Twisting Algorithm [15]:

φ1 (σ) =|σ|
1
2 sign(σ)

φ2 (σ) =sign(σ) (18)

• The second order operator defined by the Super-
Twisting Algorithm with Linear Terms [16]:

φ1 (σ) =|σ|
1
2 sign(σ) +M−1

1 M3σ −M−1
1 ψ2 (σ)

φ2 (σ) =sign(σ) +M−1
1 M4σ (19)

with M3 andM4 defined in the same sense ofM1 and
M2.

• The second order operator defined by a first version of
the Generalized Super-Twisting Algorithm [13]:

φ1 (σ) =µ1|σ|
1
2 sign(σ) + µ2σ (20)

φ2 (σ) =
µ2
1

2
sign(σ) + 2µ2

2σ +
3

2
µ1µ2|σ|

1
2 sign(σ)

with µ1 ≥ 0, µ2 ≥ 0 scalars.

C. Observer Design

For the system (1) the observer design procedure is defined
in the following steps:

1) From the system equations (1), calculate the vector of
output derivatives,H (x̂).

2) Using the combination of the finite time differentiator
(9) with the practical uniform convergent differentiator

(10), calculate the vectorV (t) as in (14) and the vector
W (t) as in (15).

3) Based on the equations (11)-(16), define the “Sliding
Operator”

SL{σ} =W (t) + ψ1 (σ) + ψ2 (σ)

4) Finally, the resultant observer for the system (1)
without input,g ≡ 0, is presented in equation (5).
On the other hand, to estimate the state variables of
the system (1) with the input fulfilling theCondition
2 and using the measurementsy, the proposed observer
have the form provided by equation (7).

D. Observer Convergence

For the observer (5) and (7), under the diffeomorphism
defined by the vectorH (x) and the observability matrix
O, the modified observation error,e, can be written in the
transformed statese = H (x)−H (x̂), in particular

ė = Ḣ (x)− Ḣ (x̂) (21)

leading to

ė =



























ḣ1 (x)

ḣ2 (x)
...

ḣi (x)
...

ḣn−1 (x)

ḣn (x)



























− [W (t) + ψ1 + ψ2] (22)

that is
























ė1
ė2
...
ėi
...

ėn−1

ėn

























=



























ḣ1 (x) − z1 − ψ1,1 − ψ2,1

ḣ2 (x) − z2 − ψ1,2 − ψ2,2

...
ḣi (x)− zi − ψ1,i − ψ2,i

...
ḣn−1 (x)− zn−1 − ψ1,n−1 − ψ2,n−1

ḣn (x)− zn − ψ1,n − ψ2,n



























(23)
where ψ1,i = m1,iφ1 (vi (t)− hi (x̂)) and ψ̇2,i =
m2,iφ2 (vi (t)− hi (x̂)) with i = 1, . . . , n.

The convergence ofV (t) does not depend on the observer,
but in Condition 3. Therefore, under the fulfillment of this
condition, there is a timetd > 0 (which not depends on
initial error of the differentiator) such as ift > td, then
V (t) ≡ H (x) andW (t) ≡ Ḣ (x).

Then, fort > td, equation (23) becomes
























ė1
ė2
...
ėi
...

ėn−1

ėn

























=

























−ψ1,1 − ψ2,1

−ψ1,2 − ψ2,2

...
−ψ1,i − ψ2,i

...
−ψ1,n−1 − ψ2,n−1

−ψ1,n − ψ2,n

























(24)



whereψ1,i = m1,iφ1 (hi (x) − hi (x̂)) = m1,iφ1 (ei) and
ψ̇2,i = m2,iφ2 (hi (x)− hi (x̂)) = m2,iφ2 (ei) with i =
1, . . . , n.

Let us note that the equation (24) is in the trivial form
of the Super-Twisting. Therefore, with a suitable choice of
the gainL and the matricesM1, M2, the system (24) is
Globally Uniformly Finite Time Stable, i.e, the convergence
of the observation error system (24) to zero is achieved in a
finite time tobs > td which does not depends on the initial
conditions and every selection of the matricesM1, M2 with
positive elements on the diagonal.

Remark 2:A very similar convergence analysis can be
done if for the design of the “Sliding Operator” defined
in (16), instead of the discontinuous terms (13) the terms
defined from (17) to (20) are used. Due to the lack of uniform
convergence w.r.t. initial conditions of this operators only
Globally Finite Time Stable can be demonstrated.

Remark 3:The use of a sliding mode differentiator
provides two important properties:

1) For the calculation of the vectorV (t), in contrast
to (8), the expressions does not depends onH (x̂)
yielding that the stability of the solutions forV (t)
does not depends on the observer.

