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Abstract.  Several graph databases provide support to analyze a large amount of 

highly connected data, and it is not trivial for a company to choose the right one. 

We propose a new process that allows analysts to select the database that suits 

best to the business requirements.  The proposed selection process makes 

possible to benchmark several graph databases according to the user needs by 

considering metrics such as querying capabilities, built-in functions, performance 

analysis, and user experience. We have selected some of the most popular native 

graph database engines to test our approach to solve a given problem. Our 

proposed selection process has been useful to design benchmarks and provides 

valuable information to decide which graph database to choose. The presented 

approach can be easily applied to a wide number of applications such as social 

network, market basket analysis, fraud detection, and others. 
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1   Introduction 

In the last decade, the large amount of information generated from multiple data sources 

such as social networks and mobile devices has led the relational database management 

systems to their limit. As larger the dataset, it becomes more difficult to process using 

traditional data processing applications like relational database management systems 

and data warehousing tools. The challenges include analysis, capture, curation, search, 

sharing, storage, transfer, and visualization [1]-[3]. This fact has driven to look for 

alternatives such as non-relational databases. NoSQL databases provide several options 

for storing, accessing and manipulating data at big scale; examples are key-value, 

document-based, column-based, and graph-based stores, all of these improves the 

querying performance that relational SQL databases have on large and unstructured 

datasets [4]. 

One of the most promising approaches is the Graph Database (GDB). This kind of 

databases includes support for an expressive graph data model with heterogeneous 

vertices and edges, powerful query and graph mining capabilities, ease of use, as well 

as high performance and scalability [5]. All these features are needed to manipulate and 



study highly connected data points. Other advantages of graph database systems include 

but not limited to the following topics: high-performance query capabilities on large 

datasets, data storage support in the order of petabytes (1015), intuitive query language, 

appropriate for agile development, support of new types of data and suitable for 

irregular data, and optimized for data mining operations [6]. Overall, these features can 

be classified into three major areas: performance, flexibility, and agility.  

Performance is a relevant factor when it comes to data relationship handling. Graph 

databases massively improve the performance when dealing with network examination 

and depth-based queries traversing out from a selected starting set of nodes within a 

graph database. They outperform the needed depth of join operations, which traditional 

relational databases implement in languages such as SQL when they need to go into a 

complex network to find how data relates to each other. 

Flexibility plays an important role; it can allow data architects to modify database 

schemas, which can quickly adapt to significant changes because of new business 

needs. Instead of modeling a domain in advance, when new data need to be included in 

the graph structure, the schema can be updated on the fly as data are pushed to the 

graph. 

Agility is highly appreciated due to most software companies adopting work 

methodologies such as Scrum and Kanban. This graph database feature aligns with such 

lean interactive development practices, which lets the graph evolve with the rest of the 

application and evolving business needs. 

From an operational perspective, there are three types of graph database: true graph 

databases, triple stores (also named RDF stores), and conventional databases that 

provide some graph capabilities. True graph databases support index-free adjacency, 

which allows graph traversals without needing an index, while triple stores require 

indexing to perform traversals [7]-[8]. True graph databases are designed to support 

property graphs where these properties are applied either to vertices or edges, and 

recently some triple stores have added this capability. 

Most of the graph databases support a unique main query language, which allows us 

to include scenarios such as language type, ease of usage, SQL similarity [9], and 

evaluate graph data and queries portability across other platforms. 

So far, we have described the benefits of using graph databases to address certain 

types of problems where it is necessary to analyze large amounts of highly related data. 

However, for companies, it is not trivial to identify which GDB is better according to 

their needs. Thus, the selection of a GDB becomes a challenge that can impact at an 

operational level and even at an economic level. 

In this work, we propose a new selection process for guiding analysts to select a 

suitable GDB to satisfy the business needs.  The selection process flow consists of five 

main stages: the problem analysis, requirements analysis, GDB analysis, 

benchmarking, and GDB selection. 
Our contributions are 1) a new selection process to select a graph database aligned 

to business requirements, 2) a detailed description of the proposed selection process in 

a particular scenario. 

