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Resumen 

Aplicaciones emergentes tales como el internet de las cosas (IoT, por sus siglas en inglés), ciudades 

inteligentes, y vehículos autónomos, demandan sistemas electrónicos más eficientes y más 

pequeños. Esto impone la necesidad de desarrollar dichos sistemas con bajo consumo de energía, 

tamaño reducido, y tiempos de desarrollo cortos para un mercado mundial. En este escenario, el 

desarrollo de sistemas en circuito integrado (SOC, por sus siglas en inglés) es una solución 

atractiva y viable, ya que las tecnologías SOC permiten realizar diseños a la medida, en tecnologías 

nanométricas, y con arquitecturas y tecnologías para bajo consumo de potencia. Un SOC se 

desarrolla con la integración de múltiples módulos pequeños previamente diseñados y verificados, 

los cuales son conocidos como propiedades intelectuales de semiconductor o núcleos IP. Esta tesis 

doctoral plantea el diseño e implementación de núcleos IP implementados en tecnologías de 

circuito integrado de aplicación específica (ASIC, por sus siglas en inglés). En particular se 

presenta el diseño e implementación de dos núcleos IP para calcular el recíproco de la raíz cuadrada 

(RSR, por sus siglas en inglés). La operación RSR es una de las operaciones fundamentales más 

complejas; su ejecución requiere varios ciclos de reloj y es altamente demandante de recursos de 

hardware. Esta operación es utilizada en sistemas de comunicaciones inalámbricas, renderizado de 

imágenes en sistemas multimedia, entre otras aplicaciones. El algoritmo implementado para 

calcular la operación RSR está basado en el método de Newton-Raphson, donde la semilla es 

proporcionada por una aproximación polinomial por partes. El primer núcleo IP propuesto, 2C-

RSR, utiliza aritmética de punto fijo con 16 bits, el cual fue manufacturado por MOSIS en 

tecnología ASIC CMOS de 130 nm. Mediciones del circuito integrado propuesto son comparadas 

con las de diseños existentes; los resultados muestran que las características de baja latencia y bajo 

consumo de potencia de la IP 2C-RSR, son adecuadas para aplicaciones en sistemas embebidos de 

bajo consumo de potencia y bajo costo computacional. El segundo núcleo IP propuesto, HF-

2cRSR, también calcula la operación RSR y utiliza aritmética de punto flotante de media precisión 

(FP16); este formato está definido en el estándar 754-2008 del IEEE. La IP HF-2cRSR fue 

implementada en dos tecnologías FPGA con el propósito de ser comparado con núcleos IP 

comerciales de Intel y Xilinx. Los resultados muestran las ventajas de la baja latencia del HF-

2cRSR en su rendimiento, y el impacto del formato FP16 en los recursos utilizados.  
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Summary 

Current and emerging applications of information and communication technologies (ICT), such as 

the internet of things (IoT), smart cities, autonomous vehicles, among others, demand more 

efficient and smaller size electronic and computer systems. This imposes challenges to electronic 

designers, to create the corresponding systems with low-power consumption, small size, and short 

development times for a world market. In this scenario, the development of systems on chips 

(SOC) is an attractive and viable solution because SOC technologies allow tailored designs in 

nanometric technologies, and with architectures and technologies for low-power consumption. A 

SOC is developed by the integration of multiple small modules previously designed and verified. 

These modules are known as semiconductor intellectual properties or IP cores. This doctoral 

dissertation proposes the design and implementation of IP cores implemented on ASIC technology. 

Specifically, this document presents the design and implementation of two IP cores to calculate 

the reciprocal of the square root (RSR). The RSR operation is one of the most complex 

fundamental operations; its execution requires several clock cycles and it is highly demanding of 

hardware resources. This operation is used in wireless communication systems, images rendering 

for multimedia systems, among other applications. The implemented algorithm to calculate the 

RSR operation is based on the Newton-Raphson method, were the seed is provided by a piecewise-

polynomial approximation. The first proposed IP core, 2C-RSR, uses 16-bit fixed-point arithmetic. 

The 2C-RSR was manufactured by MOSIS on 130 nm CMOS ASIC technology. Experimental 

measurements of the proposed integrated circuit are compared with corresponding existing 

designs; the results show that the low latency and low-power consumption characteristics of the 

2C-RSR are suitable for low power and low-computational cost embedded-system applications. 

The second proposed IP core, HF-2cRSR, also calculates the RSR operation and it uses half-

precision floating-point (FP16) arithmetic to perform the computation. This arithmetic format is 

defined by the IEEE 754-2008 standard. In addition to performing the logic synthesis of the HF-

2cRSR on ASIC technology, it was also implemented on two FPGA technologies with the purpose 

of comparing with commercial IP cores from Intel and Xilinx. The results show the advantages of 

the HF-2cRSR low latency on its throughput, and the impact of the FP16 format on the utilized 

resources. 
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Introduction 

The increasing use of mobile computing platforms in commercial and everyday human 

activities, demands more efficiency, smaller size, and higher functionality in the corresponding 

electronic systems. Communication and multimedia technologies are essential in these systems 

which are supported by digital signal processing (DSP) techniques. Therefore, there is a need for 

DSP modules implemented in VLSI hardware that enable circuits with the performance, the silicon 

area and the power consumption suitable for the specific application. 

There are DSP algorithms of extensive and frequent use, which require intensive 

computation that is performed commonly by a general-purpose microprocessor, making this the 

processing system bottleneck. This type of algorithms could be performed in tailored VLSI 

hardware with the aim of improving overall system performance in terms of speed, silicon area, 

and power consumption. After implementing the digital signal processing algorithms in VLSI 

circuits, these could be integrated into a system on a chip (SOC) through an intellectual-property 

(IP) instantiation. Semiconductor intellectual properties, also known as IP cores, are proven and 

reusable units, which can be implemented at different abstraction levels: generic logic, technology 

cells or chip layout. They are classified on soft, firm, and hard IP cores and are part of a growing 

trend in the electronic design industry because reducing design time (time-to-market) and could 

improve overall system performance. 

Two of the main electronic design challenges that current and future applications impose, 

such as IoT and deep learning, are low-power consumption and system design based on modular 

reusable components [Blaauw-14]. In front of this scenario, IP cores are essential elements of 

design reuse and tailored design to achieve the requirements of silicon area and power 

consumption. 

An emerging approach to save energy in electronic systems design is approximate 

computing [Ho-17], which is useful for many applications that are tolerant to low accuracy. For 

example, in the deep-learning field it has been demonstrated that a neural-network accelerator can 

be trained and implemented using half-precision floating-point (FP16) arithmetic [Venkatesh-17], 

achieving high accuracy and performance in image classification, while reducing power-

consumption and computational requirements. For these kinds of applications, it is advantageous 
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to trade off precision for gain in efficiency and performance. For example, in [Mittal-16] is shown 

that admitting only 5% of classification-accuracy loss in the k-means clustering algorithm, 

produces 50 times energy saving compared with respect to the fully accurate algorithm. 

The reciprocal of the square root (RSR) is one of the most complex fundamental operations, 

it demands many hardware resources and requires several clock cycles to be executed by a 

sequential microprocessor. For instance, the RSR operation requires from 6 to 10 clock cycles on 

Intel 64-bit architectures and approximately 60 clock cycles on an embedded microprocessor such 

as the ARM Cortex-M4. The RSR operation is essential in many DSP algorithms where matrix 

decomposition techniques are required for the solution of systems of linear equation. For example, 

the singular value decomposition (SVD), which is applied in wireless communication systems for 

modulation techniques such as the Orthogonal Frequency Division Multiplexing (OFDM); The 

Cholesky decomposition for channel estimation; and the Gram-Schmidt QR decompositions for 

matrix inversion. Furthermore, the RSR operation is applied in gaming for 3D-image rendering. 

The motivation of this research work is the development of silicon IP cores for low-power 

embedded applications. In this doctoral dissertation, is presented the design and implementation 

of two arithmetic IP cores for computing the RSR operation. Both IP cores are based on the 

Newton-Raphson algorithm, where the seed is provided by a piecewise-polynomial approximation 

[Pizano-Escalante-15]. Several RSR implementations have been reported, however, they are 

mainly focused on accelerating double-precision floating-point (FP64) units [Ercegovac-00], 

[Piñeiro-02], or single-precision floating-point (FP32) units [Wires-06], [Kwon-08], [Suresh-13], 

which are not suitable for low-power embedded applications. To this kind of applications, fixed-

point (FxP) arithmetic is preferred since utilize fewer hardware resources and lees power 

consumption than floating-point (FP) arithmetic. 

The first proposed implementation, 2C-RSR, is a hard-IP core implemented on an ASIC 

CMOS technology of 130 nm. It computes the RSR of a 16-bit FxP number. The 2C-RSR IP core 

was prototyped by MOSIS1, the chip produces a new result in only two clock cycles and all the 

results are bit-accurate. Experimental measurements of the 2C-RSR chip show that its power 

consumption is several times lower than previously published firm-IP cores, which are synthesized 

designs on standard-cell technologies. Since the 2C-RSR IP-core exhibits the lowest latency with 

respect to the compared implementations, it produces higher throughput at common working 

                                                 
1 The MOSIS Service, What is MOSIS. Jan. 24, 2019, https://www.mosis.com/what-is-mosis. 

https://www.mosis.com/what-is-mosis
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frequencies of low-power embedded applications. These characteristics make the proposed chip a 

useful silicon intellectual property, suitable for embedded applications where low power, low 

latency, and low hardware cost are required. 

The second proposed implementation, HF-2cRSR, is a firm-IP Core for computing the RSR 

operation using floating-point arithmetic, it exploits the characteristics of the half-precision 

floating-point IEEE 754-2008 standard, which offers higher dynamic range than 16-bit FxP format 

and utilizes fewer hardware resources than FP64 and FP32 formats. This doctoral dissertation 

documents the design and verification of the HF-2cRSR Verilog model, and exemplify the design 

of FP-arithmetic modules through the detailed design of a tailored FP multiplier for the HF-2cRSR. 

The RTL model of the HF-2cRSR IP-core is synthesized on ARM 130 nm standard-cell CMOS 

technology and on FPGA technology. In order to compare the HF-2cRSR with respect to 

commercial IP-cores, it is implemented on two FPGAs from Intel and Xilinx. The implementation 

results show that the HF-2cRSR IP-core meets the error specification defined by the IEEE 754-

2008 standard. The maximum relative error is 4.8768532×10-4, which is lower than ½ ulp of the 

half-precision format. The advantage of the FP16 arithmetic over the corresponding FP32 is 

observed on the utilized resources, for example, the multipliers sizes. Both commercial designs 

present higher working frequency, however, the HF-2cRSR IP-core, exhibits the lowest latency, 

of only 2 clock cycles. For this reason, the proposed implementation offers 40% more throughput 

than Xilinx IP and 72% more than Intel IP core. These characteristics make the HF-2cRSR IP-core 

adequate for low-power embedded applications. 

In order to design and send to manufacture the proposed IP core in this doctoral 

dissertation, CAD tools, a CMOS process design kit (PDK), and the corresponding standard-cell 

libraries are selected. This allowed making the setup of the ITESO integrated circuit laboratory 

and implemented for the first time a digital ASIC design flow.  

This doctoral dissertation is organized as follows: 

In Chapter 1, the digital ASIC design flow is presented and its front-end and back-end 

stages are described. Several Cadence® tools to perform this design flow are presented and a subset 

of these tools to implement the digital ASIC design flow at ITESO is recommended. The 

Cadence’s workflow for the logic synthesis of an ASIC, which is the main step of the front-end 

stage is presented in detail. 

Chapter 2 describes some tasks to implement a digital ASIC design flow at ITESO 
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integrated circuit laboratory. The selection of a PDK for prototyping digital ASIC through a 

MOSIS research program is presented. The fundamental components to perform the digital ASIC 

design are identified and described. The logic synthesis of a basic circuit using the Virginia Tech 

standard-cells and Cadence tool is performed, the workflow, input/output elements and the 

synthesis results are presented. 

In Chapter 3, the design and on-chip implementation of a hard-IP core are presented. This 

IP core computes the RSR operation utilizing FxP arithmetic. After introduced the relevance of 

the RSR operation in DSP applications, some related works are commented. The implemented 

algorithm is discussed, and its architecture is explained. The ASIC physical design is presented, 

and the experimental measurement results are reported, as well as the comparison with respect to 

existing standard-cell based designs. 

Chapter 4 documents the design and implementation of a half-precision floating-point RSR 

IP-core. An introduction to the half-precision format and the specifications to the floating-point 

RSR operation are presented. The proposed architecture is discussed, and its logic synthesis results 

are reported. The FPGA implementation is performed and the comparison with respect to 

commercial IP cores from Intel and Xilinx is reported. 

This thesis document includes four appendixes. Appendix A presents a reference list of the 

internal research reports that were written as part of my doctoral studies. Appendix B shows the 

reference list of journal and conference papers published during my doctoral studies. Appendix C 

reports a glossary of common acronyms used in Cadence documents about ASIC design tools. 

Finally, Appendix D shows a script example to perform ASIC logic synthesis using Cadence RTL 

Compiler.  
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1. Digital ASIC Design Flow and Cadence Tools 

In this chapter, the general digital ASIC design flow is described and some Cadence® tools 

are presented, a specific selection of which is proposed to be installed in the ITESO integrated 

circuit laboratory for digital ASIC designing. The logic synthesis steps are presented in detail given 

that the tools required for performing this stage have not yet been installed in the ITESO integrated 

circuits laboratory and it is of first importance for having the capability to perform the full digital 

ASIC design flow. 

ITESO plans on having the capacity of designing digital ASIC’s, which can be 

implemented using nanometric CMOS standard-cell technology and manufactured by fab’s with 

which the ITESO has signed an agreement. These designs and circuits will be produced for 

educational and research purposes. 

Cadence®, a world leader in EDA tools for designing electronic systems on a single chip 

(SoC), offers an enormous variety of products2, 3. Cadence tools systematize the ASIC 

development cycle, and verify the different phases, ranging from the concept and system modeling 

to packaging. 

The wide range of sophisticated Cadence tools makes selecting the appropriate versions to 

be installed and maintained by ITESO personnel particularly important. This will allow us to move 

towards the goal of implementing a design flow of digital ASIC’s at ITESO, with the tools and 

design kits that enable us to design, verify, and send to manufacture digital integrated circuits. 

This chapter is a brief presentation of general digital ASIC design flow, emphasizing the 

phases that we consider basic aspects of the process and are required to learn at ITESO. In addition, 

the appropriate Cadence tools are selected for each stage of the design cycle and its implementation 

at ITESO. 