2) The sliding mode differentiator allows the finite time
exact calculation of the vectorW (t). When it is
included in the “Sliding Operator” defined in (16)
results on the independence of the matrix gainsM1,
M2 of x̂ as is shown in equation (23), providing Global
Stability to the observer.

Remark 4:Every bounded and observable SISO linear
system fulfills fromCondition 1 to Condition 3. Giving
a straight application to the proposed observer.

IV. A PPLICATION CASE: RÖSSLERCHAOTIC SYSTEM

SYNCHRONIZATION

We highlight in this section the utility and the advantages
of the observer design based over the equivalent control
method of the previous recalls in the resolution of the
observation problem. At first, we use a system an observer
for synchronization of a chaotic system previously treated
in the literature [17]. The problem of synchronization of
chaotic systems can be seen as an observer design problem.
The Rössler system[18] is a system conformed by three
non-linear ordinary differential equations. For a given set of
parameters, these differential equations define a continuous-
time dynamical system that exhibits chaotic behavior. The set
of equations (25) shows a state representation of the Rössler
system. Let the forced Rössler system, defined as follows

ẋ1 = ax1 + x2

ẋ2 = −x1 − x3 (25)

ẋ3 = b+ x3 (x2 − c) + u

Assuming the statey = x1 as the output, the SISO system

representation of the Rössler system in the way of (1) is

f (x) =





ax1 + x2
−x1 − x3

b+ x3 (x2 − c)



+





0
0
1



 u (26)

and
h (x) = x1. (27)

Noting thatCondition 2is fulfilled and using the equations
(28) and (29), we have designed and observer with the form
shown in (5) and with the “Sliding Operator” defined by
the Generalized Super-Twisting Algorithm (13) and (16), its
state will be denoted bŷxGSTA. The values of the system
constants area = 0.2, b = 0.2 and c = 5.7.
The parameter values for the differentiator areL = 455,
λ1 = 1.1, λ2 = 1.5, andλ4 = 3. For comparison purposes,
another observer based on the “Sliding Operator” defined
by the Classic Super-Twisting Algorithm (18) and (16) is
designed, its state will be denoted byx̂STA.

For both observers, from (26) and (27) the Lie derivatives
of the output are:

h = x1

Lfh = ax1 + x2 (28)

L2
fh = a (ax1 + x2)− x1 − x3,

the corresponding observability matrix is

O =





1 0 0
a 1 0

a2 − 1 a −1



 (29)

and the gain matrices areM1 = diag(10 5 5) andM2 =
5
2M1.

For simulation,u = 5 + sin (10t), the initial conditions
for this system werex (0) = [5 5 10]T and x̂GSTA (0) =
x̂STA (0) = [0 0 0]

T . In addition, for numerical integration
Euler method with a step of10 × −3 was used. Figures 1,
2 and 3 show the simulation results for the system (26).

The statex̂GSTA1
converges tox1 in finite time of 0.6

seconds, until statêxSTA1
converges tox1 in finite time of

1.1 seconds.

Fig. 1. Realx1 (Solid), observed̂xGSTA1
(Dashed) and observed̂xSTA1

(Dotted) states for system (25)
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Then x̂GSTA2
reaches tox2 in finite time of about1.6

seconds and̂xSTA2
converges tox2 in finite time of 2.8

seconds. Note that̂xGSTA2
and x̂STA2

reachx2 only after
x̂GSTA1

and x̂STA1
converges to their respective states.

Fig. 2. Realx2 (Solid), observed̂xGSTA2
(Dashed) and observed̂xSTA2

(Dotted) states for system (25)

Finally, at a time of1.7 seconds,̂xGSTA3
converges tox3

and x̂STA3
converges tox3 at a time of3.1 seconds.

Fig. 3. Realx3 (Solid), observed̂xGSTA3
(Dashed) and observed̂xSTA3

(Dotted) states for system (25)

In the results shown in the figures 1, 2 and 3, both
observers have exact finite time convergence.
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Fig. 4. Convergence time of both observers by growing initial condition
norm

However, as shown in figure 4, the convergence time of
the observer based on the Classic Super-Twisting Algorithm
(dotted line) grows unboundedly with the norm of the initial
condition, while the convergence time of the observer based
on the Generalized Super-Twisting Algorithm (dashed line)
is asymptotically bounded by a constant for growing norm
of the initial condition (solid line). It could be shown thatthe
terms defined from (17) to (20) have the similar unbounded
behavior of Classic Super-Twisting Algorithm.

V. CONCLUSION

We show in this paper the design of a high order sliding
mode observer for nonlinear systems using the equivalent
control method. The generalized super-twisting algorithm
and the uniform exact sliding mode differentiator were
employed in order to ensure uniform finite time convergence
of the observer and the reduction of chattering effect.
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