We organized the rest of this document as follows: Section 2 describes how other 

studies benchmark graph databases. Section 3 presents and describes in detail our 

proposed selection process to choose a graph database. Section 4 shows the application 



of the selection process on a case study with two datasets and their results. Finally, in 

Section 5, we present our conclusions. 

2   Related Work 

There are several commercial GDB engines that enterprises and organizations could 

use. However, choosing the best option is not trivial. Several authors as Batra et al. [10] 

and Nayak et al. [11] have described the advantages of NoSQL databases and how those 

are solving common issues on legacy systems which rely on Relational Databases 

(RDB). These works provide an overall description of what graph databases are 

offering as a solution and remark the advantages and disadvantages of each type of 

systems. 

Batra in [10] performs a comparative between MySQL and Neo4j. It provides the 

following evaluation parameters: level of support/maturity to know how well tested the 

system is, security to understand what mechanisms are available to manage restrictions 

and multiple users, flexibility which allows system designers to extended new features 

through time-based on schema changes, and performance-based upon predefined 

queries on a sample database. The obtained results are that both systems performed well 

on the predefined queries with slight advantages for Neo4j, the graph databases are 

more flexible than relational databases without the need to restructure the schemas. 

Nayak in [11] describes each type of NoSQL database type. These are classified into 

five categories, one of them being Graph databases, the categories are key-value store 

databases such as Amazon DynamoDB and RIAK, column-oriented databases like Big 

Table and Cassandra, document store databases using MongoDB and CouchDB as 

examples, and graph Databases where Neo4j is the only analyzed system. No specific 

criteria were used to compare features. However, the paper provides the advantages and 

disadvantages of each of the data stores. Some of the advantages of NoSQL over 

Relational are that they provide a wide range of data models to choose, easily scalable, 

DB admins are not required, some provide handlers to react to hardware failures, they 

are faster, more efficient and flexible. The disadvantages of NoSQL over Relational 

include that they are immature in most of the cases, no standard query language; some 

of them are not ACID compliant, no standard interface, maintenance is difficult. Nayak 

provides a proper classification of NoSQL databases and Batra a usefully comparative 

between an RDB and Graph database, but any of them provide a formal process to 

select a graph database aligned to business requirements. 

There are other works, which have compared only graph database systems [12]-[14]. 

The first one is providing a high-level description of AllegroGraph, ArangoDB, 

InfiniteGraph, Neo4j, and OrientDB [12]. The criteria, considered in work use the 

following elements: Schema flexibility, Query Language, Sharding (ability to break up 

large datasets and distribute it across several replicated shards), Backups, Multi-model, 

Multi-architecture, Scalability, and Cloud Ready. Each of the elements is graded for all 

the databases with a score which can be Great, Good, Average, Bad or Does not support. 

The obtained results are just remarking that there is no perfect graph database for any 

type of problem. An important element which is not evaluated in this work is the 

performance on graph operations through the use of their supported query languages. 



The other works comparing only graph databases that go beyond the high-level 

features and evaluate performance tend to have the support of a specific development 

group or vendor. One of them is a post from Dgraph comparing the loading data 

capacities and querying performance against Neo4j [13], the dataset is in RDF format, 

which is not supported natively by Neo4j. Therefore, it had to be loaded through data 

format conversions. Then a set of specific queries are executed on each database where 

Dgraph outperforms Neo4j in most cases. The other graph comparison work is 

benchmarking TigerGraph, Neo4j, Neptune, JanusGraph, and ArangoDB [14], the 

work is developed by the creators of TigerGraph, the comparison includes data loading 

times, storage size, and the response of graph queries for full graph or subsets of it. It 

uses a couple of graphs, one which is considered a small size and then a large dataset. 