                                                 
2 Cadence-Tools, Integrated Design and Verification Technologies, Methodologies, and Application Specific Kits. 

Feb. 02, 2014, http://www.cadence.com/products/pages/default.aspx. 
3 Cadence-Download, Cadence Releases Available for Installation. Feb. 02, 2014, 

http://downloads.cadence.com/ESDWeb/ProductDetail.eo?methodToCall=viewProductsInRelease&baseReleaseNa

me=REL%20INCISIV12.2&releaseName=INCISIV122&platform=LINUX. 

http://www.cadence.com/products/pages/default.aspx
http://downloads.cadence.com/ESDWeb/ProductDetail.eo?methodToCall=viewProductsInRelease&baseReleaseName=REL%20INCISIV12.2&releaseName=INCISIV122&platform=LINUX
http://downloads.cadence.com/ESDWeb/ProductDetail.eo?methodToCall=viewProductsInRelease&baseReleaseName=REL%20INCISIV12.2&releaseName=INCISIV122&platform=LINUX
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1.1. Digital ASIC Design Flow 

Digital ASIC design flow consists of several steps [Franzon-99], [Dharwadkar-10], which 

can vary depending on the design complexity and the available CAD tools. However digital ASIC 

design flow can be divided into two big parts: front-end design and back-end design: 

i. Front-End Design includes design specification, architectural design, behavioral 

description, functional verification, RTL description, RTL compilation and verification, 

and logic synthesis. 

ii. Back-End Design, also known as physical design, includes partitioning, floor-planning, 

placement, clock tree synthesis, signal routing and timing closure. 

The logic synthesis stage consists of several steps that will be described more in detail in 

sections 1.1.1.1, and 1.3, given that the tools required for performing this phase have not yet been 

installed in the ITESO integrated circuits laboratory and we want to have the capability to carry 

out full digital ASIC design flow. Fig. 1.1 outlines a general digital ASIC design flow. 

1.1.1 Front-End Design 

Digital ASIC design starts with an informal description of the problem to be resolved based 

on requirement analysis and includes a list of the new ASIC’s functions. The objective of this step 

is to write down design specifications in a complete and formal document (see Fig. 1.1). 

The architectural design stage commonly uses the top-down methodology for proposing an 

overview of the system; sub-system parts are normally specified using black boxes. The system is 

subdivided several times until each building block is perfectly identified with frequently used 

digital modules: memories, registers, finite-state machines (FSM), arithmetic circuits, gates, etc. 

establishing the relationship between the parts. 

In the behavioral description stage, the design team creates a functional model of the system 

in a high-level language, which is very useful for verifying specifications, validating the ASIC 

functions suitability and developing test vectors used in subsequent verification stages. The 

behavioral model must be simulated for verifying that functionality meets specifications. 
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The RTL description is a refined model describing the circuit in terms of hardware 

registers, combinational logic, and the data flow between them for implementing the designed 

architecture. 

The RTL model should be verified by exhaustive pre-synthesis simulations for ensuring 

 

Fig. 1.1 General digital ASIC design flow. 
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that the design will meet specifications. 

1.1.1.1 Logic Synthesis 

The logic synthesis4 stage [Franzon-99], is a process by which the abstract form of the 

designed circuit (RTL model) is transformed into a design implementation in terms of basic logic 

blocks taken from a standard-cell library. Standard cells are logic blocks created by every ASIC 

manufacturer using known functional, physical, and electrical characteristics. Therefore, they can 

be represented by third-party tools enabling performance of full implementation of a very high 

gate density and good electrical performance designs, based on standard cells without using the 

full factory-specific models. Steps of logic synthesis are shown in Fig. 1.2 and commented below. 

The first phase of logic synthesis receives the RTL model and translates this middle 

abstraction level HDL file to generic combinational logic and memory elements. 

In the Logic Optimization step, equations representing logic circuits are minimized, 

flattened and factorized. 

The Logic to Technology step translates the optimized logic level description to a gate level 

description, using standard cells from a specific technology library. The resulting collection of 

standard cells, plus the required electrical interconnections is called gate-level netlist. 

The Time and Area Optimization step optimizes the gate-level description, using cell 

substitution for meeting specific area and timing constraints. 

Logic synthesis produces a gate-level netlist of the optimized circuit with accurate cell 

timing information. This stage ends with post-synthesis simulations for verifying that the gate level 

circuit fully provides the desired functionality and meets the appropriate timing requirements. 

1.1.2 Back-End Design 

In the second part of digital ASIC design flow, physical implementation receiving the gate-

level netlist (standard cells and interconnects) converts it into geometric shape representations, 

                                                 
4 U. of Colorado at Boulder, Getting Started with RTL Compiler. Feb. 02, 2014, 

http://ecee.colorado.edu/~ecen5837/cadence/RTL_synthesis.html. 

http://ecee.colorado.edu/~ecen5837/cadence/RTL_synthesis.html
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which are transformed in the corresponding layers of materials when the chip is manufactured. 

This geometric representation is called integrated circuit layout. Physical implementation steps, 

depicted in Fig. 1.3, include both design and verification of layout. This thesis document does not 

describe details of digital implementation flow because some Cadence tools for this purpose have 

already installed in the ITESO integrated circuits laboratory. Additionally, a first version of a 

tutorial was reported explaining, step by step, how the digital design implementation stage using 

CAD software of Cadence [Castorena-13] is performed. Furthermore, some tutorials introducing 

this stage are reported in [Farmer-11], and [Shan-08]. 

The manufacturing process performed at fab houses follows physical implementation 

stage. 

 

Fig. 1.2 General logic synthesis steps. 

 

 RTL HDL

Design

RTL to Logic

Logic

Optimization

Logic to

Technology

Timing/Area

Optimization

Scan Path Insertion &

Test Vector Generation

Netlist

Logic & Timing

Verified

No

Constraints

Constraints

Gate level

Netlist



1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS 

 10 

 

1.2. Cadence Tools for Digital ASIC Design Flow 

There are several tutorials and web pages5, 6of universities dealing with ASIC design flow 

using CAD tools, however the information is incomplete or restricted to enrolled students 

[Franzon-99], [Dharwadkar-10], [Farmer-11], [Shan-08]. Some of these public tutorials are not 

updated or are very specific to the set of tools installed in their labs [Theocharides-05], [Engel-

                                                 
5 George Washington University, Design & Testing of VLSI Circuits. Feb. 02, 2014, 

http://www.seas.gwu.edu/~vlsi/ece128/SPRING/lab.html. 
6 Auburn University, Computer-Aided Design of Digital Circuits. Aug. Jan. 08, 2015, 

http://www.eng.auburn.edu/~nelson/courses/elec5250_6250/. 

 

Fig. 1.3 Digital physical design implementation flow. 
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10], [Gurkaynak-06]7-11. Many tool names are mentioned in these documents, some of which were 

discontinued12 or the tool names were changed. Table 1.1 shows some names and descriptions of 

Cadence tool that were found in the bibliography. 

This thesis aims at proposing a flow for implementing digital ASIC design using current 

Cadence CAD tools available at ITESO. Many tools for assisting integrated circuit design, divided 

into several categories13 were found on the Cadence web page14. Considering only the “logic 

design” category, there are 16 products for supporting and verifying different logical design 

phases15. Table 1.2 shows these phases and the Cadence recommended tools. 

Four categories were established for simplifying the variety of Cadence tools in order to 

make an initial selection for study at ITESO: 

i. Logic design: the main product in this group is Encounter RTL Compiler16, the key tool 

for performing top-down global RTL design synthesis on standard cells. 

ii. Digital implementation: the central tools for this are Encounter Digital Implementation 

System (formerly known as SOC Encounter) and First Encounter. 

iii. Analysis and signoff: Encounter Timing System and Encounter Power System can be used 

for performing some tasks at this ASIC design flow stage. 

iv. Design Verification: Encounter Conformal and Incisive Formal Verifier are the 

recommended Cadence tools for design and verification. 

                                                 
7 MIT Open Course Ware, Complex Digital Systems. Jan. 08, 2015, http://ocw.mit.edu/courses/electrical-engineering-

and-computer-science/6-884-complex-digital-systems-spring-2005/. 
8 MIT Open Course Ware, Communication System Design. Jan. 08, 2015, http://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-973-communication-system-design-spring-2006/index.htm.  
9 Polytechnic Institute of NYU, CAD Tool Tutorials. Feb. 02, 2014,  

http://eeweb.poly.edu/labs/nanovlsi/tutorials.html. 
10 U. of Virginia, RTL Logic Synthesis Tutorial. Feb. 02, 2014, 

http://www.ee.virginia.edu/~mrs8n/soc/rc_tutorial.html.  
11 NCSU EDA Wiki, Tutorials. Feb. 02, 2014, http://www.eda.ncsu.edu/wiki/Tutorial:Contents. 
12 Cadence-Online Support, Product & Release Lifecycle. Jan. 08, 2015, 

http://support.cadence.com/wps/myportal/cos/COSHome/resources/lifecycle/. 
13 Cadence-Tools, Integrated Design and Verification Technologies, Methodologies, and Application Specific Kits. 

Feb. 02, 2014, http://www.cadence.com/products/pages/default.aspx. 
14 Cadence-Alliances, Cadence and IBM ASIC Partnership. Feb. 02, 2014, 

http://www.cadence.com/Alliances/asic_program/ibm/pages/default.aspx.  
15 Cadence-Tools, Logic Design. Feb. 02, 2014, http://www.cadence.com/products/ld/Pages/default.aspx.  
16 Cadence-Online Support, Encounter RTL Compiler Synthesis Flows. May. 14, 2015, 

http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_

GTLt17bGJXNkV4-TsUv0cIv98sYgo-

rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL

63j4AvKpJoM!/.  

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-884-complex-digital-systems-spring-2005/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-884-complex-digital-systems-spring-2005/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-2006/index.htm
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-2006/index.htm
http://eeweb.poly.edu/labs/nanovlsi/tutorials.html
http://www.ee.virginia.edu/~mrs8n/soc/rc_tutorial.html
http://www.eda.ncsu.edu/wiki/Tutorial:Contents
http://support.cadence.com/wps/myportal/cos/COSHome/resources/lifecycle/
http://www.cadence.com/products/pages/default.aspx
http://www.cadence.com/Alliances/asic_program/ibm/pages/default.aspx
http://www.cadence.com/products/ld/Pages/default.aspx
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
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TABLE 1.1. SOME DIGITAL ASIC DESIGN CADENCE TOOLS 

Cadence       

tool name 
Description / Comment 

Cadence 

Release 

NC Verilog 

Simulator 

This tool is ideal for architecture analysis, system-level verification, and embedded 

software development, and it supports transaction recording and analysis for the 

SystemC® Verification Library.  / Products Incisive NC were discontinued in October 6 

2008, but in the releases INCISIV 111 - INCISIV 131 the products Incisive Enterprise 

simulator – XL and Cadence Simulation Analysis Environment (SimVision) are 

included. In some tutorials the names NC-SIM, NC-SC Simulator, NC Verilog and 

SimVision were found for referring to this group of tools. 

INCISIV111 

Cadence 

SimVision 

Debug 

 

A unified graphical debugging environment within Incisive Enterprise Simulator 

supports signal-level and transaction-based flows across all IEEE-standard design, test-

benches, and assertion languages, in addition to concurrent visualization of hardware, 

software, and analog domains. / This tool was found as Cadence Simulation Analysis 

Environment (SimVision) 

INCISIV111 

Verilog®-XL 

Simulator NC 

Verilog 

Simulator 

 

Pre-Synthesis simulation, Post-Synthesis simulation. / In some tutorial this tool was 

found as Stand-Alone Cadence Verilog. 

 

Included in 

INCISIVE 

131 

Encounter RTL 

Compiler - XL 

To synthesize RTL models to standard cells using global algorithms that enables 

concurrent optimization of timing, area, and power intent. In some tutorials this tool was 

referred as Verilog-XL compiler. 

RC111, 

RC121, 

RC131. 

RTL Compiler 

Ultra 

“RTL Compiler Ultra is a powerful tool for logic synthesis and analysis for digital 

designs. It is fully compatible with all other Cadence tools and especially with Cadence 

Encounter which is mainly used for physical design automation (floorplanning, 

placement and rooting)”. / This tool was not found in Cadence page. The new version 

should be Encounter RTL Compiler. 

 

Encounter 

Digital 

Implementation 

System (EDI) 

A powerful tool for back-end design: floorplanning, place-and-route, power and clock 

distribution. To generate layout from Verilog netlist. The old name for this tool was SoC 

Encounter RTL-to-GDSII System 

EDI110-

EDI132 

First Encounter 

Design 

Exploration and 

Prototyping 

For big and hierarchical designs to determine in early stages of design flow area, timing 

and power requirements. / In some tutorials this tool was referred as First Encounter 

EDI110-

EDI132 

Encounter 

Conformal 

Constraint 

Designer 

Automated validation and refinement of timing constraints 

CONFRML 

121 

CONFRML 

131 

Encounter 

Conformal XL 

To verify and debug multimillion gate designs without using test vectors. From RTL to 

final LVS netlist. In some tutorials this tool was referred as Encounter Conformal 

Equivalence Checker (EC) 

CONFRML 

121 

 

Incisive 

Enterprise 

Simulator (IES) 

It is a multi-language simulation, fuels testbench automation, reuse, and analysis to 

verify designs from the system level, through RTL, to the gate level. It supports metric 

driven verification, and mixed-signal verification. Is the core engine for low-power 

verification, working closely with Conformal LP. 

INCISIV111 

Encounter 

Timing System 

Encounter Timing System is a full-chip static timing analysis (STA) solution providing 

gate-level delay calculation, signoff-level timing and signal integrity (SI) analysis, 

statistical timing and leakage analysis, advanced on-chip variation analysis, and 

advanced node functionality required for double-patterning and waveform effects. 

ETS131 
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The following tools for ASIC front-end and back-end design are reported in [Dharwadkar-

10]. Front-End design: NC Verilog® was used for functional verification, RTL description, 

compilation and simulation. For visualizing wave forms, SimVision® was used, for synthesis, RTL 

Compiler®, and for power estimation, SimVision® and RTL Compiler®. 

Back-End design, also known as physical design: SOC Encounter®, currently known as 

Encounter Digital Implementation System® is used for partitioning, floor-planning, placement, 

clock tree synthesis, signal routing and timing closure. 

Due to the complexity of current digital ASIC design flow, Cadence recommends learning 

the use of their tools gradually, step by step, and at different levels. The Fig. 1.4 shows the 

recommended Cadence tool learning route for digital ASIC design. 

TABLE 1.2. LOGIC DESIGN PHASES AND RECOMMENDED CADENCE TOOLS  

Design Task Cadence Tools 

Chip planning 
Cadence Incyte Chip Estimator 

Cadence Chip Planning System 

Constraint design and validation Encounter Conformal Constraint Designer 

Logic synthesis 
Encounter RTL Compiler 

Encounter RTL Compiler Advanced Physical Option 

Equivalence checking Encounter Conformal Equivalence Checker 

Low power validation Encounter Conformal Low Power 

Engineering change order Encounter Conformal ECO Designer 

Test 

 
Encounter DFT Architect 

Encounter Test Product 

Suite 
Encounter True Time ATPG 

 Encounter Diagnostics 

Static timing analysis Encounter Timing System 

Formal analysis Incisive Formal Verifier 

Simulation Cadence Low Power Methodology Kit 

Design and verification IP modeling Incisive Verification IP 

Verification management 

Incisive Design Team Manager 

Cadence Low Power Methodology Kit 

Incisive Desktop Manager 

Incisive Verification IP 
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Cadence has three product levels: L, XL, and GXL [Cooney-10], basic, intermediate and 

advanced respectively. Each tool level has different capacities, such as the number of gates in the 

design or the information that can be extracted from it. 

