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Abstract— In this paper, a new class of recurrent neural
networks which solve linear and quadratic programs are
presented. Their design is considered as a sliding mode control
problem, where the network structure is based on the Karush-
Kuhn-Tucker (KKT) optimality conditions with the KKT
multipliers considered as control inputs to be implemented with
fixed time stabilizing terms, instead of common used activation
functions. Thus, the main feature of the proposed network is
its fixed convergence time to the solution. That means, there is
time independent to the initial conditions in which the network
converges to the optimization solution. Simulations show the
feasibility of the current approach.

I. INTRODUCTION

THE use of dynamical systems which can solve other
problems as been a high interest research topic due to

its advantages for real time implementation. This class of
systems was introduced with the works of Chua [1], Tank and
Hopfield [2] and Brockett [3] for linear programming and,
Kennedy and Chua [4] for nonlinear programming. Some
of these systems were presented as circuits [5], [6] or in
the form of the so-called recurrent neural networks, as it is
shown by Wang and Xia [7], [8].

Usually, discontinuous activation functions are used for
recurrent neural networks design. The presence of these
discontinuous terms can induce sliding modes. This behavior
occurs when those terms drive the dynamics of a system to
a sliding manifold, that is an integral manifold with finite
reaching time [9]; exhibiting features such as finite time
convergence, robustness to uncertainties and insensitivity to
external bounded disturbances [10]. For this case, the sliding
modes and finite time convergence to sets defined by the
optimization constraints are desirable characteristics of the
neural network [11].

Taking advantage of the features presented by some
discontinuous systems, several recurrent neural networks
have been proposed using different activation functions as
hard-limiting [12]–[14], Heaviside [15] and dead-zone [16],
[17]. For such cases, the network is proposed based on the
Karush-Kuhn-Tucker (KKT) optimality conditions [18], [19].
This set of conditions can be used to propose the network
structure, usually by using the KKT multipliers as activation
functions. Further results on networks with these dynamical
properties were presented in [20]–[22], where the analysis is
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based on the theory of differential inclusions and differential
equations with discontinuous right-hand [23]–[25].

Therefore, the design of some recurrent neural networks
can be proposed as a sliding mode control problem. That
is, the KKT multipliers are considered as control inputs
which makes attractive a set defined for the constraints of
the programming problem. Usually, the sliding mode design
consists of two steps [26]: (i) the design of a sliding manifold
to ensure the desired dynamics of the system and, (ii) the
enforcing of the sliding motion by means of a finite time
stabilizing term in the control input. For the step (i), the
sets are defined by the problem. On the other hand, for the
step (ii), relay controllers (hard functions) are used as the
stabilizing terms.

However, additionally to commonly used discontinuous
functions, the sliding manifold can be implemented by
different methods including use of continuous functions with
discontinuous derivatives (so called higher order sliding
modes) [27] and, with terms which produce fixed time
stability as generalizations of the super-twisting algorithm
[28] and relay controllers plus polynomial terms [29]. All
these alternatives open possibilities to design new activation
functions, improving the networks performance.

The aim of this paper is to present a class of recurrent
neural network to solve linear and quadratic programming
problems. Its design is considered as a sliding mode control
problem, where the network structure is based on the Karush-
Kuhn-Tucker (KKT) optimality conditions (step (i)), and
the KKT multipliers are regarded as control inputs to be
implemented with fixed time stabilizing terms (step (ii))
instead of common used activation functions. Thus, the main
feature of the proposed network is its fixed convergence time
to the solution. That means, there is time independent to
the initial conditions in which the network converges to the
optimization solution.

In the following, Section II presents the mathematical
preliminaries and some useful definitions. Sections III and
IV describe the proposed recurrent neural networks for
the solution of linear an quadratic programs, including
an conceptual approach to stability analysis. Section V
shows the activation function design, here the stability proof
is performed by means of the Lyapunov approach. The
simulations are presented in section VI. Finally, in Section
VII the conclusions are given.
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II. MATHEMATICAL PRELIMINARIES

A. On Fixed Time Stability

Consider the system

ξ̇ = f(t, ξ) (1)

where ξ ∈ Rn and f : R+×Rn → Rn. If f is a discontinuous
(or non-smooth) function, (1) is understood in Filippov sense
[23].

