
Instituto Tecnológico

y de Estudios Superiores de Occidente
Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018,

publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

Especialidad en Sistemas Embebidos

Implementing CRYSTAL-Dilithium on FRDM-K64

TRABAJO RECEPCIONAL para obtener el GRADO de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: KATYA DENISSE ORTEGA LUNA

Asesor LUIS JULIAN DOMINGUEZ PEREZ

Tlaquepaque, Jalisco. septiembre de 2021.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implementing CRYSTALS-Dilithium on FRDM-K64

K. Denisse Ortega L.1, Luis J. Dominguez Perez1,

1Department of Electronics, Systems and Informatics,

Western Institute of Technology and Higher Education (ITESO), Tlaquepaque, México
katya.ortega@iteso.mx, luisjdominguezp@iteso.mx

Abstract—This document presents the performance of the

lattice-based signature scheme Dilithium for FRDM-K64 ARM

Cortex-M4. Dilithium is a recent post-quantum cryptographic

scheme, such as a candidate in the third round of the NIST. The

Cortex-M4 is considered a suitable microcontroller for post-

quantum cryptography so that FRDM-K64 is used to execute the

Dilithium scheme. The PQM4 library and Greconici,

Kannwischer, and Sprenkels implementation are compared and

improved to achieve a low speed of 17% in NIST Security Level 2.

Keywords—Dilithium, Cortex-M4, FRDM-K64, post-quantum,

signature scheme

I. INTRODUCTION

Before long, quantum computers could breach the security
of today’s cryptographic systems. For this reason, NIST
(National Institute of Standards and Technology) announced the
need to create a post-quantum cryptographic standard [1]. The
Dilithium lattice-based signature scheme is one of the third-
round candidates for digital schemes. This scheme is based on a
hard lattice framework called the “Fiat-Shamir with Aborts”, so
that a compact scheme with security is enabled based on the
worst-case hardness. Dilithium can also be implemented in
embedded systems due to its small public key and signature size
[2].

However, in real-time embedded systems, speed is a limited
resource, so Dilithium implementation must be fast. Ravi,
Gupta, Chattopadhyay, and Bhasin [3] improved the optimal
number of computations and implemented these improvements
for Dilithium on Cortex-M4. Similarly, Greconici,
Kannwischer, and Sprenkels [4] presented optimized
implementations for Dilithium on Cortex-M3 and Cortex-M4,
which are optimizations of speed and stack usage.

The contribution of this paper is to improve the speed
presented by Greconici, Kannwischer, and Sprenkels by 10%
using the Dilithium3 parameter set (third-round parameters) and
the existing Dilithium implementation for Cortex-M4.

The sections in this paper are organized as follows: Section
2 is an introduction to the digital signature scheme Dilithium and
Cortex-M4. Section 3 shows the improvements in the speed of
the scheme on Cortex-M4. Section 4 presents the speed results.

II. PRELIMINARIES

A. Dilithium

Dilithium is a lattice-based signature scheme that resolves
two lattice problems in the QROM (Quantum Random Oracle
model). The first is the Module-Learning With Errors (M-LWE)
problem, which consists of finding a short vector where they are
usually nonexistent. On the other hand, the second is the
Module-Short Integer Solutions (M-SIS) problem that entails
finding a vector with small coefficients in a random lattice [5].

The Dilithium signature scheme is a finalist candidate in the
NIST Post-Quantum Competition third round. This scheme is
based on the “Fiat-Shamir with Aborts” framework and provides
the option to perform a deterministic or random signature
scheme. The description below is based on the specification
submitted for CRYSTALS-Dilithium in the third round.

Parameters. Dilithium can be configured to obtain a NIST
Security Level [5]. This is possible when the parameters are
chosen. In the third round, the security levels proposed by
Dilithium for NIST are 1--, 1-, 2, 3, 5, 5+, and 5++. However,
the 1--, 1-, 5+, and 5++ levels are omitted because they are the
lowest or highest Dilithium security levels. Table 1 shows the

parameters for levels 2, 3, and 5. Furthermore |pk| and |sig| represent
the bytes that the public key and signature used in memory,
respectively.

TABLE I. DILITHIUM PARAMETERS.

NIST

Level
(k,l) η β ω |pk| |sig|

Exp.

reps

2 (4,4) 2 78 80 1312 2420 4.25

3 (6,5) 4 196 55 1952 3293 5.1

5 (8,7) 2 120 75 2592 4595 3.85

Key generation. The Dilithium operations are over the ring Rq =
ℤq[X]/(Xn+1), with q = 223−213+1 and n = 256. In the key generation,
the secret and public keys are generated. A random seed is used to
generate ρ, ρ’, and K, then the Fast Fourier Transform (also called
Number Theory Transform (NTT)) is used to expand the matrix. This
operation is important because the operations over NTT allow efficient
implementation and reduce operations.