After reviewing several ASIC design flow tutorials [Dharwadkar-10], [Engel-10]17-21 and 

examining Cadence digital ASIC design tools22, we recommend exploring the tools reported in 

                                                 
17 Virginia Tech VLSI for Telecommunications Group, VTVT ASIC Design Flow. Feb. 02, 2014, 

http://www.vtvt.ece.vt.edu/vlsidesign/designFlow.php.  
18 George Washington University, Design & Testing of VLSI Circuits. Feb. 02, 2014, 

http://www.seas.gwu.edu/~vlsi/ece128/SPRING/lab.html. 
19 Chiptalk.org, Cadence Interoperability using OpenAccess. Feb. 02, 2014, 

http://www.chiptalk.org/modules/wfsection/article.php?articleid=12.  
20 Polytechnic Institute of NYU, CAD Tool Tutorials. Feb. 02, 2014, 

http://eeweb.poly.edu/labs/nanovlsi/tutorials.html. 
21 U. of Virginia, RTL Logic Synthesis Tutorial. Feb. 02, 2014, 

http://www.ee.virginia.edu/~mrs8n/soc/rc_tutorial.html. 
22 Cadence-Alliances, Cadence and IBM ASIC Partnership. Feb. 02, 2014, 

http://www.cadence.com/Alliances/asic_program/ibm/pages/default.aspx. 

 

Fig. 1.4 Cadence tools training map for digital design using Encounter® technology. 
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Table 1.3 for performing this kind of design at ITESO. The following paragraphs indicate the 

digital ASIC design stages and the recommended Cadence tools. 

For behavioral modeling and verification, System C language and the Incisive Enterprise 

simulator XL 13.1 can be used. For putting RTL description and simulation into practice, Incisive 

Enterprise simulator XL 13.1 is also recommended. For accomplishing RTL synthesis, Encounter 

RTL Compiler 12.1 is the adequate tool23, 24. 

The digital design implementation stage can be realized using Encounter Digital 

Implementation System 13.1. This tool is useful for design partitioning, floorplanning, placement, 

clock-thee synthesis and routing. Additionally, some verification, analysis and signoff activities 

can be performed using Encounter Timing System 13.1 and Encounter Conformal XL 12.1. Table 

1.3 shows Cadence tools recommended for performing each of these stages at ITESO and in Fig. 

1.5 digital ASIC design flow using Cadence tools is depicted. 

                                                 
23 Cadence, Encounter® RTL Compiler Synthesis Flows, Online Support Resources. Jan. 08, 2015, 

http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_

GTLt17bGJXNkV4-TsUv0cIv98sYgo-

rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL

63j4AvKpJoM!/. 
24 Cadence-Community-Logic Design, RTL Compiler Beginner’s Guides Available on Cadence Online Support. Feb. 

02, 2014, http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-

available-on-cadence-online-support.aspx.  

TABLE 1.3. RECOMMENDED CADENCE TOOLS FOR DIGITAL ASIC DESIGN AT ITESO 

Design Stage Name Tool Cadence Release 

Behavioral modeling and 

verification 

System C, Incisive Enterprise 

simulator 
XL131 

RTL description and 

simulation 
Incisive Enterprise simulator XL131 

RTL synthesis Encounter RTL Compiler RC121 

Design implementation 
Encounter Digital 

Implementation System 
EDI131 

Verification, analysis 

and signoff 

Conformal XL, Encounter 

Timing System 

CONFRML121, 

ETS131 

 

 

http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
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Fig. 1.5 Cadence tools for performing digital ASIC design flow. 
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1.3. Logic Synthesis Process 

In the previous section, Encounter RTL Compiler was chosen to perform ASIC logic 

synthesis. An overview of the generic RTL Compiler workflow is presented below. 

The basic necessary inputs to Encounter RTL Compiler (RC) for synthesizing design are: 

i. Descriptions of the circuit using a hardware description language (HDL), such as Verilog 

or VHDL at the register transfer level (RTL) abstraction. 

ii. Technology libraries for both standard cells and hard-macros. 

iii. Design Constraints in either SDC or native RC format. 

iv. A script file with compilation directives. 

v. Physical Data (optional) such as library exchange format libraries (LEF), cap-table and 

design exchange format floorplan (DEF). 

The HDL files must be the latest version of the RTL verification process, when the 

functionality of the circuit passes the test. 

The standard-cell library has timing information for the specific technology to be used for 

implementing the circuit. 

The script file should have at least the follow information: names of the RTL design files,  

the design directory path, and the name of the top-level module and must specify the design 

maximum working frequency. The synthesis tool aims at optimizing the design for meeting 

working frequency requirements, based on the information provided. 

The recommended directory structure for a design logic synthesis using Encounter RTL 

Compiler tool is shown as follows [Dharwadkar-10]. 

 

/$USER 
 /Cadence 

 /Design_name_directory 
    design_name_file.v 
    test_bench_file.v 
   /Encounter _directory 
    encounter_configuration_file.conf 
    encounter.tcl 
    encounter_power.tcl 
    gds2_encounter.map 
    timing_standar_cells.v 
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Providing the physical data mentioned above in the point v. is optional. However, it is 

advised when readily available. Fig. 1.6 depicts generic RTL Compiler workflow. 

The Fig. 1.6 shows the most important steps in the logic synthesis using Encounter RTL 

Compiler, those are fundamental in determining the overall optimization strategy, which is 

controlled by commands, attributes and variables by the optimization script. 

 

 

Fig. 1.6 Generic RTL Compiler® workflow. 
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1.3.1 Elaboration Step 

Elaboration involves several checking and optimizing designs. The elaborate command 

automatically elaborates the top-level design and all of its references by propagating parameter 

values specified for instantiation. 

In the elaboration step the RTL Compiler performs the following tasks: a) building data 

structures; b) inferring design registers; c) performing higher level HDL optimization, such as dead 

code removal; d) checking semantics. Additionally, if there are any gate-level netlist with the RTL 

files, RC automatically links the cells to their references in the technology library. Users need not 

issue any additional linking command. 

After elaboration, RC has an internally created data structure for the whole design, so users 

can apply constraints and perform other operations. Users can generate a generic netlist for a 

specific Verilog module and all its sub-modules using the following command: elaborate 

<top_module_name>. For more information about commands and attributes see25. 

1.3.2 Synthesis Step 

Synthesis is the process of transforming the RTL-HDL design into a gate-level netlist, 

given all the specified constraints and optimization settings. Within RC, synthesis is performed in 

the following two phases: a) synthesizing the design to generic logic (RTL and data-path 

optimizations are performed in this step); b) mapping the technology library and performing 

incremental optimization. These two sequential steps can be performed by the synthesize 

command options -to_generic, and -to_mapped respectively. 

In the generic synthesis phase, RC performs technology-independent optimizations, 

including constant propagation, resource sharing, logic speculation, multiplexor optimization, and 

carry save arithmetic optimizations. Users can run this phase with the synthesize –to_generic -

effort <effort_level> command. The medium effort is the default choice, but users can use high 

effort for data-path intensive designs, or designs for which it is hard to meet timing. 

                                                 
25 Cadence-Community-Logic Design, RTL Compiler Beginner’s Guides Available on Cadence Online Support. Feb. 

02, 2014, http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-

available-on-cadence-online-support.aspx. 

http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
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In the mapping-synthesis phase, RC maps the generic gate-level netlist to the technology 

library cells. For performing this phase, user can run the synthesize –to_map -no_incremental -

effort <effort_level> command. 

The incremental synthesis (IOPT) is the final optimization phase in the synthesis process. 

The primary intent of this stage is cleaning up timing by using local optimizations, such as critical 

region synthesis (CRR), and inserting scan chains if it is enabled. All constraint violations arising 

from max_cap, max_trans, and max_fanout, are considered and subsequently fixed in this step. 

Optimizations performed during IOPT synthesis improve timing and area and fix design rule 

checking (DRC) violations. 

Timing has the highest priority by default, and RTL Compiler will not fix DRC violations 

if it causes timing violations. This priority can be overridden by setting the drc_first attribute to 

true. In this case, all violations will be fixed as well as those paths with positive slack. 

Optimizations performed during this phase include multi-bit cell mapping, incremental clock 

gating and retiming, tie cell insertion and assign removal26. 

Users can run this stage using the synthesize –to_map -incremental -effort <effort_level> 

command. 

1.3.3 Analysis and Reports 

Encounter RTL Compiler can generate reports which allow analyzing the synthesis results. 

The report timing command should be used for generating reports on the timing of the current 

design. The default timing report generates the detailed view of the most critical path in the current 

design. The timing report provides the following information: a) type of cell (or, nor, and gates, 

flip-flop, etc.); b) the cell’s fan-out and timing characteristics (load, slew, and total cell delay); c) 

arrival time for each point on the most critical path. 

Use the -from and -to options for reporting the timing value between two points in the 

design. The timing points in the report are designated by the “<<<” indicator. 

Encounter RTL Compiler also can generate a detailed area report giving the area of each 

                                                 
26 Cadence-Community-Logic Design, RTL Compiler Beginner’s Guides Available on Cadence Online Support. Feb. 

02, 2014, http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-

available-on-cadence-online-support.aspx. 

http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
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component in the current design, based on the specified technology library. The report gates is 

the command for generating a report of the gate profile being used in the design. 

An example of a simple script delineating the very basic Encounter RTL Compiler flow is 

shown below: 

set_attribute lib_search_path <full_path_of_technology_library_directory> / 
set_attribute hdl_search_path <full_path_of_hdl_files_directory> / 
set_attribute library <technology_library> / 
read_hdl <hdl_file_names> 
elaborate <top_level_design_name> 
read_sdc <sdc_file_name> 
set clock [define_clock -period <periodicity> -name <clock_name> [clock_ports]] 
external_delay -input <specify_input_external_delay_on_clock> 
external_delay -output <specify_output_external_delay_on_clock> 
synthesize -to_mapped 
report timing > <specify_timing_report_file_name> 
report area > <specify_area_report_file_name> 
write_hdl > <specify_netlist_name> 
write_script > <script_file_name> 
 

Additionally, the write_template command can be used and subsequently modifying a 

basic script skeleton and then modify the same to suit specific designs. These modifications are 

minimal and usually contain adding design inputs such as libraries, RTL files and constraints.  

Complete and detailed information on the Encounter RTL Compiler workflow and 

command for performing the synthesis process can be found in [Cadence-14]. 

1.4. Conclusions 

In this chapter, the general digital ASIC design flow was described, and some Cadence 

tools were presented, a specific selection of which was proposed to be installed at ITESO 

integrated circuit laboratory for digital ASIC designing. 

The logic synthesis steps were presented in detail given that the tools required for 

performing this stage have not yet been installed in the ITESO integrated circuits laboratory and 

it is of first importance for having the capability to perform full digital ASIC design flow. 

This chapter compiles information sources which will be useful to implement the digital 

ASIC design flow at ITESO integrated circuit laboratory. This will enable professors to implement 



1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS 

 22 

and teach digital ASIC design in graduate courses, as well as to support research projects. 
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2. Implementation of a Digital VLSI Front-End 

Design at ITESO 

In this chapter, the fundamental components for implementing digital VLSI front-end 

design at ITESO are introduced. Some process design kit (PDK) concepts are presented and the 

necessary libraries and technologies enabling ITESO students and teachers to do digital VLSI 

designs are identified. MOSIS offers several integrated-circuit fabrication technologies; the most 

appropriate one is selected in order to students and teachers are able to do digital VLSI designs 

and to be manufactured by this company. 

The concepts and characteristics of the North Carolina State University Cadence Design 

Kit (NCSU CDK) and the Virginia Tech VLSI for Telecommunications (VTVT) standard-cell 

library are presented. These are basic for understanding and performing automated digital VLSI 

circuit design. The NCSU CDK and the VTVT standard-cell library are selected to implement for 

the first time a digital VLSI front-end design in the ITESO integrated circuit design laboratory. 

Furthermore, this chapter describes the details of how to perform the logic synthesis of a 

basic sequential digital circuit following the RTL Compiler synthesis flow. The best way to run 

RC and controlling the logic synthesis results is through a tool command language (TCL) script 

file, which has the attribute definitions, commands, and compilation directives. This chapter 

explains the elaboration and contents of an RC synthesis TCL script file for controlling and 

administering the task execution of a Cadence recommended synthesis flow, which is implemented 

and verified by synthesizing a frequency divider circuit. The inputs to the RC logic synthesis 

process and the synthesis results of the design example are discussed. 

2.1. Selection of Integrated Circuit Fabrication Process 

The most simple and economic way to access the fabrication of an integrated circuit for 

teaching and academic research projects is through MOSIS enterprise. ITESO has an agreement 

with that company, but a selection of the fabrication technology of integrated circuits is necessary 

in order to implement the complete digital VLSI design flow based on standard cells. We need the 
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PDK information and the compatible standard-cell library that allow the automation of digital 

integrated circuit design. Both components are described in this section. 

With the purpose of making the best selection of the technology to usage at ITESO, in the 

following section, we will describe the MOSIS options for designing and fabrication digital VLSI 

integrated circuits. The defined criteria in order to choose the best technology for ITESO academic 

projects are: 

i. Availability of the PDK. 

ii. Availability of the standard-cell library compatible with the selected PDK. 

iii. PDK compatibility with Cadence tools version installed in the ITESO integrated circuit 

laboratory. 

iv. The selected technology (feature size) must be of interest for research publication, such 

that it facilitates scientific publications in renowned journals. 

The fabrication cost should be affordable for ITESO. 

2.1.1 MOSIS Fabrication Processes 

MOSIS offers multiples integrated circuits fabrication technologies from six different 

companies. To access these ones, MOSIS has three kinds of accounts for academic and research 

institutions. Each kind of account defines the PDK to which the institution is able to access. Table 

2.1 shows a summary of MOSIS integrated circuit fabrication processes. It is shown the IC 

manufacturer, the feature size, the MOSIS account kind required to access the PDK, and the 

standard cells availability in order to do automated digital VLSI design. 

2.1.2 Kinds of MOSIS Academic Accounts and Their Characteristics 

For academic and research institutions, MOSIS offers three kinds of accounts to access its 

IC fabrication services: Instructional, Research, and Commercial27. Each account kind has 

different technology access restrictions: maximum silicon area, number of chips per year, price, 

etc. For example, the MOSIS Educational Program (MEP) Instructional account has a quantity of 

                                                 
27 The MOSIS Service, MOSIS FAQs: MOSIS Educational Program (MEP). Jun. 05, 2014, 

http://www.mosis.com/pages/Faqs/faq-education#16.  

http://www.mosis.com/pages/Faqs/faq-education#16
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allocations which are expressed in TinyChip units, rather than dollars or number of integrated 

circuits. A TinyChip unit for a given process represents both allocation of project area and a 

quantity to be delivered. 