Definition 1 (Globally fixed-time attraction [29]): Let a
non-empty set M ⊂ Rn. It is said to be globally fixed-time
attractive for the system (1) if any solution ξ(t, ξ0) of (1)
reaches M in some finite time moment t = T (ξ0) and the
settling-time function T (ξ0) : Rn → R+∪{0} is bounded by
some positive number Tmax, i.e. T (ξ0) ≤ Tmax for ξ0 ∈ Rn.

With the definition of a globally fixed-time attractive set,
the following lemma provides a Lyapunov characterization
of these sets on the state space

Lemma 1 (Lyapunov function [29]): If there exists a
continuous radially unbounded function

V : Rn → R+ ∪ {0}

such that V (ξ) = 0 for ξ ∈M and any solution ξ(t) satisfies

V̇ ≤ − (αV p(ξ(t)) + βV q(ξ(t)))
k

for α, β, p, q, k > 0 that pk < 1 and qk > 1, then the set
M is globally fixed-time attractive for the system (1) and
Tmax = 1

αk(1−pk) + 1
βk(qk−1)

.
Consider now the system

ξ̇ = f(t, ξ) + g(ξ)u+ ∆ (2)

where ξ ∈ Rn, u ∈ Rm, f : R+ × Rn → Rn and
g : Rn → Rn×m, with m ≤ n and ∆ ∈ Rn a bounded
disturbance. If u is a discontinuous (or non-smooth) function,
(2) is understood in Filippov sense [23].

For the system (2), a special choice for u is considered in
the following definition

Definition 2 (Globally fixed time stabilizer to a set):
Let a non-empty set M ⊂ Rm and ∆ = 0. The function
FS(ξ,M) is called a globally fixed time stabilizer to the
set M if taking us = FS(ξ,M), M is a globally fixed-time
attractive set of

ξ̇ = f(t, ξ) + g(ξ)us.

If this condition on M stills fulfilling despite of ∆ 6= 0,
FS(·) is called a robust stabilizer.

A particular case of fixed time stabilizer is given by
Definition 3 (Globally fixed time sliding mode operator):

Let σ : Rn → Rm a continuous function. If in Definition
2 the set M is such that σ = 0, the globally fixed time
stabilizer is called globally fixed time sliding mode operator
denoted by us = SL(σ), and σ = 0 is called a sliding
manifold.

Notice from Lemma 1, that FS(ξ,M) = 0 for ξ ∈M .

III. LINEAR PROGRAMMING

Let the following linear programming problem:
minx cTx

s.t Ax = b

l ≤ x ≤ h
(3)

where x =
[
x1 . . . xn

]T ∈ Rn are the decision
variables, c ∈ Rn is a cost vector, A is an m × n matrix
such that rank(A) = m and m ≤ n; b is a vector in Rm
and, l =

[
l1 . . . ln

]
, h =

[
h1 . . . hn

]
∈ Rn.

Let y =
[
y1 . . . ym

]T ∈ Rm and z =[
z1 . . . zn

]T ∈ Rn. Hence, the Lagrangian of (3) is

L (x, y, z) = cTx+ zTx+ yT (Ax− b) . (4)

The KKT conditions claim that x∗ is a solution for (3) if
and only if x∗, y and z in (3)-(4) are such that

∇xL (x∗, y, z) = c + z + AT y = 0 (5)
Ax∗ − b = 0 (6)
zix

∗
i = 0 if li < x∗i < hi, ∀i = 1, . . . , n. (7)

Following the KKT approach, here a recurrent neural
network which solves the problem (3) in fixed time is
proposed. For this purpose, let

Ωe = {x ∈ Rn : Ax− b = 0}
Ωd = {x ∈ Rn : l ≤ x ≤ h} .

According to (3), x∗ ∈ Ω where Ω = int(Ωd ∩ Ωe).
From (5), let

ẋ = −c + z + AT y. (8)

Then, y and z will be designed such that Ω is a fixed time
attractive set, fulfilling conditions (5)-(7).