The conclusion favors TigerGraph in most of the compared features claiming that their 

development is based on a natural, real-time, and Massively Parallel Processing 

platform approach with a high-level language introduced by the platform. Even though 

the comparison presents some useful metrics, it does not provide a guide to choose the 

suitable GDB according to the business requirements.  

As far as we know, in the literature, there is not a transparent process for the election 

of a GDB driven by the problem, goals, requirements, and constraints. Our work has 

no intention of favoring any of the evaluated systems, and it provides a guide to choose 

the suitable GDB according to business needs. 

Nonetheless, some works focused on selection processes for other types of software 

tools such the proposed by Maxville et al. [15], where they implement a framework for 

the selection of open source software from the repositories. The context-driven 

component evaluation framework (CdCE) uses a specific set of templates, criteria, 

ontologies, and data representations, with classifiers and test generators for filtering and 

evaluation. The proposal has three main phases: filtering, evaluation, and ranking items. 

Lee et al. [16] developed a tool based on the Analytic Hierarchy Process (AHP) to 

adopt open-source software. AHP is a decision-making method that includes qualitative 

and quantitative techniques to support decisions. Their selection process has four 

phases: 1) identify the goal/project, selection criteria and product alternatives, 2) justify 

judgment matrix for each criterion, 3) justify judgment matrix for the alternative 

products, and 4) results for the final ranking and decision making.  

Lourenço et al. [1] presented a qualitative evaluation of NoSQL databases and 

described the main characteristics of each type of databases based on the literature 

review. This paper focused on performance requirements of the databases and quality 

attributes like availability, consistency, durability, maintainability, read and write 

performance, reliability, robustness, scalability, stabilization time, and recovery. 

Finally, Lee presents a timeline of the evolution of NoSQL databases. 

The last works above provide a set of stages, metrics, and use cases as a guideline to 

choose diverse kind of technology, but are not focused on graph databases. Therefore, 

it is required a well-defined selection process of graph databases based on business 

requirements.    



 3   Selection Process of GDB 

In this section, we describe a new selection process that guide analysts to select a 

GDB that satisfies the business needs.  The selection process flow consists of five main 

stages: problem analysis, requirements analysis, GDB analysis, benchmarking, and 

GDB selection (Figure 1).  

3.1   Problem analysis (Stage 1) 

The goal of this stage is to define the problem that must be solved using a GDB. This 

stage has two steps: the problem and goals definition. We assume that, in general, the 

problem consists of analyzing a large amount of highly connected data.  

In the problem definition step (step 1.1), it must be described the business needs in 

terms of the GDB scope. In this step, the analyst should answer the following question: 

why do I need a GDB?  

  Once the analyst defined the problem, he must determine a set of goals in terms of 

the capabilities that a GDB can offer, for example, the supported amount of processing 

data, the kind of analysis to perform on the connected data, filters, dynamic analysis, 

graph algorithms, and memory. 

 

3.2   Requirements analysis (Stage 2) 

Based on the established goals, it is required to define a set of requirements (step 

2.1) that can be quantitative and qualitative that allow analysts to evaluate them throw 

metrics. Requirements can be of three types: performance, flexibility, and agility 

(described in Section 1). 

Furthermore, the analysts could identify a subset of hard requirements (step 2.2). In 

this work, hard requirements are called constraints. The GDB must satisfy these 

constraints to become a candidate in the pre-selection stage. Some examples of 

constraints are to support: declarative query languages, specific programming 

languages, and particular graph algorithms.  

Besides, the analysts must determine the metrics to measure each one of the 

requirements previously defined (step 2.3). Some metrics examples are load data 

efficiently, storage efficiently, and natively graph algorithms execution.  

In order to assign a score to each GDB, we suggest a scoring function. The analyst 

must assign a weight for each metric (each metric is related to one requirement). The 

score is obtained by summarizing the product of the weights and the normalized metrics 

results, as it is shown in equation 1.  