MEP Instructional designs must fit into MOSIS TinyChip units. To fit into one TinyChip 

unit, a project designed in either the ON Semiconductor 0.50 micron (C5) or IBM 0.18 micron 

(7RF) technology must be no larger than 1.5 mm×1.5 mm. MEP Instructional designs may be 

larger, by using more TinyChip units in multiples of 1.5 mm×1.5 mm, up to 3.0 mm×3.0 mm 

which would be 4 TinyChip units. 

Table 2.2 shows a summary of MOSIS accounts, their characteristics, and restrictions. 

From Table 2.1 and Table 2.2 we emphasize that the technologies which can be accessed 

TABLE 2.1. SUMMARY OF MOSIS INTEGRATED CIRCUIT FABRICATION PROCESSES 

IC Manufacturer 
Feature Size 

(nm) 

MOSIS 

Account 

Kind 

Available 

Standard 

Cell 

TSMC 90, 65, 45, 40 Commercial ARM 

TSMC TinyChip (90, 65) Commercial  ARM 

Global 

Foundries 

350, 180, 130, 65, 28 

CMOS  
Commercial - 

IBM 
130 (8XP), 180 

(7WL) BiCMOS  
Commercial - 

IBM 180 (7RF SOI) Commercial  - 

IBM 130 (8HP) BiCMOS  
Commercial, 

Research 
Limited 

IBM 180 (7RF CMOS) Instructional - 

IBM 
130 CMOS 

(8RF-DM) 

Commercial, 

Research 
ARM 

ON 

Semiconductor 

500 CMOS 

(C5N) 

Instructional, 

Research 
- 

ON 

Semiconductor 
700, 500, 350 CMOS Commercial - 

AMS 
350 CMOS, 

HVCMOS, BiCMOS 
Commercial - 

AMS 
180 CMOS, 

HVCMOS 
Commercial - 

Imec- ePIXfab SiPhotonics  Commercial - 
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with the MOSIS Instructional account do not have complete access to standard-cell libraries, so 

automation of digital VLSI design cannot be performed using an Instructional account. 

The MOSIS Research account is attractive because it allows access to the On 

Semiconductor 0.5 µm technology and the IBM 130 nm BiCMOS and CMOS technologies. For 

the last one, there is standard-cell library28 from ARM29. This means that we can do automated 

digital VLSI designs using the IBM 8RF-DM technology and manufacture these by covering the 

packaging cost1 only. The disadvantages of this type of account are that only one design per year 

per university can be manufactured, and the access to the kit must be requested through a MOSIS 

                                                 
28 The MOSIS Service, IBM Design Rules and Cell Libraries. Jun. 16, 2014, 

http://www.mosis.com/vendors/view/ibm/documents.  
29 The MOSIS Service, ARM Library Access for Universities. Jun. 05, 2014, 

http://www.mosis.com/pages/Technical/Designsupport/artisan-university.  

TABLE 2.2. MOSIS EDUCATIONAL PROGRAM ACCOUNTS AND THEIR CHARACTERISTICS 

Characteristic 
Account 

Instructional Research Commercial 

Processes 

Available 

On Semi 0.5 µm 

CMOS (C5N) 

IBM 180 nm CMOS 

(7RF) 

On Semi 0.5 µm CMOS 

(C5N) 

IBM 130 nm BiCMOS 

(8HP) 

IBM 130nm CMOS 

(8RF-DM) 

All available 

Area Max (Si) 3 mm × 3 mm 16 mm2 Unlimited 

Number of 

Designs 

According to 

authorized budget 

(TinyChip) 

1 project/university/year Unlimited 

Price Free Cost of packaging 
Quotation 

required 

Use 
Projects designed by 

students 

Unfunded research projects, 

thesis works, paper, journal 

article 

Academic 

License time 
October 1 through 

September 30 
Not expire Not expire 

Chips per design 
On C5: 5 

IBM 7RF: 40 
40 

According to 

order 

Packaging 

restrictions 

Ceramic or Open 

Cavity Plastic (OCP) 
According to order 

According to 

order 

 

 

http://www.mosis.com/vendors/view/ibm/documents
http://www.mosis.com/pages/Technical/Designsupport/artisan-university
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project application. 

2.2. Fundamental Components for Automated Digital VLSI 

Design 

Three fundamental components are required for implementing digital VLSI design flow: 

EDA tools, a process design kit, which has the information about the technology of the integrated 

circuits fabrication process, and libraries with timing and physical data of the basic building blocks 

named standard cells. Virginia Tech University developed a standard-cell library which is 

available for academic and research projects at universities30. This library was designed using the 

NCSU CDK installed in the ITESO integrated circuit laboratory. The VTVT standard-cell library 

was installed as part of this project. Some concepts and characteristics of these two components 

are described below. 

2.2.1 The Process Design Kit of North Carolina State University 

“The North Carolina State University Cadence Design KIT (CDK) is a collection of 

technology files, custom SKILL routines, parts libraries, and Diva rules files aimed at facilitating 

full-custom CMOS IC design through MOSIS. The CDK is used at N.C. State University in both 

teaching and research, and it has been used to fabricate working chips” [Schaffer-98]. 

“The NCSU CDK focuses on providing the means to do full-custom CMOS IC design 

(SCMOS design rules) through MOSIS, including schematic entry, Verilog digital simulation, 

analog circuit simulation, layout DRC checking and device extraction, and mask generation”31. 

Some of the NCSU CDK features are: 

i. Provides interface to HSPICE/Spectre through Analog Artist, with MOSIS-provided 

transistor models in place, as well as with interface to Verilog with technology-independent 

parts. 

ii. Technology-independent libraries for analog and digital parts. These parts have SKILL 

                                                 
30 Virginia Tech VLSI for Telecommunications, Cell Libraries to Support VLSI Research and Education. Jul. Mar. 

31, 2014, http://www.vtvt.ece.vt.edu/vlsidesign/cell.php.  
31 NCSU EDA Wiki, NCSU CDK overview. Jun. 10, 2014, http://www.eda.ncsu.edu/wiki/NCSU_CDK_overview.  

http://www.vtvt.ece.vt.edu/vlsidesign/cell.php
http://www.eda.ncsu.edu/wiki/NCSU_CDK_overview
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code hooked in to enforce sizing and grid rules, automatic transistor model selection 

depending on technology, and drain/source area/perimeter estimation. 

iii. Technology libraries, one library for every MOSIS SCMOS process with parameterized 

layout cells setup for both manual use and layout synthesis via Virtuoso-XL. 

iv. MOSIS wirebond pads (HP 0.6 µm; AMI 0.6 µm; TSMC 0.40 µm). 

v. Various user-friendly GUI enhancements: a) simplified library creation and technology file 

attachment for MOSIS technologies; b) click on any object to print info about it in the 

Command Interpreter Window (CIW); c) enhanced label creation (Virtuoso); d) align 

layout objects (Virtuoso); e) Perl/Tk program (BitGen) to easily convert 1's and 0's into 

analog voltage sources suitable for circuit simulation in programs as SPICE and Spectre; 

f) create a "publication-quality" schematic from a working schematic. 

vi. Documentation of all customizations in HTML. 

Some things that the NCSU CDK does not have or cannot do are: a) provide a standard-

cell layout library; b) physical implementation (place-and-route stage); c) digital timing analysis; 

d) parasitic resistance extraction. 

In the ITESO integrated circuit laboratory, the currently installed version of the NCSU 

CDK is the 1.6.0 beta. This kit is not yet fully supported but a related technical forum for discussing 

problems and solutions is available32. 

2.2.2 Standard-Cell Libraries 

Automated digital VLSI circuit design is currently based on standard-cell libraries and 

synthesizers. This approach has the following benefits: each cell is full custom designed, supports 

logic synthesis, automatic layout generation, system physical design and testing; all of these with 

the assistance of CAD tools. 

A standard-cell library is a set of basic logic blocks, for example, gates, adders, buffers, 

and flip-flops, which are used as building blocks of digital ASICs. Each block or cell is 

implemented at a physical level. Its full-custom layout is optimized to minimize the required 

silicon area and delays. Standard cells are characterized by having a fixed height, which allows 

                                                 
32 Chiptalk.org, Forum. Jun. 23, 2014, http://www.chiptalk.org/modules/newbb/index.php.  

http://www.chiptalk.org/modules/newbb/index.php
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them to be arranged in rows to facilitate the automatic generation of digital ASIC layout. 

The main components of a typical standard-cell library are: 

i. View database. 

Consist of different level abstraction models named views, which are needed to support the 

digital VLSI circuit design flow: 

a. Logical view of a standard cell: The cell’s Boolean function whose behavior can be 

captured by a truth table or Boolean algebra equation using a hardware description 

language. 

b. Schematic view: a graphical view of the transistor design netlist. 

c. Layout view: is the physical representation of the cell, consisting of several layers, 

which correspond to different structures of transistor devices, interconnect wiring 

layers, and via layers, which join together the terminals of the transistor and circuit 

formations. 

d. Abstract view: is similar to the layout view but contains much less information than 

the layout and may be recognizable as a Library Exchange Format (LEF) file or an 

equivalent. The abstract view is useful for place-and-route tools in the digital 

implementation stage. 

The abstract view provides information like [Patel-08a]: cell name; site name and 

cell orientation; cell PNR boundary; pin names, locations, pin metal layer, type and 

direction (input/output/input-output); location of all metal track and vias in the 

layout (obstructions). 

The LEF file contains technology information along with all the cell description, 

use an ASCCI data format to describe the standard-cell structure. Incudes the design 

rules for routing, and the abstract view. A LEF file contains the following sections: 

a) technology: layer, design rules, via definitions, metal capacitance; b) site: site 

extension; c) macros: cell descriptions, cell dimensions, layout of pins and 

blockages, and capacitances. 

To know about the structure and syntaxes of LEF file read [Patel-08b]. 

ii. Timing abstract file (.lib).  

Provides functional definition, timing, power consumption, and noise information for each cell. 

Generally, in liberty format (.lib), which is an ASCII representation of the timing and power 
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parameters associated with any cell in a particular semiconductor technology, these parameters 

are obtained by simulating the cells under a variety of conditions and the data is represented in 

the .lib format.  

The .lib file contains timing models and data to calculate: I/O delay paths, timing check values, 

interconnect delays. More information of liberty file can be found in [Patel-08c]. 

 As we can see from previous sections, a standard-cell library contains different views, and 

information formats for each cell. Several tools are needed to use or design them. Table 2.3 shows 

the formats and tools to design a standard cell using Cadence tools [Patel-08d]. 

Access to several standard-cell design tutorials can be found at the University of New 

Mexico33. 

2.2.3 Virginia Tech Standard-Cell Library 

IC manufacturers impose access restrictions on their standard-cell libraries because they 

are considered intellectual and technological properties of great economic value. These restrictions 

make difficult teaching and research activities in the field of digital VLSI design. One alternative 

for educational institutions was proposed by the Virginia Tech VLSI for Telecommunications 

Group, whom developed free access standard-cell libraries for academics. 

“The VTVT Group has developed three standard-cell libraries targeting the TSMC 0.18um, 

TSMC 0.25um, and TSMC 0.35um CMOS processes available via MOSIS. The libraries can be 

used with Synopsys synthesis tools and the Cadence SOC Encounter, Place/Route tool. All of the 

cells can be viewed and edited using the Cadence Virtuoso layout editor. The standard-cell libraries 

require NCSU design kit or other kits that follow MOSIS design rules. Since MOSIS DEEP design 

rules are used for our cell library, the NCSU design kit has been modified slightly. Changes to the 

NCSU kit are included in this distribution”34. 

The development of the VTVT standard-cell library is described in [Sulistyo-10]. 

The standard-cell library that we obtained from Virginia Tech University was in an old 

Cadence data base format (.cdb). To use this in the ITESO integrated circuit laboratory, the VTVT 

                                                 
33 University of New Mexico, Advanced VLSI Design (ECE 595). Apr. 25, 2014, 

http://www.ece.unm.edu/~jimp/vlsi_synthesis/.  
34 Virginia Polytechnic Institute and State University-MICS Group, Cell Libraries to Support VLSI Research and 

Education. Jun. 20, 2014, http://www.mics.ece.vt.edu/ICDesign/Cell_Libraries/Overview/index.html.  

http://www.ece.unm.edu/~jimp/vlsi_synthesis/
http://www.mics.ece.vt.edu/ICDesign/Cell_Libraries/Overview/index.html
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library was converted to the Open Access (.oa) data base in order to make this compatible with 

new Cadence V6 environment35 [Brunvand-13]. 

In order to implement the initial digital VLSI design flow in the ITESO integrated circuit 

laboratory, the TSMC 0.18 µm standard-cell library was installed in the mentioned lab, with the 

following features: 

i. 83 primitive cell layouts 

ii. Synopsys synthesis (.db/.sdb) and VHDL simulation libraries. 

iii. LEF file for the PNR tool. 

iv. Symbols and schematic libraries of standard cells. 

v. Readme files and a documentation for modification of the NCSU kit. 

vi. Other documentations, including the place-and-route flow used to test the library. 

After the installation, by using the Cadence Virtuoso Library Manager we can see four 

VTVT standard-cell views: layout, physconfig, schematic, and symbol. 

In the next section, the logic-synthesis workflow using RTL Compiler Cadence tool and 

                                                 
35 Washington University in Sta. Louis-EDA Wiki, How to Convert a CDB Library to an OA Library. Jun. 27, 2014, 

http://eda.engineering.wustl.edu/wiki/index.php/How_to_convert_a_CDB_library_to_an_OA_library.  

TABLE 2.3. VIEWS, FORMATS, AND CADENCE TOOLS IN A TYPICAL STANDARD-CELL 

LIBRARY 

Views Format Cadence Tools Comments 

Physical layout GDS-II 
Virtuoso Layout 

Editor, ICFB 

Should follow specific design standard: 

Constant height, offset, etc. 

Logical 
Verilog, 

TLF, LIB 
Text editor 

Verilog model is required for dynamic 

simulation, this file should preferably 

support back annotation of timing 

information. 

Place-and-route tools usually can use TLF 

Abstract 

LEF, 

Milkyway 

(Synopsys) 

Cadence Abstract 

Generator, place-

and-route tools 

LEF (Layout Extraction Format): contains 

information about each cell as well as 

technology information 

Timing, power, 

parasitic 
TLF, LIB 

Spectre, RTL 

Compiler 

Detailed timing and power simulations are 

performed on the Spice netlist, the results 

are recorded in this file, including process, 

temperature and supply voltage variations. 

Also, this file contains logical information 

for each cell 

 

 

http://eda.engineering.wustl.edu/wiki/index.php/How_to_convert_a_CDB_library_to_an_OA_library


2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO 

 

 32 

VTVT standard-cell library is presented, it is implemented and verified by synthesizing a 

sequential digital circuit. 