In addition to condition (7), z is considered such that{
zi ≥ 0 if xi ≥ hi
zi ≤ 0 if xi ≤ li

. (9)

Thus, defining
σ = Ax− b (10)

a suitable choice for y and z is proposed as

y =SL(σ) (11)
z =FS(x,Ωd). (12)

With the stabilizing terms (11)-(12), the dynamics of the
system (8)-(10) become

σ̇ = −Ac + AFS(x,Ωd) + AATSL(σ) (13)

ẋ = −c + FS(x,Ωd) + ATSL(σ) (14)

As a conceptual approach to the stabilization of (13)-(14),
it can be considered from the definition of FS(x,Ωd) in
(14), that x reaches the set Ωd in a fixed time td. For t > td
the operator FS(x,Ωd) = 0, then from (13) it follows

σ̇ = −Ac + AATSL(σ). (15)
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And, from the definition of SL(σ), the solutions of (15)
reach σ = 0 in a fixed time te > td.

At this point, it is clear that the conditions (6) and (7)
are satisfied. Now, by using the equivalent control method
[26] as solution of ẋ = 0 in (8) for t > te, it follows that
z = FS(x,Ωd)eq = 0 and c + ATSL(σ)eq = 0, satisfying
the condition (5).

IV. QUADRATIC PROGRAMMING

Similarly to (3), the quadratic programming problem is
defined as: 

minx 1
2x

TQx+ cTx

s.t Ax = b

l ≤ x ≤ h
(16)

where x =
[
x1 . . . xn

]T ∈ Rn are the decision
variables, c ∈ Rn is a cost vector, Q is a n × n symmetric
matrix, A is a m × n matrix such that rank(A) = m and
m ≤ n; b is a vector in Rm and, l =

[
l1 . . . ln

]
,

h =
[
h1 . . . hn

]
∈ Rn.

Let y =
[
y1 . . . ym

]
∈ Rm and z =[

z1 . . . zn
]
∈ Rn. Hence, the Lagrangian of (16) is

L (x, y, z) =
1

2
xTQx+ cTx+ zTx+ yT (Ax− b) (17)

The Karush-Kuhn-Tucker (KKT) conditions claim that x∗

is a solution for (16) if and only if x∗, y and z in (16)-(17)
are such that

∇xL (x∗, y, z) = Qx∗ + c + z + AT y = 0 (18)
Ax∗ − b = 0 (19)
zix

∗
i = 0 if li < x∗i < hi, ∀i = 1, . . . , n. (20)

Then, let Ωe = {x ∈ Rn : Ax− b = 0} and Ωd =
{x ∈ Rn : l ≤ x ≤ h}. According to (16), x∗ ∈ Ω where
Ω = int(Ωd ∩ Ωe).

From (5), the structure for the network is

ẋ = −Qx− c + z + AT y (21)

then, as for the linear programming case, y and z are
designed such that Ω is a fixed time attractive set, fulfilling
conditions (18)-(20).

Using the conditions (9)-(20), defining σ = Ax − b and
selecting y and z as in (11)-(12), the system (21) reduces to

σ̇ = −AQx−Ac + AFS(x,Ωd) + AATSL(σ) (22)

ẋ = −Qx− c + FS(x,Ωd) + ATSL(σ) (23)

The same analysis used for the linear programming is
applied as conceptual approach to (22)-(23), it can be
considered from the definition of FS(x,Ωd), in (23) that
x ∈ Ωd in a fixed time td. For t > td the operator
FS(x,Ωd) = 0, then from (22)

σ̇ = −AQx−Ac + AATSL(σ). (24)

And, from the definition of SL(σ), in (15) σ = 0 in a
fixed time te > td.

Again, by using the equivalent control method [26] as
solution of ẋ = 0 in (21) for t > te, it follows that
z = FS(x,Ωd)eq = 0 and Qx∗ + c + ATSL(σ)eq = 0,
satisfying the condition (18).

V. ACTIVATION FUNCTION DESIGN

Usual recurrent neural networks approaches to solve (3)-
(16) are based on the idea of define a dynamical system with
some structural features from the KKT. Then, an important
step is the design of activation function which fulfills (7)-
(20). This section presents a class of activation functions
which satisfy the KKT conditions, providing fixed time
stabilization.

As fixed time stabilizer to the set Ωd, z = FS(x,Ωd) the
following function is proposed

FS(x,Ωd) =
[
FS1(x1, [h1, l1]) . . . FSn(xn, [hn, ln])

]T
where FSi(·) is proposed as

FSi(xi, [li, hi]) =


fs(xi − li) if xi ≤ li
0 if li < xi < hi

fs(xi − hi) if xi ≥ hi
(25)

with fs(·) = −ki1sign(·)− ki2(·)− ki3(·)3.
For this case, y = SL(σ) is selected as

SL(·) = −ki4sign(·)− ki5(·)− ki6(·)3. (26)

Without lost of generality, in order to analyze the
stability of the proposed network, only the case of quadratic
programming will be considered.