 

𝑆𝑑
𝑐(𝑀,𝑊) =∑𝑤𝑖  || 𝑚𝑖  ||

𝑛

𝑖=1

, (1) 

 



where  𝑆𝑑
𝑐  means the score of evaluating a candidate GDB denoted by 𝑐 for a given 

dataset 𝑑 . The function has as input a list (M) of evaluation results of each metric (𝑚𝑖 ∈
𝑀), and a list of weights (W) that determine the importance of each metric. Besides, 

the weights have the following property   ∑ 𝑤𝑖  
𝑛
𝑖=1 = 1  where 𝑤𝑖 ∈ 𝑊, 𝑛 = |𝑊| and 

each 𝑤𝑖   is a value between 0 to 1. 
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 𝑚𝑖 −min(𝑀)

max(𝑀) − min(𝑀)
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑚𝑖

1 −
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max(𝑀) − min(𝑀)
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚𝑖

 (2) 

 

In this work, we suggest using the min-max normalization or the complement of this 

normalization in the case of minimizing the use of some resource as it is described in 

equation 2. This normalization function results in 0 if it is the lowest score and 1 to the 

highest score. This function will be used in the GDB selection stage (stage 5).  

Furthermore, the score function and the normalization function can be customized 

according to the problem to solve.  

3.3   GDB Pre-selection (Stage 3) 

In this stage, the inputs are a set of constraints defined in the previous stage (stage 

2) and a GBD catalog. The catalog consists of all those databases that analyst believe 

can solve the problem defined in stage 1.  Only the GDBs that accomplish all the 

constraints will be part of the pre-selected GDBs which are going to be considered for 

the benchmark.  The pre-selected GDB catalog will be the output of this stage and input 

for the next one.  

3.4   Benchmarking (Stage 4) 

This stage has the pre-selected GDB catalog and the metric definition for each 

requirement as inputs. The purpose of the stage is to search or build datasets useful to 

evaluate the GDBs with the metrics established in step 2.3.  Moreover, in this stage, the 

environment of the benchmark has to be defined and configured, such as operating 

system, RAM, GDB configuration, create indexes on data, among others. 

On the other hand, to guarantee a fair comparison between GDBs, it is required to 

design and implement a set of tests that make possible to use the same set of data for 

all pre-selected GDBs; for example, a loading performance test requires that all the 

GDBs load the same amount of data in all tests.  

To automate the evaluation of the metrics for each GDB, we suggest the use of some 

scripts that execute the benchmarks and gather the information of each metric for all 

the scenarios.  

The output of this stage is a table per scenario with the results of the evaluation for 

each metric for all GDB. 



3.5   GDB Selection (Stage 5) 

In this stage, the inputs are the results of the evaluations performed over the GDBs 

of the previous stage, and the scoring function defined in stage 2. Once the scoring 

function has been applied to all GDBs with each dataset, the final score per GDB is 

computed by averaging the result of all scenarios(datasets). Hence, it is obtaining a 

single value per GDB, which is stored as an ordered list of scores and sorted from 

maximum to minimum. The highest score indicates that the GDB accomplish better the 

established requirements. Finally, the analysis has all the information to choose one 

GDB that will be used to solve the problem defined in stage 1.  

 

 

 
Fig. 1. The process to select the GDB that suits best the business requirements. It is composed 

of five stages: Problem Analysis (1), Requirement Analysis (2), GDB Pre-selection (3), 

Benchmarking (4), and GDB Selection (5).  

4   Case Study and Results 

To show how the selection process of GDB can be applied in a specific case, each 

stage of the process is described step by step until we can identify the most appropriate 

GDB to solve a defined problem. 

In stage 1, the problem has to be specified by answering the question of why the 

GDB is needed? In our case study, the problem consists of analyzing a social network 

to identify the weakly connected components, to obtain the most influential users, and 

the possibility to explore the neighborhood of some given node. In the next step of this 

stage, the goals need to be declared. The goals extracted from the previously defined 

problem are: to store data extracted from a social network, identify weakly connected 



components, identify opinion leaders or critical users, and to explore the neighborhood 

of the elements in the social network. 