2.3. Logic Synthesis Using RTL Compiler 

Logic synthesis is the process of translating a behavioral hardware description language 

(HDL) circuit model into another HDL model that represents the same circuit through specifying 

fundamental logic blocks and their interconnections between them. Therefore, the structure that is 

described by the new model represents the same original circuit behavior. The new model is known 

as structural model because it is based on logic blocks from a standard-cell library, which contains 

the behavioral and physical models (layouts) of the basic logic blocks [Brunvand-10]. 

The logic synthesis flow comprises the following steps: a) conversion of the RTL model 

into Boolean functions, b) technology-independent optimizations, c) technology mapping, d) 

technology-dependent optimizations, and e) test logic insertion [Wang-09]. 

The first step in the logic synthesis converts behavioral or RTL descriptions into 

implementations in terms of generic logic gates (AND, OR, NOT, Flip- Flops, etc.), which are not 

linked to any technology. This means that later, it can be selected a specific standard-cell library 

for the technology mapping step. 

In the second step are performed technology-independent optimizations using logic 

function reduction methods such as Quine-McCluskey or multilevel logic optimization, being the 

later more suitable for standard-cell based designs [Wang-09]. 

In the technology mapping step, the synthesizer performs an implementation of the 

technology-independent optimized design using a specific standard-cell technology. 

After technology mapping has been done, additional optimizations are performed such as 

those for timing and power consumption [Cadence-12a]. 

Finally, additional test logic can be inserted in the circuit to support design for testability 

(DFT) features. 

In the next sections, the RC synthesis flow is presented through an example, and the basic 

commands and attributes of a TCL36 synthesis script, required for controlling and administering 

                                                 
36 Tcl Tutor, Tcl Tutor Overview. Jun. 14, 2014, http://www.msen.com/~clif/TclTutor.html.  

http://www.msen.com/~clif/TclTutor.html
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the RC synthesis tasks, are explained. 

2.3.1 Digital Circuit to Be Synthesized 

The circuit example selected to implement and verify the RC synthesis flow [Cadence-14] 

at ITESO integrated circuit laboratory, is a basic circuit that has both combinational and sequential 

elements. The circuit is selected not with the goal to show the synthesis tool capacities but to 

practice the steps into the RC workflow, to know the RC synthesis inputs and outputs, to learn 

some RC fundamental commands, and for the first time, to carry out the RC synthesis workflow 

at the ITESO integrated circuit laboratory. 

The circuit example is a frequency divider controlled by a four-bit binary word. It consists 

of a module-16 binary counter and a four-bit comparator-counter, the later controls the overflow 

time of the module-16 counter. The circuit example can generate sixteen pulse frequencies 

according to a four-bit input word. Fig. 2.1 shows the frequency divider black-box (bwco); it has 

three input ports and three output ports; whose functions are as follows: 

bw (3:0): is a four-bit input port to define the output frequency on ovf2. 

clk: is the clock input port for synchronizing the digital system example. 

reset: is an input signal to stablish initial conditions in the system. 

q (3:0): is the module-16 counter output. Its count value is incremented each ovf1 is set. 

ovf1: is the comparator-counter overflow output. It is set when its count is equal to bw. 

 

Fig. 2.1 Black-box of frequency divider circuit. Sequential digital circuit selected for 

implementing the Encounter RTL Compiler workflow using the Virginia Tech 

standard-cell library at ITESO integrated circuit laboratory. 
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ovf2: is the system overflow output. It is set when ovf1 and module-16 counter overflow 

are equals to one. 

Fig. 2.2 shows the frequency divider block diagram. It has two modules: the 

module16_counter and the comparator_counter. Working together, these modules can generate 

16 different frequencies according to clk and bw inputs. Fig. 2.3 shows simulation waveforms of 

the frequency divider to be synthesized. 

 

Fig. 2.2 Frequency divider block-diagram. Sequential digital circuit selected for 

implementing the Encounter RTL Compiler workflow using the Virginia Tech 

standard cell at ITESO integrated circuit laboratory. 
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2.3.2 RTL Compiler Synthesis Flow Inputs and Outputs 

Fig. 2.4 depicts a generic RC workflow. It shows the most important steps for the logic 

synthesis using Encounter RTL Compiler as well the inputs to each task into the synthesis process 

and possible outputs that the RC synthesis tool can generate. 

The inputs to the RTL Compiler synthesis process are the following [Cadence-12b]: 

a) The design HDL models: Verilog, VHDL, or System Verilog files. 

b) The design constraints: restrictions and limitations imposed on the design, regarding the 

area, time, power consumption, etc. These are contained in a file that uses the Synopsys 

design constraints (.SDC) format or an RC native format. 

c) Liberty format library: it is a file with information about the functional definition, timing, 

power consumption, and noise for each cell. This file uses generally the liberty (.LIB) 

format. 

d) Library exchange format file (.LEF): is a file containing the standard-cell technology 

information such as layers, design rules, via definitions, metal capacitance, cell 

dimensions, pin layout, etc. 

e) Synthesis script file (.TCL): is the file that defines variables and commands to control and 

administers the RC task execution of the synthesis flow. 

f) Technology independent synthesizable macro-cells or IP modules required for design 

(GTech and Design Ware (DW) in Synopsys). 

g) Optional files: capacitance table file (.CAPTBL), floorplan design exchange format file 

(.DEF), switching activity files (.SAIF), toggle count format (.TCF or .VCD), and common 

 

Fig. 2.3 Frequency divider circuit simulation results. 
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power format (.CPF) file. 

The outputs from the RTL Compiler synthesis process are: 

a) Optimized gate-level netlist file (.V): this file is the main product of the logic synthesis 

process. It is a Verilog model that describes the circuit structure based on standard cells 

and its connectivity, which reproduces the same functionality than the behavioral or RTL 

model. 

b) Constraints file (.SDC): this is the current design constraint output file in Synopsys design 

constraint format, which is required in the place-and-route tool.  

c) Optional files: scandef, DEF, Do-files, and CONF files which are useful for the back-end 

design stage. 

The next section explains a synthesis script to control and administer a basic Encounter 

RTL Compiler workflow. 

  

 

Fig. 2.4 Generic RTL Compiler synthesis workflow, inputs and outputs. 
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2.3.3 Synthesis Script for RTL Compiler 

The best way to control the RC synthesis process is by using a TCL script. It is highly 

recommended to generate this script using the rc_write_template command. This command 

should be used for each new design and tool release as it ensures that all attribute and variable 

settings are for the latest release and guarantees the use of latest recommended synthesis flow. For 

the example here presented, the utilized syntax to generate a synthesis script is [Cadence-15a]: 

rc_write_template –outfile synthesis_script_bwco_sdc.tcl 

where synthesis_script_bwco_sdc.tcl is the TCL script file name for the design example 

considered. The generated script template is modified for the specific design example presented in 

this chapter. 

To launch RTL Compiler and to execute the synthesis script, use the following command: 

rc -gui -f synthesis_script_bwco_sdc.tcl –log run_log_bwco.log 

where run_log_bwco.log is the synthesis output log file. 

The next subthemes explain the sections of the RC synthesis script, 

synthesis_script_bwco_sdc.tcl, which are identified with letters from A to L in Appendix D. 

2.3.3.1 Presetting Global Variables and Attributes 

The Section A of the synthesis_script_bwco_sdc.tcl file, defines the global variables with 

the purpose to concentrate all the design object names in a section of the script in order to facilitate 

changes and reuse of the script for new designs. For example, it is useful to define global variables 

for the top-level design name, standard-cell libraries, and folder names for output reports. 

2.3.3.2  Specifying Explicit Search Paths 

The default RTL Compiler search path is the directory path where RC is launched. Specific 

search paths can be defined for libraries, script files, and design files. To set specific search paths, 

type the following set_attribute commands in the RC synthesis script file [Cadence-15b]: 

set_attribute lib_search_path <lib_path> / 

set_attribute script_search_path <script_path> / 

set_attribute hdl_search_path <hdl_path> / 
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where xxx_path is the full path of the technology libraries (.LIB), script, and design files. 

The slash ( / ) in these commands refers to the root-level RTL Compiler object containing 

all global RC settings. See Appendix D for specific examples of these and other commands 

explained in this chapter. 

2.3.3.3 Setting the Target Technology Library 

After setting the library search path, specify the target technology library for synthesis 

using the library attribute [Cadence-15b]: 

set_attribute library <lib_name.lbr> / 

After this command, RTL Compiler will use the library named lib_name.lbr to synthesis 

the design. RTL Compiler can also accommodate the .lib library format. In either case, ensure that 

you specify the library at the root-level ( / ). If the lib_name.lbr is not in a previously specified 

search path (lib_path), specify the full path with the lib_name.lbr attribute. 

2.3.3.4 Setting the Synthesis Mode 

RTL Compiler has two modes for synthesizing the design. The synthesis mode is 

determined by setting the interconnect_mode attribute, establishing whether RTL Compiler uses 

wire load (wireload) models or physical layout estimators (ple) during synthesis: a) wireload 

(default) indicates the use of wire load models for driving synthesis; b) ple indicates the use of 

physical layout estimators (PLE) for driving synthesis. 

PLE uses physical information of the technology, such as LEF libraries and capacitance 

table file during synthesis, instead of the wireload model from technology library. Thus, the cell 

area defined in the LEF file will be used in place of those in the timing library area to provide 

better closure with back-end design tools. The timing library area will be used if the physical 

libraries do not contain any cell definitions [Cadence-15b]. 

If the script file specifies to read LEF files, the interconnect_mode attribute is 

automatically set to ple. The TCL script example uses the command to read LEF libraries. See 

Appendix D. 
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2.3.3.5 Loading the HDL Files 

Use the read_hdl command for reading HDL files into RTL Compiler. When you issue a 

read_hdl command, RC reads the files and performs syntax checks. 

To load one or more Verilog files, you can use: 

read_hdl file1.v 

read_hdl file2.v 

read_hdl file3.v 

Or you can load the files simultaneously: 

read_hdl {file1.v file2.v file3.v} 

The file order is important, it must respect the design file dependency hierarchy. For the 

design example we use: 

read_hdl -v2001 {module16_counter.v comparator_counter.v bwco.v} 

2.3.3.6 Performing Elaboration 

Elaboration is required only for the top-level design. The elaborate command 

automatically elaborates the top-level design, and its submodules and references. During 

elaboration, RTL Compiler performs the following tasks: a) builds data structures; b) infers 

registers in the design; c) performs high-level HDL optimization, such as dead code removal; d) 

checks semantics. 

If any gate-level netlist is included when reading the RTL files, RC automatically links the 

cells to their references in the technology library during elaboration. You do not have to issue an 

additional command for linking. 

After elaboration, RTL Compiler has an internally created data structure for the whole 

design, enabling application of constraints and performing other operations. 

The following example shows the TCL set command and the RC elaborate command for 

elaborating the frequency divider circuit example:  

set DESIGN bwco 

elaborate $DESIGN 
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2.3.3.7 Applying Constraints 

After loading and elaborating the design, constraints must be specified [Cadence-14b]. 

Constraints include operating conditions, clock waveforms, and I/O timing. 

Constraints can be applied in several ways: a) typed manually in the RC shell; b) included 

a constraints file; c) read in SDC constraints. 

In the script example, the constraints are applied by reading a constraints file using the 

read_sdc command. 

Constrains can be used to: a) define different clock signal attributes such as the duty cycle, 

clock skew, and clock latency; b) specify input and output delay requirements for all ports relative 

to clock transition; c) apply environmental attributes, such as load and drive strength for the top-

level-ports; d) set timing exceptions, such as multicycle paths and false paths37. 

The following paragraphs show examples for defining clock signals. 

Clocks are defined using the define_clock command. The following sentence defines a 

clock signal named 200MHz_CLK with a period of 5,000 ps.  

define_clock -name 200MHz_CLK -period 5000 [clock_ports] 

where clock_ports returns the input ports of the design that are clock inputs. 

The clock duty-cycle can be changed by defining rising and falling edges: 

define_clock –name 200MHz_CLK –period 5000 –rise 20 –fall 80 

The slew clock attribute specifies the minimum rise, minimum fall, maximum rise, and 

maximum fall slew values. The following sentence sets these attributes to 250, 300, 300 and 350, 

respectively, for the clock signal 200MHz_CLK: 

set_attribute slew {250 300 300 350} 200MHz_CLK 

RTL Compiler only computes timing constraints among clocks in the same clock domain. 

Paths between clocks in different domains are unconstrained by default. 

If a clock domain is not specified, RC will assume that all the clocks are in the same 

domain. By default, RTL Compiler assigns clocks to domain_1, however, a personalized clock 

domain can be created using –domain argument together with the define_clock command. The 

following example shows how to create two different clocks in two separated clock domains: 

                                                 
37 Timing Analysis Overview, Timing Exceptions. Feb. 14, 2019, 

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_timing_analysis_overview.htm.  

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_timing_analysis_overview.htm
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define_clock –domain my_domain1 –name clk1 –period 10000 

define_clock –domain my_domain2 –name clk2 –period 720 

RC enables defining other clock signal attributes such as latency and skew. In [Cadence-

14b] there is a complete description of how clock properties are specified. 

2.3.3.8 Applying Optimization Constraints 

In addition to applying design constraints, further optimization strategies may be needed to 

enable the synthesis tool to achieve the desired performance goals. 

RTL Compiler enable the execution of the following optimizations for: a) removing 

designer-created hierarchies (ungrouping); b) creating additional hierarchies (grouping); c) 

synthesizing a sub-design; d) creating custom cost groups for paths in the design to change the 

synthesis cost function. For example, the timing paths in the design can be classified into the 

following four cost groups: a) input-to-output paths (I2O); b) input-to-register paths (I2C); c) 

register-to-register (C2C); register-to-output paths (C2O). 

The read_sdc command reads a constraints file in Synopsys design constraints format into 

RTL Compiler. It creates a cost group for each clock defined in the file. RC does not create false 

paths between these clocks. The design must be elaborated before reading the designs constraints. 

For each path group, the worst timing path drives the synthesis cost function. See Appendix 

D to observe the cost groups defined in this design example. 

2.3.3.9 Performing Synthesis 

After setting constraints, and optimization goals, synthesis can be performed. Within RC, 

synthesis is performed in the following two phases: a) synthesizing the design to generic logic 

where technology-independent optimizations and datapath optimizations are performed; b) 

mapping the technology library where RC maps the generic gate-level netlist into the technology 

library cells and performing incremental optimization. 

These two sequential steps can be performed by the synthesize command options “-

to_generic” and “-to_mapped”. See Appendix D for examples of synthesize and report 

commands. 

After synthesis, the RC tool will provide a technology-mapped gate-level netlist which is 
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the main input for the place-and-route stage. 

2.3.3.10 Reporting Synthesis Results 

Encounter RTL Compiler can generate reports which allow analyzing the synthesis results. 

After synthesizing the design, detailed timing and area reports can be generated using several 

report commands: a) to generate a detailed area report, use report area; b) to generate a detailed 

gate selection and area report, use report gates; c) to generate a detailed timing report, including 

the worst critical path of the current design, use report timing. 

See Appendix D for report command examples used in this design. 