Signing. The signature is the most laborious part of the Dilithium
implementation, furthermore, it is the functionality that uses the most
time. The SHAKE256 is used to achieve randomness. In this section,
the deterministic or random model can be chosen. It depends on the
implementation, if the message does not need to be known, the better

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

option is to use the random model. In the signature, the M-SIS problem
is resolved into the while loop, when all checks comply.

Verification. The verification only reviews the signature with
the message. For this part, it is only necessary to review the high
bits to assure the correct signature.

B. Cortex-M4

The proposed implementations of the Dilithium in
microcontrollers are based on Cortex-M4. The Cortex-M4
makes it easy to implement the scheme because the
implementation is in C language. The ARM Cortex-M4 family
has the following characteristics: powerful, small, and cheap.

NIST declared that the Cortex-M4 can be used for post-
quantum schemes [4] as Dilithium. The Cortex-M4 used is the
FRDM-K64. This microcontroller provides a 1 MB flash with
256 KB of embedded SRAM and runs a frequency of 120 Mhz.
It has communications interfaces like Ethernet and CAN, which
enables its use in the automotive industry [6].

III. OPTIMIZATION ON CORTEX-M4

The optimizations on Cortex-M4 are based on the Dilithium
reference implementation submitted in the third round of the
NIST standardization process. Furthermore, this
implementation is based on the reference [4] and reference [7]
codes.

The reference [4] used the parameters of the two-round while
the reference [7] used the parameters and code of the third round.

Table 2 shows the difference in the parameters used in
Dilithium. In the third round, Dilithium improved its
implementation and the parameters changed without affecting
the NIST Security Level.

 TABLE II. PARAMETERS USED IN THE REFERENCE IMPLEMENTATIONS.

 TABLE III. PARAMETERS USED IN THE REFERENCE IMPLEMENTATIONS

(CONTINUATION).

a.Only the NIST Security Levels 2 and 3 are not considered because the 5 NIST Level is not
implemented in these references.

The advantage of Dilithium is that it can change its
parameters but the implementation is not affected. For choosing
of NIST Security Level, the correct parameters must be
configured.

Table 4 shows speeds obtained in the references. The speed
values in reference 7 are higher than in reference 4 because the
changes in the third round achieve better security.

TABLE IV. PERFORMANCE PREVIOUS RESULTS ON THE CORTEX-M4 AT 24

MHZ.

NIST

Level

KeyGena Signa Verifya

Ref [4] Ref [7] Ref [4] Ref [7] Ref [4] Ref [7]

2 2013 1600 6053 3911 1917 1578

3 2837 2834 6001 7081 2720 2699
a.The speeds are reported in units of thousand (103) clock cycles.

Reference [7] is considered as the base code in this
document. Some modules are in assembly language, which
allows better performance in the microcontroller and it is based
on the Dilithium scheme. The code includes the third round
parameters and the implementation of the Dilithium.
Furthermore, the operations NTT, NTT-1, and SHAKE256 are
optimized with the assembler code.

Reference [7] includes the improvements of reference [4].
Changing the polynomial coefficients to signed representation is
the main improvement on Cortex-M4 from the article published
by [4]. These improvements were made in the Cooley-Tukey
algorithm in the NTT operations and the Gentleman-Sande
algorithm in the NTT-1 operations. One improvement proposal
in this article is the change the “for loop” in the packing, poly,
and sign files, for “for loop unrolling” and it achieves reduced
overhead.

The implementations were executed on Cortex-M4 but there
is no previous information on the implementation of the
Dilithium in an FRDM-K64.

IV. RESULTS

The experimentation was conducted on the K64 board, in
this case, a novel Ditilium scheme shows the following results:

Cortex-M4. The “hardware random-number generator” is
used to obtain the random seeds. In the executions, the
microcontroller is configurated at 120 MHz. The MCUXpresso
IDE v11.2 is used to compile the code. The algorithm latency
was measured using the internal cycle counter (CYCCNT).

Configuration. Dilithium is configurated as deterministic
when the reference [4] and reference [7] are executed. It is
changed to randomized as an improvement because the
microcontroller has a hardware random-number generator that
can be used, and its speed is increased.

Code. The implementation of Dilithium, with the proposed
improvements and adapted to FRDM-K64, can be downloaded
at https://github.com/kattdenisse/DilithiumFRDM-K64.

Tables 5 and 6 present the measurements obtained from the
Dilithium implementation. First is the value of the Greconici,
Kannwischer, and Sprenkels [4] implementation is shown with
the difference that is executed on a different microcontroller at
120Mhz. The second column is the value of the library PQM4
with a different microcontroller at 120Mhz, too. Both
implementations were executed on Cortex-M4 (STM32F4) at 24
MHz.

The code implementations are similar, reference [4] is not
updated with the last version of Dilithium.

NIST

Levela

(k,l) η β

Ref [4] Ref [7] Ref [4] Ref [7] Ref [4] Ref [7]

2 (5,4) (4,4) 5 2 325 78

3 (6,5) (6,5) 3 4 275 196

NIST

Levela

ω d

Ref [4] Ref [7] Ref [4] Ref [7]

2 96 80 14 13

3 120 55 14 13

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

TABLE V. PERFORMANCE RESULTS ON THE FRDM-K64 CORTEX-M4 AT 120

MHZ.