Stage 2 starts with the previously defined goals, and the requirements are specified. 

In this case study, the requirements are related to GDB performance, as listed in Table 

1. However, it is possible to include requirements associated with flexibility and agility. 

Table 1.   List of performance requirements with its corresponding metrics and weights used in the case 

study. 

Requirements of performance Metric Weights 

large-scale data loading Loading time (min.) 25% 

use of disk storage Disk usage (GB) 20% 

Obtain the neighborhood in 1 hop execution time (sec.) 5% 

Obtain the neighborhood in 2 hops execution time (sec.) 5% 

Obtain the neighborhood in 3 hops execution time (sec.) 5% 

Execution of weakly connected components execution time (sec.) 20% 

Execution of PageRank algorithm execution time(sec.) 20% 

 

Furthermore, in this stage, define the constraints to pre-select the GDB catalog. In 

this case, the restrictions for GDB are to be an open-source or free, provide a declarative 

query language, support Java as a programming language, and compute graph 

algorithms like neighborhood to k-hops, PageRank, and weakly connected components.  

Another step (2.3) in the same stage is the definition of the metrics. For this example, 

we define the metrics in terms of execution time and the required storage space, as 

shown in Table 1.  

Finally, in this stage, the score function is established. In this case study, we use the 

function suggested in section 3, and the associated weight for each requirement is 

shown in Table 1.   

Table 2. Results of the constraints evaluation on the initial GDB catalog.  The first three GDBs 

accomplish all the constraints. Therefore, these GDBs are pre-selected for the next stages of the 

selection process.   

Graph 

database 

Graph 

query 

language 

Native 

graphs  

triplets 

Graph 

algorithms 

Supports 

Java 

Open-

source 

JanusGraph X X X X X 

Neo4j X X X X X 

TigerGraph X X X X X 

GraphDB X X - X X 

Mark Logic X X - X X 

SQL server - - - X X 

 

In stage 3, for demonstration purposes, we chose six accessible databases that 

support graphs. The databases are JanusGraph, Neo4j, TigerGrpah, GraphDB, 

MarkLogic, and Microsoft SQL. All databases have to satisfy the constraints of the 

previous stage. In Table 2, it can be observed that only JanusGraph, Neo4j, and 



TigerGraph accomplish all constraints, and these can be considered as the pre-select 

GDBs to be evaluated in the next stage.  

 

In stage 4, the scenarios for evaluation must be defined and configured. For this 

study, the benchmark setup has been based on the TigerGraph project [9].  The 

benchmark is conformed of three main steps: the setup, the data loading tests, and the 

query performance tests. 

In this work, we use two datasets published by TigerGraph [9]. The first is a real 

dataset of the social network Twitter, and the second is a synthetic dataset. The used 

datasets in this work are described in Table 3. 

Table 3.   Datasets description used to benchmark pre-selected GDBs. 

Dataset Description Nodes Edges Raw size (MB) 

Twitter A directed graph of social 

network users. 
41.6 M 1.47 B 24375 

Graph500 Synthetic Kronecker graph 
 

2.4 M 67 M 967 

 

Table 4.   Benchmarks results using the Twitter dataset. The last three columns are the outcomes of metric 

evaluation on pre-selected GBDs. The last row shows the score computed for each GDB.   

Metric JanusGraph Neo4j TigerGraph 

Loading time (min.) 238.400 74.000 40.300 

Disk usage (GB) 33.000 30.000 9.500 

K-Neighborhood (sec.) 1.420 0.377 0.017 

Two-Hop K-Neighborhood (sec.) 40398.000 5.260 0.330 

Three-Hop K-Neighborhood (sec.) 1600.600 99.700 2.900 

Weakly connected components (sec.) 86400.000 1545.100 47.900 

Page rank query (sec.) 86400.000 614.900 166.030 

Score (0 - 1) 0.000 0.763 1.000 

 

The Twitter dataset has over 41 million nodes and almost 1.5 billion edges; the 

dataset represents real user connections taken from the social network while Graph500 

is a synthetic graph dataset which has 2.4 million nodes and 67 million connections 

across the data. 

