DMAF - Trabajos de fin de Maestría en Ciencia de Datos
URI permanente para esta colección
Examinar
Examinando DMAF - Trabajos de fin de Maestría en Ciencia de Datos por autor "Estrada-Rodríguez, Héctor D."
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Modelado predictivo con Random Forest para la detección de enfermedades cardíacas(ITESO, 2024-05) Estrada-Rodríguez, Héctor D.; Alcalá-Temores, Jaime E.El diagnóstico precoz de enfermedades cardíacas permite mejorar la probabilidad de supervivencia de las personas, así como reducir los gastos adicionales al sistema de salud. Es por esto que el objetivo principal de este proyecto es aplicar un modelo de detección de patologías cardíacas, resolviendo de manera particular la necesidad de herramientas analíticas avanzadas que puedan procesar datos clínicos y biomédicos de manera efectiva. Se destaca la implementación y comparación de un modelo de Random Forest frente a la Regresión Logística, así como los procesos de limpieza, preparación de datos y la ingeniería de características realizada. Se exponen los resultados obtenidos, que demuestran la superioridad predictiva del Random Forest en comparación con la Regresión Logística. Finalmente, se presentan las conclusiones del trabajo, enfatizando la viabilidad del Random Forest para la aplicación clínica.