2.3.3.11 Writing Out Files for Place-and-Route Tool 

The last step in the synthesis flow involves writing out the gate-level netlist, output SDC 

file, or Encounter configuration file for processing in a place-and-route tool. 

By default, the write commands write output to the standard output (stdout: text terminal). 

For saving the information in a specific file, use the redirection symbol (>) and give the filename. 

Some writing out file commands are shown as follows: 

For writing out the design gate-level netlist to a file called design_netlist.v, use:  

write_hdl > design_netlist.v 

For writing out a file that contains the timing for all modes and the design rule constraints 

of the design use: 

write_script > constraints.g 

The file constraints.g generated by this command contains the following: a) attributes 

related with the wire load models; b) clock objects and their reference to the pins of the design 

blocks; c) external_delay on all inputs and outputs; d) timing exceptions; e) max_fanout, 

max_capacitance and similar design rule constraints applied; and f) all user defined attributes that 

were created with the define_attribute command [Cadence-15a]. 

For writing out the design constraints in SDC format, use the write_sdc command: 

write_sdc > constraints.sdc 

To generate all files required by the Cadence place-and-route tool (Encounter Digital 

Implementation System EDI) use the write_encounter command: 
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write_encounter design design_name –basename dir_name/base_name 

This sentence writes all the EDI input files to a single directory and path dir_name/base_name of 

the design design_name. Details and examples for this command are documented in [Cadence-

15a]. 

2.3.3.12 Exiting RTL Compiler 

There are three ways out of RTL Compiler when finishing a session: a) use the quit 

command; b) use the exit command; c) use the Control-c key combination twice consecutively to 

exit the tool immediately. 

2.3.4 Logic Synthesis Results 

This section presents the logic synthesis results performed by using RTL Compiler for the 

frequency divider circuit. 

For launching RC and executing the synthesis script explained in the last section, the 

following sentence is typed from the command line. 

rc -gui -f synthesis_script_bwco_sdc.tcl –log run_log_bwco.log 

After the execution has completed, the reports and the results for each synthesis phase 

(generic, map, and incremental) are in the folders reports_date_time and outputs_date_time, 

respectively. The most important are described below. 

2.3.4.1 Output Files 

The design gate-level netlist file (bwco_m.v) is a structural Verilog model. It has 

instantiated 52 standard cells from the Virginia Tech 180 nm library. This file will be used by the 

place-and-route tool during the digital VLSI back-end design stage. Fig. 2.5 shows the schematic 

diagram generated by the RC graphic interface from the gate-level netlist file. It can be observed 

the circuit inputs and outputs, the standard-cell symbols and their interconnections. 

The RC tool also generates others script files which are useful for configuring the place-

and-route tool in the back-end design stage, as is explained in Section 2.3.3.11 of this document. 
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See Section K of Appendix D for the specific script files generated for this design example. 

2.3.4.2 Synthesis Results Reports 

The RTL Compiler synthesis tool can generate several reports: timing, silicon area, and 

power consumptions. Fig. 2.6 to Fig. 2.8 show report summaries for the incremental synthesis 

phase of the design example. 

Fig. 2.6 shows the standard cells and area report, bwco_gates.rpt. The design example uses 

different gates, flip-flops, and combinational blocks. The required area by each cell is specified, 

as well as the library to which the cell belong. The synthesized frequency divider has 44 

combinational and eight sequential cells. The total estimated area is 3,812 µm2. 

The quality of silicon report, final.rpt, is shown in Fig. 2.7. This shows the evolution of the 

logic synthesis through the generic, map, and incremental phases: the changes in the required area 

and standard cells are reported. Also, the critical-path slacks for the defined cost groups are listed. 

Finally, Fig. 2.8 shows the quality of results report, bwco_qor.rpt, which contains the path 

slacks and the total negative slack for the created cost groups, as well as the estimated power 

consumption and the maximum and minimum fanout. 

 

Fig. 2.5 Schematic diagram of frequency divider circuit (bwco) generated by RTL 

Compiler. This is the graphical view of the gate-level netlist for the synthesized 

circuit example. 
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Fig. 2.6 Gates report (bwco_gates.rpt): standard-cells used and required area for the 

frequency divider circuit. 
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Fig. 2.7 Quality of silicon report (final.rpt): evolution of timing, cell numbers, and 

required area for each synthesis stage. 
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Fig. 2.8 Quality of result report (bwco_qor.rpt): summary of critical path slack, total 

negative slack of cost-groups, used standard cells, total area and estimated power 

consumption. 
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2.4. Conclusions 

In this chapter, the basic components needed for implementing digital VLSI front-end 

design at ITESO have been identified. The MOSIS IC fabrication processes for education and 

research institutions were identified. The IBM 130 nm (8RF-DM) technology was selected as the 

most suitable for manufacturing interesting IC designs, for research projects in the context of the 

Doctoral Program in Engineering Sciences at ITESO. The PDK and standard-cell libraries 

concepts were presented, which are fundamental components for implementing digital VLSI 

design at ITESO. Furthermore, the steps for synthesizing a sequential circuit using RTL Compiler 

have been documented, which are fundamental in the digital VLSI design flow. A Cadence 

recommended logic synthesis flow was implemented and verified by synthesizing a frequency 

divider circuit. The gate-level netlist based on a specific standard-cell technology (180 nm Virginia 

Tech Library) was generated. This is the main input for the place-and-route tool in the back-end 

design stage of a digital VLSI circuit. The RC synthesis process requires a script file with the 

attributes and commands for controlling synthesis results and output reports. The creation and 

content of the synthesis script were explained. Several synthesis reports such as quality of silicon 

and quality of results were presented. They show the outcomes of synthesizing a frequency divider 

circuit, for example, the kind of standard-cells used, required silicon area, timing, and power 

consumption.  

The subjects here documented, allowed to implement for the first time at ITESO integrated 

circuit laboratory, the logic synthesis of a digital circuit using RC Cadence tool, and the VTVT 

standard-cell library. 
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3. On-Chip Implementation of Low-Latency Bit-

Accurate Fixed-Point RSR Unit 

Many popular applications, such as gaming, digital signal processing, and communications 

systems, require computation of the reciprocal square root operation (RSR). Although several 

architectures have been reported for computing the RSR operation, these are mainly focused on 

accelerating high-precision floating-point units. However, in low-power mobile-device 

implementations, fixed-point (FxP) units are preferred due to their low-computational cost and 

power consumption. This chapter presents an on-chip implementation of a low-latency, bit-

accurate, RSR IP-Core using FxP arithmetic and a 130 nm CMOS ASIC technology. 

3.1. Relevance of Reciprocal Square Root and Previous 

Works 

The reciprocal square root (RSR) is a fundamental and recurrent operation in digital signal 

processing (DSP) algorithms where matrix decomposition and solution of systems of linear 

equations are required. For example, in multiple-input multiple-output (MIMO) wireless 

communication to perform tasks such as digital modulation [Chen-13], channel estimation 

[Salmela-06], [Salmela-11], singular-value decomposition [Markovic-07], and matrix inversion 

[Mahapatra-12]. Likewise, in the area of digital signal processing these nonlinear operations are 

required for matrix decomposition[Singh-07], [Luethi-08], [Liu-17a], [Liu-17b]. Furthermore, the 

RSR operation is required for 3D-image rendering in gaming applications [Woo-09], [Kim-11]. 

Silicon IP-cores can be utilized to improve the performance of electronic applications 

implemented in low-power embedded systems and mobile devices with limited computational 

resources, for example, the NXP microcontroller based on ARM Cortex-M438. In this kind of 

systems, the processing unit could present bottlenecks produced by complex operations, such as 

the following elementary functions: exponential, logarithms, trig, hyperbolic trig, roots, RSR, 

                                                 
38 NXP Processors and Microcontrollers, Low-power 32-bit Microcontrollers. Nov. 11, 2017, 

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-

mcus:KINETIS. 

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS
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among others. In these applications, it is of paramount importance to reduce the microprocessor 

load, by implementing the complex operations in silicon IP-cores instead of executing them by 

software instructions. These customized IP-cores improve overall system performance in terms of 

area, speed, and power consumption [Liu-17a], [Liu-17b], [Woo-09], [Kim-11], [Markovic-06], 

[Markovic-07]. Due to its ever-expanding presence, having an off-the-shelf RSR silicon IP-core 

reduces time-to-market cycles and increases resource utilization. 

Several double-precision floating-point (FP) architectures for computing the RSR 

operation have been proposed. In [Takagi-01] and [Lang-03], a modified digit-recurrence 

algorithm is used, leading to high-latency (28 cycles). Initial works [Wong-94] used an architecture 

based on rectangular multipliers. Later, [Ercegovac-00] showed improved performance when 

using smaller multipliers and Taylor series evaluations. The proposal in [Piñeiro-02] presents the 

best estimated cost-delay tradeoff among those mentioned here. It is based on look-up tables 

(LUTs), polynomial approximation and one Goldschmidt iteration. These architectures focus 

mainly on accelerating high-precision FP units. Hence, they are not suitable for low-power, low-

cost mobile devices due to the hardware cost and power consumption. 

Furthermore, FP single-precision designs for computing the square-root operation have 

been reported. In [Ren-93] and [Srinivas-95], shared divider/square-root designs are reported, the 

integrated-circuit layouts are shown, and the area and delay are specified, however, measurements 

of the manufactured chips are not reported. Moreover, the technologies (1.2 µm) and design 

methodologies used in [Ren-93] and [Srinivas-95] are far below the state-of-the-art. A standard-

cell implementation of the RSR based on LUTs and a modified Newton-Raphson (NR) iteration 

is presented in [Schulte-99]. An improved version of [Schulte-99] was later proposed in [Wires-

06]. Alternatively, [Kwon-08] reports a standard-cell implementation of the square root based on 

LUTs and Taylor series. Synthesis results from a digit-recurrence square-root circuit for two 

standard-cell technologies (40 and 60 nm) are presented in [Suresh-13], which reports an estimated 

power consumption for each technology. A digit-recurrence implementation for computing the 

1 x , x , and 1 x  operations is presented in [Butts-11]; it is based on radix-8 for determining 

the next digit and shows a latency of eight cycles. 

In real mobile applications, the high-demand computing tasks are implemented in 

specialized FxP units. This leverages lower hardware cost and reduces the power consumption of 

the FxP implementations [Khirallah-03], [Wang-10], [Salmela-11]. Examples of this trend are the 
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applications presented in [Salmela-06], [Singh-07], [Liu-17a], and [Liu-17b], all of which use 16-

bit FxP units to compute either the square-root or the RSR operation. Similarly, [Luethi-08] and 

[Sohn-06] report the use of 23-bit and 32-bit FxP units to perform the same operations, 

respectively. 

Despite the advantages of the FxP arithmetic for real applications on mobile devices, few 

papers have reported an FxP implementation, either of the square-root [Wang-10], [Sajid-12], 

[Martin-Del-Campo-12], [Seth-11] or the RSR [Salmela-11], [Pizano-Escalante-15], [Rounioja-

03]. 

In the following section, the algorithm to implement the RSR operation is introduced, it is 

based on the NR method and a piecewise-polynomial approximation in a reduced range. The 

algorithm is patented by the authors in [Parra-Michel-18], [Pizano-Escalante-15]. Hereafter the 

algorithm is named 2C-RSR, which is presented for being implemented as a silicon IP using FxP 

arithmetic on a 130 nm ASIC technology. 

3.2. 2C-RSR Algorithm 

The 2C-RSR algorithm computes the operation 

 1y x=   (3-1) 

where 
1

, | , 2
k i

ii f
x y x y b

−

=−
 =  with {0,1}ib  , and ,k f   are the number of bits for 

representing the integer and fractional parts, respectively, of x and y in FxP format. 

In this thesis document, an FxP format is represented by notation Q(w, f, sign), where 

w k f= +  is the word-length and  ,sign s u  indicates signed or unsigned format, respectively. 

Due to the finite size of w in real implementations, the result computed by (3-1) is an 

approximation of the exact value, i.e., 1 x  computed using infinite precision. Nevertheless, the 

2C-RSR algorithm is able to provide a result with a maximum error of 2 2f−
, which makes the 

result bit-accurate with respect to the result computed by a double-precision FP unit (IEEE 754-

2008 standard) [IEEE-08] when this is represented in the selected Q(16,11,u) FxP format. We 

selected this format because it allows representing the magnitude of standard-Gaussian random 

variables, which is useful to study real-valued random variables whose distributions are unknown 



3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT 

 

 52 

[Williams-16]. 

3.2.1 Bit-Accurate Property 

Since bit-accurate is not a standardized concept, we define it below as used in this thesis 

document. 

The conversion operation of v , from decimal to binary FxP format, is 

 
,{ }f w f

wQ v v=   (3-2) 

where v  is the decimal representation of the result obtained from any arithmetic operation   

performed by an FxP arithmetic unit. The expression 
,w fv  stands for the binary representation of 

v  in FxP format considering w  and f  parameters. Likewise, the conversion operation of FPv , 

from decimal to binary FxP format, is 

 
,{ }f w f

w FP FPQ v v=   (3-3) 

where FPv  denotes the decimal representation of the result performed by a double-precision FP 

arithmetic unit, and 
,w f

FPv  is the binary representation of FPv  in FxP format. Therefore, the bit-

accurate property holds for v  when (3-4) is met, 

 
, , .w f w f

FPv v=   (3-4) 

To illustrate the bit-accurate property, Table 3.1 shows the comparison of two numerical 

results. The first row shows the result of the 1
9

 operation performed by an FP arithmetic unit and 

its equivalent value when this is represented in FxP format (which can be obtained by using the 

fi(v,0,w,f ) Matlab function). The second row shows the result of the same operation performed by 

a bit-accurate FxP arithmetic unit using w = 16 and f = 11. When this result is represented in 

TABLE 3.1. BIT-ACCURATE ASSERTION 

1 / 9 =  

Value xv   11

16
{ }

x
Q v  15

20
{ }

x
Q v  

vFP = 0.333333333333333 0.01010101011 0.010101010101011 

 v = 0.33349609375 0.01010101011 0.010101010110000 

Is v bit-accurate? yes no 
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Q(16,11,u) format, all the bits are equal to the corresponding 
16,11

FPv  value, and it can be said that 

the obtained result is bit-accurate. It must be noted that this does not necessarily holds for a 

different format, Q(20,15,u) in this example. The advantage of a bit-accurate result computed by 

an FxP unit is that the result can be shared with a more-precise FP unit without introducing a 

conversion error. 

3.2.2 Top-level Description of the 2C-RSR Algorithm 

The 2C-RSR algorithm reported in [Pizano-Escalante-15] is based on the NR method. The 

seed for the NR iteration is computed by a piecewise-polynomial approximation. Due to the 

nonlinearity of the RSR function, the polynomials are evaluated in a reduced range of x, namely 

the reduced range (rr). This condition improves the polynomial fit and results in a better 

approximation. For computing the RSR of x when x is outside rr range, a scaling and a de-scaling 

step are required. At the end, a rounding step is applied to obtain a bit-accurate result with a 

maximum error of ½ unit in the last place (ulp), with ulp 2 f−=  for the Q(w, f, sign) format. Each 

step of the algorithm is summarized below. 