Table 5.  Benchmarks results using the Graph500 dataset. The last three columns are the outcomes of metric 

evaluation on pre-selected GBDs. The last row shows the score computed for each GDB. 

Metric JanusGraph Neo4j TigerGraph 

Loading time (min.) 19.200 6.000 3.700 

Disk usage (GB) 2.500 2.300 0.500 

K-Neighborhood (sec.) 0.195 0.018 0.003 

Two-Hop K-Neighborhood (sec.) 13.950 4.400 0.066 

Three-Hop K-Neighborhood (sec.) 1965.500 58.500 0.405 

Weakly connected components (sec.) 1491.400 65.500 2.880 

Page rank query (sec.) 2279.051 31.200 12.800 

Score (0 - 1) 0.000 0.752 1.000 



 

In both cases, the graph’s raw data is formatted as a single tab-separated edge list, 

and no properties or attributes are attached to edges. 

In order to obtain a reliable result, it is required to perform a fair comparison between 

GDBs. The first condition in order to satisfy such equity is to install the systems on the 

same hardware and software conditions. 

Once the benchmark is set up, it is essential to select an environment which satisfies 

minimum hardware and software requirements for each database, and this can be 

checked on each database official requirements publication. Our experiments run on 

Amazon EC2 instances; each system uses the same number of CPUs, memory, and 

network bandwidth.  The selected operating system must support a native installation 

of all pre-selected GDBs. In this case, we use Ubuntu 18.04 LTS. Once the databases 

are configured, the scripts are executed.  The results of the benchmark are shown in 

Table 4 for the first scenario (Twitter), and Table 5 for the second scenario (Graph500). 

In the case of the Twitter dataset, for JanusGraph, we stopped the execution of the 

algorithms Page Rank and weakly connected components after 24 hours. 

Finally, in stage 5, the score function suggested in section 3 is applied to the 

normalized values, which are the results from the previous stage. Therefore, we obtain, 

for each scenario, a score per GDB as can be seen in the last row of Tables 4 and 5.  

The resulting scores of both tables are averaged, and thus giving a final score that 

evaluates the GDB in the general point of view. In our case study, the final scores of 

the pre-selected GDBs are JanusGraph 0.000, Neo4j 0.758, and TigerGraph 1.000. 

Therefore, according to these results, TigerGraph accomplishes better the requirements. 

Thus it is selected to solve the defined problem.  

5   Conclusions 

While getting information about the most popular graph database engines, we have 

realized that it is common that new products appear and try to get a piece of this 

evolving market. The proposed selection process shows that interested people in graph 

database systems can get a quick idea of the strengths and limitations that each database 

exposes. Our work can help analysts to understand these pros and cons and help them 

in the process of using an adequate product based on their needs.  

The proposed selection process consists of the following stages: problem definition, 

requirements analysis, GDB pre-selection, benchmarking, and finally, the GDB 

selection.  

 Our novel selection process is a useful guide for who needs to evaluate and select a 

GDB, and it is based on metrics that make possible to ensure that the requirements are 

fulfilled.  

We applied the selection process in a case study of the social network domain, using 

two datasets to perform the benchmark. Besides, we described how to apply each step 

of the process until obtaining the final score, which indicates the best GDB for our 

problem. 

 The process is flexible enough to be applied to several problems related to a large 

amount of highly connected data. 



As future work, we consider the possibility of implementing a software tool for the 

(partial) automation of the proposed selection process. The tool can include a set of 

standard requirements with their corresponding metric. Moreover, we would like to 

consider the possibility to create building blocks by specifying the input, process, and 

output. These building blocks may be customized for each GDB and can be used with 

a friendly user interface where these blocks can be dragged and dropped during the 

benchmark definition. On the other hand, we would like to test our selection process 

using FOAF-based dataset in order to benchmark GDB against RDF graph databases.  
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