The stability analysis es performed in two stages
1) Reaching phase to the set Ωd and,
2) reaching phase stability to the sliding set σ = 0.
1) For the first stage, consider

ẋ = −Qx− c + FS(x,Ωd) + ATSL(σ) (27)

now, let [−Qx + c + ATSL(σ)]i the i-th row of
the vector −Qx − c + ATSL(σ) with i = 1, . . . , n.
Assuming ∆i = [−Qx−c+ATSL(σ)]i as a bounded
term ∆i < δi with δi > 0, the dynamics for xi is given
by

ẋi = FSi(xi, [li, hi]) + ∆i. (28)

For (28), the following Lyapunov candidate is proposed

Vdi =


1
2 (xi − li)2 if xi ≤ li
0 if li < xi < hi
1
2 (xi − hi)2 if xi ≥ hi

(29)

and its derivative is given by

V̇di =


gs(xi − li) + ∆i if xi ≤ li
0 if li < xi < hi

gs(xi − hi) + ∆i if xi ≥ hi
(30)

with fs(·) = −ki1|(·)| − ki2(·)2 − ki3(·)4.
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From (29)-(30) and taking ki1 > δi, it follows that

V̇di

{
= 0 if li < xi < hi

< −ki1
√

2V
1
2

di
− 4ki3V

2
di

otherwise
(31)

therefore, x ∈ Ωd in a fixed time td.
2) To analyze the reaching phase stability to the sliding

set σ = 0, consider

σ̇ = −AQx−Ac + AATSL(σ). (32)

With a similar analysis to the first stage, let the
Lyapunov candidate

Ve =
1

2
σT [AAT ]−1σ (33)

assuming
∥∥σT [AAT ]−1[AQx+ Ac]

∥∥
1
< γ with γ >

0, the derivative of (33) is given by

V̇e < σTSL(σ) + γ. (34)

Defining k4 = min {ki4, . . . , km4} and selecting k4 >
γ, the trajectories of (32) converge to zero in a fixed
time te > td.

VI. NUMERICAL SIMULATION RESULTS

A. Linear Programming

Let the following linear programming problem [16]:
minx 4x1 + x2 + 2x3

s.t x1 − 2x2 + x3 = 2

−x1 + 2x2 + x3 = 1

−5 ≤ x1, x2, x3 ≤ 5

. (35)

The proposed neural network (8), with al parameters equal
to 10, gives the results shown in Fig. 1.
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Fig. 1. Transient behavior of the x variables.

Here, it can be observed that the network converges to the
optimal solution x∗ = [−5,−2.75, 1.5].

B. Quadratic Programming

Now, consider the following quadratic programming
problem [12]:

minx −0.5x21 + x22 + 2x1x2 + 6x1 − 2x2

s.t 3x1 − 2x2 = 1

0 ≤ x1, x2 ≤ 10

. (36)

The proposed neural network (21), with al parameters
equal to 10, gives the results shown in Fig. 2.
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Fig. 2. Transient behavior of the x variables.

Here, it can be observed that the network converges to the
optimal solution x∗ = [1/3, 0]T .

At this point, the proposed networks have been shown
an acceptable performance. Similar results can be obtained
with the approaches mentioned in the references. However,
the Fig. 3 exposes the convergence features of the current
approach against a network with hard-limiting activation
functions
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Fig. 3. Convergence time of both networks by growing initial condition
norm

Here, the convergence time of the network with hard-
limiting activation functions (dotted line) grows unboundedly
with the norm of the initial condition, while the convergence
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time of the proposed network (dashed line) is asymptotically
bounded by a constant for growing norm of the initial
condition (solid line).

VII. CONCLUSIONS AND FUTURE WORK

A new class of recurrent neural networks for linear and
quadratic optimization problem has been proposed. The main
feature of this proposal is the fixed time convergence time.

The design procedure and the stability proof was
presented. As well, two simulations examples which exposes
the performance of the proposed networks.

The presented approach opens the opportunity to apply
additional classes of stabilizers and to solve a wider class of
optimization problems. This consist of the future work.
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