TABLE VI. PERFORMANCE RESULTS ON THE FRDM-K64 CORTEX-M4 AT 120

MHZ (CONTINUATION).

a.The speeds are reported in units of thousand (103) clock cycles.

Performance values shown in the Tables demonstrate the
percentage of improvement to the previous implementations.
Each table shows the speed of one algorithm that is part of
Dilithium implementation. These comparisons are in clock
cycles and the last 3 are in milliseconds.

TABLE VII. COMPARATIVE PERFORMANCE OF THE KEY GENERATION.

a.The speeds are reported in units of thousand (103) clock cycles.

TABLE VIII. COMPARATIVE PERFORMANCE OF THE SIGNATURE.

a.The speeds are reported in units of thousand (103) clock cycles.

TABLE IX. COMPARATIVE PERFORMANCE OF THE VERIFY.

a.The speeds are reported in units of thousand (103) clock cycles.

TABLE X. COMPARATIVE PERFORMANCE OF THE KEY GENERATION.

a.The speeds are reported in units of milliseconds (103).

TABLE XI. COMPARATIVE PERFORMANCE OF THE SIGNATURE.

a.The speeds are reported in units of milliseconds (103).

TABLE XII. COMPARATIVE PERFORMANCE OF THE VERIFY.

a.The speeds are reported in units of milliseconds (103).

V. CONCLUSIONS

Dilithium is a recent scheme and it is updated frequently.
The scheme improves a lot on Cortex-M4 with the contributions
in the PQM4 library.

 Dilithium is a scheme easy to implement and configure.
Additionally, this work showed that it can be implemented in
embedded systems because the time execution is fast. In systems
where security is important but is not dangerous the NIST
Security Level 2 is the suitable level to be implemented.
However, if message security is an important factor, the NIST
Security Level 3 is the most suitable because it achieves good
security and optimal performance.

On Cortex-M4, Dilithium implementation is possible.
However, in embedded systems where resources such as time
and memory are limited, implementing it will be difficult and
not recommended.

ACKNOWLEDGMENT

This work was supported by the Mexican federal
government through the CONACyT agency.

REFERENCES

[1] (2017, Jan 3). Post-Quantum Cryptography. (2nd ed.) [Online]
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[2] P. Schwabe. (2017). Cryptographic Suite for Algebraic Lattices. [Online]
pq-crystals.org

[3] P. Ravi, S.S. Gupta, A. Chattopadhyay, S. Bhasin “Improving Speed of
Dilithium’s Signing Procedure”. CARDIS 2019, vol 11833. pp 57-73,
Mar. 2020

[4] D. O. C. Greconici, M. J. Kannwischer, and D. Sprenkels, “Compact
Dilithium Implementations on Cortex-M3 and Cortex-M4”, TCHES, vol.
2021, no. 1, pp. 1-24, Dec. 2020.

[5] CRYSTALS-Dilithium Algorithm Specifications and Supporting
Documentation (Version 3.1)

[6] “Kinetis K64 Sub-Family Data Sheet With 1 MB Flash”, NXP
Semiconductors, Tech. Data, K64P142M120SF5, 2019

[7] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen (2020, Jul
23). PQM4. (2nd ed.) [Online] https://github.com/mupq/pqm4

NIST

Level

KeyGena Signa

Ref

[4]

Ref

[7]

Opt Ref

[4]

Ref

[7]

Opt

2 2604 2214 2117 6147 7525 5057

3 3600 3673 3661 7036 8585 7012

NIST

Level

Verifya

Ref [4] Ref [7] Opt

2 2642 2212 2189

3 3649 3597 3598

NIST

Level

KeyGen (x103cycles)

Ref [4] Opt % Ref [7] Opt %

2 2604 2117 18.7 2214 2117 4.4

3 3600 3661 -1.69 3672 3661 0.3

NIST

Level

Sign (x103cycles)

Ref [4] Opt % Ref [7] Opt %

2 6147 5057 17.7 7525 5057 32.8

3 7036 7012 0.44 8585 7012 18

NIST

Level

Verify (x103cycles)

Ref [4] Opt % Ref [7] Opt %

2 2642 2189 17.1 2212 2189 0.1

3 3649 3598 1.4 3598 3598 0

NIST

Level

KeyGen (x103ms)

Ref [4] Opt % Ref [7] Opt %

2 108.5 17.6 83.7 92.2 17.6 80.9

3 150 30.5 79.7 153 30.5 80.1

NIST

Level

Sign (x103ms)

Ref [4] Opt % Ref [7] Opt %

2 256.1 42.1 83.5 313.5 42.1 86.6

3 293.1 58.4 80.1 357.7 58.4 83.7

NIST

Level

Verify (x103ms)

Ref [4] Opt % Ref [7] Opt %

2 110 18.2 83.4 92.1 18.2 80.2

3 152 29.9 80.3 149.8 29.9 79.9