3.2.3 Newton-Raphson Method 

The Newton-Raphson iteration for computing the RSR operation [Ercegovac-05] is 

obtained by applying the general NR equation 

 ( ) ( )1i i i iy y f y f y+
= −   (3-5) 

to the function ( ) 21f y y z= − , where ( )f y  denotes the first derivative and z wr  represents 

the scaled value of x defined by 

 
22 nz x= ,  (3-6) 

where n  is the scaling exponent, and 
22 n

 is the scaling factor. From the foregoing, the NR 

iteration for the RSR function is defined by 

 ( ) 2

1 2 (3 )i i iy y zy+ = − ,  (3-7) 

where iy  represents the ith iteration, which converges quadratically to 1 z  for any seed 
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( )0 0, 3y z  [Joldes-16]. The quadratic convergence of (3-7) is observed from the error 

relation between two consecutive iterations and is defined by  

 ( )2

1 2i i izy z + = − − ,  (3-8) 

where 1i iy z = −  is the NR approximation error of the ith iteration and 
1 1 1i iy z + += −  is the 

approximation error of the next iteration, which is roughly the square of the ith-iteration error. Due 

to the quadratic convergence of (3-7), the number of correct bits of 1iy +  roughly doubles on each 

iteration [Ercegovac-05]. 

3.2.4 Seed Computation 

In the proposed architecture, the NR method is provided with a seed value 0y  close to 

1 z  by a piecewise-polynomial approximation. Since the piecewise approximation is performed 

for a limited range of x (rr), the polynomial grade is reduced [Ercegovac-04], resulting in a better 

polynomial fitting for the RSR function, and helps to meet the approximation error requirements. 

The first approximation of 1 z  is obtained by using a polynomial defined by 

 0 0
,

M i

ii
y a z

=
=   (3-9) 

where ia  are the polynomial coefficients and M is the polynomial’s degree. In order to apply the 

piecewise-polynomial approximation, the following factors are considered: the error objective, the 

rr range, the number of subintervals into which rr range is divided, the polynomials’ degree, and 

the hardware-implementation cost. 

3.2.5 Scaling and De-scaling Operations 

A good feature of the 2C-RSR algorithm is the scaling step, as this allows improving the 

polynomial approximation and the algorithm architecture for the target rr range. In the scaling 

step, the range of x is divided into several intervals, each of which is linearly mapped into the 

reduced range rr using different scaling exponent n. From (3-1) and (3-6), the scaling effect yields 
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2

1
2 1 .

2 2

n

n n
y z

x

−= =   (3-10) 

Since (3-7) converges to 1 z , an approximation of y  is obtained by  

 2 n

iy y−= ,  (3-11) 

where 2˗n represents the de-scaling factor. 

3.2.6 Rounding Operation 

In the rounding step, a round to nearest operation39 [Ercegovac-04], with a tie-breaking 

rule is applied to the de-scaled approximation y  obtained using (3-11). Thus, a bit-accurate RSR 

result is obtained in Q(w, f, sign) format, with an error of 2 2f−  as the maximum. This operation 

is expressed by  

  f

wy RNQ y= .  (3-12) 

3.3. 2C-RSR Hardware Architecture 

This section describes the hardware architecture of the 2C-RSR algorithm. Each step of the 

algorithm is implemented by hardware modules, which are shown in Fig. 3.1. The proposed 

architecture computes the RSR using the Q(16,11,u) format, a new bit-accurate result is produced 

in only two clock cycles. The first cycle is used to compute the seed, and the second one to perform 

the NR iteration. Therefore, in order to meet the maximum error condition, a seed with eight-bit 

of accuracy must be fed to the NR iteration. 

The names of the modules represented in Fig. 3.1 and the operation that implement are: the 

encoder, ENC, and barrel shifter, BS1, perform the scaling operation; the polynomial and Newton-

Raphson, PNR, implement the seed computation and NR iteration; the ENC and BS2 perform the 

de-scaling operation; the RND module implements the rounding operation; the control unit, CU, 

synchronizes the functions of the 2C-RSR modules; the overflow detector, OVD, and saturation, 

                                                 
39 EE Times, An introduction to different rounding algorithms. Sep. 30, 2017, 

http://www.eetimes.com/document.asp?doc_id=1274485. 

http://www.eetimes.com/document.asp?doc_id=1274485
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SAT, modules are for signaling that the result cannot be represented in the Q(w, f, sign) format. 

In the following sections, each module and its design considerations are described. 

3.3.1 Overflow Detector and Control Unit 

Before computing the RSR operation, it is necessary to detect any overflow conditions, 

which depend on the selected FxP format. For the Q(16,11,u) format, the 2C-RSR architecture 

produces an overflow when 
102x − . If an overflow occurs, the overflow detector (OVD in Fig. 

3.1) triggers the Ovf signal to indicate to CU that y must be assigned to the maximum-representable 

value by the FxP format. This is performed in the saturation block SAT. The CU input signals are: 

the reset Rst that establishes the initial conditions; the clock Clk for controlling the timing in the 

circuit; and the Strt that commands the start of a new operation. The CU outputs are the selection 

Sel and enable En signals used to control the PNR module shown in Fig. 3.2. 

 

Fig. 3.1 Hardware architecture of the 2C-RSR algorithm. 
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3.3.2 Scaling Module 

The RSR architecture proposed in this thesis document is nearly agnostic to the x range. 

The scaling module not only improves the polynomial fitting but also enables this feature. For 

 

Fig. 3.2 Hardware architecture of the PNR module that performs the piecewise-

polynomial-seed computation and the NR iteration. The seed computation is 

carried out in the first clock cycle (Sel = 0, En = 1) whereas the NR evaluation is 

done in the second clock cycle (Sel = 1, En = 0). 
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example, if a different FxP format is required, this change can be addressed by modifying the 

scaling and descaling modules accordingly, and representing in the new required FxP format the 

MUX3 input constant, which is the “3” number in (3-7). 

From (3-6) and (3-11), the scaling and de-scaling operations can be implemented by bit-

shifting of x and yi, respectively. Each n value transforms an x interval [xLBn, xUBn] into the rr range. 

The interval bounds are defined by 

 
2 22 ,  2 2 ,  2n n f

LBn UBnx x f n k  −= = − −   .  (3-13) 

In the proposed architecture, the values of α and β impact: a) the piecewise polynomial-

approximation error; b) the required number of subintervals (polynomials) in which the rr range 

is to be divided in order to meet the target error; and c) scaling and de-scaling operations. In this 

case, the values of α = 0.5 and β = 2.0 are obtained by using piecewise-polynomial approximation 

for the RSR function. Furthermore, α and β values are selected to be powers of two, to achieve an 

efficient implementation of the scaling and de-scaling modules. 

The selected input and output FxP format is Q(16,11,u), i.e., w = 16 bits, f = 11 bits, sign 

= u, and therefore k = 5 bits. This format allows representing the magnitude of standard-Gaussian 

random variables, which is useful to study real-valued random variables whose distributions are 

unknown. Once the variables α, β, f, and k are defined, the intervals of x are calculated using (3-13)

; these are given in Table 3.2. 

The scaling operation is performed as follows. If there is no overflow condition, the 

encoder ENC and barrel shifter BS1 modules scale the input x to the reduced range rr, according to 

TABLE 3.2. SCALING EXPONENTS AND INTERVALS OF x 

α = 0.5, β = 2, w = 16, k = 5, f = 11 

Scaling Exponent n XLBn XUBn 

2 8 31.99951171875 

1 2 7.99951171875 

0 0.5 1.99951171875 

-1 0.125 0.49951171875 

-2 0.03125 0.12451171875 

-3 0.0078125 0.03076171875 

-4 0.001953125 0.00732421875 
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(3-6). The ENC provides the correct scaling exponent n, depending on the interval in which x is 

located. The scaling exponents and x intervals are reported in Table 3.2. The ENC is a logic 

comparator implemented by defining the bounds of scaling intervals as powers of two. Thus, the 

comparator uses the 14 most significant bits of x to provide n. The BS1 performs the operation 

defined by (3-6), shifting x by 2n-bits in the direction given by the sign of n. Moreover, to avoid 

losing seed-computation accuracy, 16 bits are concatenated to the fractional part of the shifted x, 

increasing its precision for computing the NR seed using the Q(32,29,s) format. 

3.3.3 Polynomial Approximation and NR Module (PNR) 

To ensure a seed with eight-bit of accuracy from the polynomial approximation, an FxP 

analysis is performed by using the DSP techniques proposed in [Sung-95], [Menard-05]. This 

analysis shows that the word format for computing the seed and yi needs to be Q(32,29,s). 

To reduce hardware complexity for implementing the polynomial approximation and NR 

method, we choose two as the polynomials’ degree. The parameters for the piecewise-polynomial 

approximation are computed using the minimax and least-square error criteria [Muller-05]. In both 

cases, the required seed with eight-bit of accuracy is achieved using 14 polynomials. The unequal 

subintervals associated to the polynomials into which rr range is divided are shown in Table 3.3. 

To minimize the polynomial-selection hardware, the subinterval boundaries rrLB and rrUB are 

defined to be accurately represented by the selected FxP format. Table 3.4 shows the polynomial 

coefficients computed using the least-square approximation. 

It is important to note that the number of subintervals and polynomial coefficients does not 

change when another FxP format is required; it is only necessary to apply a new scaling exponent 

n, as discussed in Section 3.3.2. 

The seed computation (3-9) and NR iteration (3-7) steps both perform a quadratic-

polynomial evaluation. We take advantage of this to reduce silicon area by implementing both 

operations in the same module PNR, as shown in Fig. 3.2. The architecture of the PNR module is 

composed of three read-only memories ROM1-ROM3 for storing the polynomial coefficients, one 

address-generator unit AGU, four multipliers M1-M4, two registers REG, one combinational shifter 

SHT, four multiplexers MUX, one adder/subtractor ADD/SUB, and one adder. All of these modules 

use the Q(32,29,s) format. 
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The operation of the PNR module shown in Fig. 3.2 is executed in two clock cycles. In the 

first cycle, the seed computation is performed as follows. The CU module provides the signals Sel 

and En to configure the data path (MUX, REG, and ADD/SUB) to evaluate (3-9). With Sel = 0 and 

En = 1, the scaled data z is connected to the input of the modules AGU, M1, M3, SHT, and REG1. 

The AGU generates the ROM addresses of the polynomials’ coefficients depending on the 

subinterval to which z  belongs according to Table 3.3. The AGU is a priority encoder, where the 

bounds of rr subintervals are defined as powers of two. M1 computes the quadratic term 
2z  of 

(3-9), M2 computes 
2

2a z  and M3 computes 1a z . The last two products are added in the ADD/SUB 

block. The outputs of ADD/SUB block and ROM3 ( )0a  are added to complete the seed calculation 

( )0y . The former is stored in REG2.  

TABLE 3.3. BOUNDS OF THE 14 SUBINTERVALS IN WHICH rr RANGE IS DIVIDED FOR THE 

PIECEWISE-POLYNOMIAL APPROXIMATION 

Subinterval rrLB rrUB 

1 0.5 0.513671875 

2 0.513671875 0.529296875 

3 0.529296875 0.5537109375 

4 0.5537109375 0.5849609375 

5 0.5849609375 0.62890625 

6 0.62890625 0.6875 

7 0.6875 0.75 

8 0.75 0.8125 

9 0.8125 0.9375 

10 0.9375 1.125 

11 1.125 1.3125 

12 1.3125 1.5 

13 1.5 1.75 

14 1.75 2 
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The NR method starts with the rising edge of the second clock cycle, storing z  in REG1, 

0y  in REG2, setting Sel = 1, and En = 0. At this point, the architecture datapath is configured to 

TABLE 3.4. FLOATING-POINT, °, AND FIXED-POINT, ¤, COEFFICIENTS FOR THE 

PIECEWISE-POLYNOMIAL APPROXIMATION 

N: number of subinterval 

N T a2 a1 a0 

1 
° 2.070310683729 -3.490936206251 2.642141527551 

¤ 0x423FFC30 0x904A4027 0x548C6C63 

2 
° 1.927325916268 -3.344069470610 2.604519952278 

¤ 0x3DACA766 0x94FD6205 0x53583A3A 

3 
° 1.754197082325 -3.160906134777 2.556195569455 

¤ 0x382261EB 0x9AD9DB60 0x51CC5AA6 

4 
° 1.547088157005 -2.931440188928 2.492793983503 

¤ 0x3181BF05 0xA231A458 0x4FC4F7E3 

5 
° 1.320898869568 -2.666469549047 2.415382966010 

¤ 0x2A44CDB4 0xAAAC480D 0x4D4AD137 

6 
° 1.077967960168 -2.360542638366 2.319293191251 

¤ 0x227EB6A9 0xB4766F48 0x4A37A65A 

7 
° 0.965936441256 -2.213950778620 2.271577691221 

¤ 0x1EE8F38A 0xB92750B2 0x48B0C3B2 

8 
° 0.700440349993 -1.821489125616 2.126890448060 

¤ 0x166A01E1 0xC5B65C6F 0x440F7C8E 

9 
° 0.529134728524 -1.540725263357 2.012053720623 

¤ 0x10EEABF4 0xCEB260EE 0x4062BE7B 

10 
° 0.351737406365 -1.206434709560 1.854793408661 

¤ 0x0B416ECE 0xD964E309 0x3B5A77B4 

11 
° 0.230822482097 -0.936210142810 1.703970519464 

¤ 0x0762E5D4 0xE20A9106 0x3686ED2E 

12 
° 0.161037227787 -0.7539341201073 1.585033998371 

¤ 0x0527378B 0xE7DFC58D 0x32B89938 

13 
° 0.112221918030 -0.607157667474 1.474757219720 

¤ 0x0397526B 0xEC922A15 0x2F31360D 

14 
° 0.078327429971 -0.489116629813 1.372019228973 

¤ 0x0281A886 0xF0592814 0x2BE794DE 

 

 



3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT 

 

 62 

evaluate (3-7): the MUX1 output is 0y , M1 computes 
2

0y  and SHT generates 0 2y . MUX2 selects 

z  and M2 multiplies it by 
2

0y . MUX3 selects the constant 0x60000000 (+3 in Q(32,29,s) format). 

ADD/SUB performs 
2

03 zy−  with the outputs of MUX3 and M2. Finally, M4 multiplies the outputs 

of the SHT and ADD/SUB modules. The output of MUX4, iy , is the NR approximation of 1 z  in 

Q(32,29,s) format. 

3.3.4 De-scaling Module 

As shown in Fig. 3.1, we reuse the ENC module, and the other barrel shifter BS2 to perform 

the de-scaling step. With n already determined, BS2 performs (3-11) shifting iy  by n  bits in the 

opposite direction of the sign of n. The result y  is truncated into Q(17,12,u) format to preserve 

the rounding bit. 

3.3.5 Rounding Module 

To achieve a bit-accurate result, the output of BS2, y , should be rounded. For this reason, 

the de-scaling output is one-bit wider than the required output format Q(16,11,u). The RND module 

performs the round to nearest operation (round-half-up)40. Using the least significant bit (LSB) of 

y , the following criterion is taken: if LSB = 0, the result is correct in 16 bits, otherwise, 
112−

 is 

added to the result to achieve the bit-accurate result y in Q(16,11,u) format. 

3.4. 2C-RSR ASIC Implementation and Results 

3.4.1 ASIC Implementation 

The Verilog register-transfer-level (RTL) model of the 2C-RSR architecture is verified by 

implementing a test bench in the Mentor Graphics® ModelSim environment. All the valid input 

                                                 
40 EE Times, An introduction to different rounding algorithms. Sep. 30, 2017, 

http://www.eetimes.com/document.asp?doc_id=1274485. 

http://www.eetimes.com/document.asp?doc_id=1274485
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values are applied to the design, and the outputs are exhaustively compared with the corresponding 

golden values, which are computed by using the double-precision-RSR operation and representing 

the results in Q(16,11,u) format. Checkers and monitors are implemented in the test bench in order 

to guarantee that the circuit model achieved the bit-accurate property. 

The verified RTL model is synthesized and implemented using the ARM standard-cell 

library for the Globalfoundries 130 nm CMOS (8RF-DM) process. The logic and physical 

synthesis are performed with RTL Compiler and Encounter Digital Implementation, respectively, 

both tools from Cadence®. In addition, the netlist model passed the logic-equivalence check and 

the static-timing-analysis tests. 

The post-placed and routed netlist of the 2C-RSR chip is verified using the same test bench 

as that one used for verifying its RTL model. The timing and the functionality are correct. 

The chip layout-versus-schematic (LVS) and design-rule-checking (DRC) tests are 

performed using the Virtuoso and Calibre tools. The final 2C-RSR physical design is shown in 

Fig. 3.3. The standard-cell area is 0.2289 mm2, and the total chip area including the pad-frame is 

1.598 mm2. The 2C-RSR is manufactured by the MOSIS MEP program using the 130 nm CMOS 

(8RF-DM) process. The chip microphotograph is shown in Fig. 3.4. 

The pin count of the 2C-RSR chip is as follows (see Fig. 3.5): the 16-bit input, x[15:0], 

Start input, Reset input, clk input, the 16-bit output, y[15:0], READY output, 1.2V core power supply 

(VDD and VSS) and 2.5V input-output (I/O) power supply (DVDD and DVSS). We decided to 

dispense with the overflow signal in order to implement the chip in a DIP40 package. 

The functional and timing tests of the 2C-RSR chip are carried out with a test platform 

[Aguilera-Galicia-16] based on an FPGA board (Xilinx Spartan-6), a mixed-signal oscilloscope 

(Keysight MSO9064A), and a logic analyzer (Keysight 16862A), as shown in Fig. 3.6. The test 

vectors are sequentially and exhaustively applied by a finite-state machine inside the FPGA. Full 

coverage of test cases is achieved and the input-output pairs of the chip for several frequencies are 

acquired with the logic analyzer. 
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Fig. 3.3 Physical design of the 2C-RSR integrated circuit. 

 

 

Fig. 3.4 The 2C-RSR integrated circuit microphotograph. 
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Fig. 3.5 Pin layout of the 2C-RSR integrated circuit. 
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Fig. 3.6 Measurement of the 2C-RSR chip: test bench setup. 
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3.4.2 Results of Chip Measurements 

The timing diagram of the 2C-RSR-circuit functionality is shown in Fig. 3.7. The Input 

signal is the 16-bit x input to the chip, for which the RSR operation is computed. The 16-bit chip 

results are shown by the signal RSR represented in decimal format. To interpret these as Q(16,11,u) 

FxP numbers, the decimal values should be multiplied by 2-11 (one ulp). For example, the Input = 

00,008 multiplied by 2-11 yields 2-8, and the corresponding output RSR = 32,768 yields 16, i.e., 

81 2 16− = , which verifies that the chip result is correct for this value. The next signal in the 

timing diagram is the clock CLK; the cursors M3 and M4 show a rough measurement of the clock 

period, which corresponds to a frequency of 50 MHz. The Ready signal indicates that a new result 

is available. Note that the Ready signal remains at zero for three clock cycles; this is because the 

architecture requires two cycles for the RSR calculation and one cycle to put the result at the chip-

output pins, which is not required when the design is interconnected with other units. 

An exhaustive test of the 2C-RSR chip is performed applying all the possible input values 

to the chip and capturing its response using a logic analyzer. The 65,536 input-output data pairs 

are post-processed in Matlab to compare the chip output versus the golden values, which are 

calculated using the RSR operation in a double-precision floating-point (FP) computer and 

representing the results in Q(16,11,u) format. From this comparison, we observe that all the chip 

results are exact for a maximum clock frequency of 49.62 MHz, i.e., the 65,536 RSR results are 

 

Fig. 3.7 Measurement of the 2C-RSR chip: timing diagram of the chip in operation. 
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bit-accurate with respect to the golden values. Additionally, in order to determine the accuracy of 

the 2C-RSR chip results versus those calculated by 64-bit computers, the chip results are compared 

with the corresponding double-precision FP values. The comparison is illustrated in Fig. 3.8; this 

shows that the maximum absolute error is ½ ulp of the Q(16,11,u) format, i.e., the maximum 

absolute error of the 2C-RSR chip is 
122−

 with respect to the values computed by a double-

precision FP computer. 

The detailed functionality of the 2C-RSR chip can be verified in Fig. 3.9, which shows the 

chip’s response to the x input represented in radix 10 for the range of (0, 4]. The input and output 

data of the chip are acquired with the logic analyzer and then plotted. The labels show selected 

values, to illustrate the correct operation of the chip. 

 

Fig. 3.8 2C-RSR-chip output and error versus the double-precision values. 
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The current consumption of the chip is measured by using a digital multimeter (Keysight 

U1241B) for several clock frequencies. The chip-core power supply (VDD) is 1.2V. Using the 

current and voltage measurements, we calculate the total power consumption of the chip core. The 

core-total-chip power consumption for different clock frequencies is shown in Fig. 3.10. As can 

be seen, the power consumption is maintained approximately constant: 0.1615P F  =  

mW/MHz, from 14 MHz to 44.21 MHz. Here, P  and F  denote increments of power 

consumption and frequency, respectively. From 44.21 MHz, P F   decreases due to the 

reduction of swing voltage (Vswing) in internal nodes of the 2C-RSR integrated circuit, i.e., the 

dynamic power consumption follows the expression 

 dynamic DD swingP CFV V=   (3-14) 

where C is the average capacitance of the internal nodes, and F is the switching frequency. The 

reduction of Vswing is due to the inherent resistive-capacitive (RC) switching delay of the internal 

nets, which impose a maximum working frequency. 

 

Fig. 3.9 2C-RSR chip-operating graph based on real data acquisition: input-output 

response. 
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3.5. Comparison of 2C-RSR Chip with Previously Synthesized 

Designs 

To the best of our knowledge, performance and results of on-chip implementations for RSR 

circuits have not been reported in the open literature. For comparison purposes, we use the 

simulation results of the ASIC designs presented in [Wires-06], [Kwon-08], and [Suresh-13], 

which are implemented at the level of logic synthesis using CMOS standard cells. The comparison 

outcomes are given in Table 3.5. As these designs are implemented using different feature-size 

technologies, Table 3.5 reports the original values of the comparison variables and the scaled 

values, which are calculated assuming Dennard scaling [Weste-11], i.e., the comparison variables 

of area, maximum working frequency, and power consumption of the three designs are scaled into 

the 130 nm feature size. The design in [Wires-06] and the 2C-RSR chip perform 1 x  directly, 

whereas the design in [Kwon-08] computes both x  and 1 x  operations. In the reported 

throughput values for computing 1 x  with the implementation of [Kwon-08], we consider the 

 

Fig. 3.10 Core total power consumption of the 2C-RSR chip versus clock frequency. 
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concatenation of x  and 1 x  operations. This implies 24 latency cycles. The design in [Suresh-

13] only computes x ; hence, for computing 1 x  an extra division is required. It is important 

to note that x  operation can be computed with the proposed 2C-RSR chip using only an 

additional multiplication, i.e., ( )1x x x= . 

From Table 3.5, the design in [Suresh-13] has the smallest area and the highest clock 

frequency. In contrast, this design has the worst latency and throughput. The implementation with 

the lowest latency is the 2C-RSR chip, with only two clock cycles; this contributes to higher 

throughput for lower clock frequency. Furthermore, lower clock frequency means less dynamic 

power consumption and better signal integrity. For example, using the scaled values of Table 3.5, 

design in [Suresh-13] has a consecutive throughput (CTP) (i.e., when consecutive operations are 

being processed) of 11.25 million operations per second (MOPS) at a clock frequency of 450 MHz, 

TABLE 3.5. IMPLEMENTATION RESULTS COMPARED WITH REFERENCE DESIGNS 

TS: transistor scaling; ClkF: clock frequency; CTP: consecutive throughput; 

NCTP: nonconsecutive throughput 

Variable 
[Wires-

06] 

[Kwon-

08] 
[Suresh-13] 

This 

work 

Operation 1 x  1 x  x   1 x  

Word format 32 FP 32 FP 32 FP 16 FxP 

On-chip realization No No No Yes 

Feature size (nm) 250 90 65/40 130 

Latency (cycles) 5 24 40 2 

Area (mm2) 0.4094 0.0453 0.0147/0.0057 0.2289 

ClkF (MHz) 152.67 500 900 49.62 

Power (mW) 92.87 NA 18.86/7.18 7.06 

TS 0.52 1.44 2/3.25 1 

Area×TS2 (mm2) 0.1107 0.0945 0.0588/0.0621 0.2289 

ClkF/TS (MHz) 293.6 346.2 450 49.62 

Power×TS2 (mW) 25.11 NA 75.44/75.84 7.06 

CTP (MOPS) 293.6 34.62 11.25 24.81 

NCTP @ 100 MHz 20 4.17 2.5 24.81@ 50MHz 
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and a power consumption of 75.44 mW, whereas the 2C-RSR chip has a throughput of 24.81 

MOPS at a clock frequency of 49.62 MHz and 7.06 mW. Hence, the 2C-RSR circuit doubled the 

throughput of design in [Suresh-13] with only 10% of power consumption and a clock frequency 

nine times lower. 

Both designs presented in [Wires-06] and [Kwon-08] have better throughput than the 2C-

RSR chip, at the expense of higher clock frequency and the negative effects on power 

consumption. The estimated power consumption of the design reported in [Wires-06] is 3.56 times 

higher than the proposed chip implementation. Designs presented in [Wires-06] and [Suresh-13] 

are attractive for high-performance single-precision FP-units, in applications where power 

constraint is not important; nevertheless, mobile-embedded systems require power consumption 

reduction and high-clock frequencies are not desired due to the dynamic-power consumption of 

CMOS technology. 

Current commercial low-power embedded microcontrollers work in the range of few tens 

of MHz. For example, the NXP microcontrollers L-Series and K-Series based on ARM Cortex-

M4 operate in the range of 48-96 MHz and 50-180 MHz, respectively41. For this reason, the last 

row of Table I shows the nonconsecutive throughput (NCTP) comparison of all reference designs 

running with a practical-clock frequency of 100 MHz; since the 2C-RSR is unable to run at 100 

MHz, its maximum throughput is used. The results confirm the low-latency advantage of the 2C-

RSR chip, which performs the fastest RSR computation for nonconsecutive operations. 

3.6. Conclusions 

The on-chip implementation of a fixed-point RSR unit has been presented. Its main 

characteristics are low latency and bit-accurate results for the Q(16,11,u) format. Even though the 

RSR operation is widely used in mobile-multimedia devices, to the best of our knowledge, its FxP 

on-chip implementation has not been reported before. The architecture of the presented digital 

integrated circuit is based on the Newton-Raphson method, where the seed is provided by a 

piecewise-polynomial approximation in a reduced range of the RSR function. The 2C-RSR chip 

                                                 
41 NXP Processors and Microcontrollers, Low-power 32-bit Microcontrollers. Nov. 11, 2017, 

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-

mcus:KINETIS. 

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS
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produces a new result in only two clock cycles, with a maximum error of 
122−

, which is equivalent 

to ½ ulp of the Q(16,11,u) format. 

The chip was manufactured using a 130 nm CMOS process; the standard-cell area is 0.2289 

mm2 and the total chip area including the 40-I/O-pad frame is 1.598 mm2. The measured power 

consumption is 7.06 mW at the maximum clock frequency of 49.62 MHz. Comparisons of the 2C-

RSR-chip measurements with simulation results of existing standard-cell-based implementations 

show that the proposed implementation exhibits the lowest latency. Furthermore, the 2C-RSR-

chip power consumption is one order of magnitude lower than the design reported in [Suresh-13], 

and 3.56 times lower than the estimated in [Wires-06]. This makes the presented design suitable 

as a silicon intellectual property for applications with low latency and low-power consumption in 

mobile devices with severe hardware constraints. 
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4. IEEE-754 Half-Precision Floating-Point Low-

Latency RSR IP-Core 

The IEEE 754-2008 standard for floating-point (FP) arithmetic defines a binary 

interchange format of 16 bits, i.e., binary16, which can be used for the exchange of FP data 

between different implementations [IEEE-08]. The binary16 format, better known as half-

precision floating-point (FP16) format, has been widely applied in gaming and other applications. 

For example, a programmable renderer is reported in [Peercy-00], where it is demonstrated that 

the FP16 format is sufficient for most of the shaders performed. In addition, interest in FP16 

arithmetic has arisen because in the breakthrough neural-network technique known as deep 

learning, most of the math required to train neural networks can be executed in FP16 arithmetic 

[Foley-17]. For instance, a convolutional neural-network accelerator has been implemented using 

FP16 arithmetic [Venkatesh-17], achieving high accuracy and performance in image classification, 

while reducing computational requirements. These works show the advantages of the FP16 format 

for low-precision tolerant applications. 

In the arena of approximate-computing applications, FP16 arithmetic is becoming relevant 

for designs that require low-power consumption and low computational cost [Yin-16]. In fact, 

NVIDIA recently added native FP16 computational support to some of its GPU architectures in 

order to take advantage of FP16 performance for deep-learning applications42 [Foley-17]. 

Moreover, Intel has added instructions to convert FP16 values to/from single-precision floating-

point (FP32) numbers43. The main advantages of FP16 format over the FP32 format are: adequate 

accuracy for many applications, half the storage space requirements, half the memory bandwidth, 

and better speed performance. 

This chapter describes an FPGA implementation of the 2C-RSR algorithm that is presented 

in Section 3.2 of this thesis document, with the variation that the new implementation is performed 

by using half-precision floating-point arithmetic. The new implementation is named HF-2cRSR. 

Several 64-bit floating-point (FP) RSR architectures have been developed [Lang-03], 

                                                 
42 Anandtech, The NVIDIA GeForce GTX 1080 & GTX 1070. Jun. 17, 2017, 

http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review.  
43 Intel Software, Overview: Intrinsics to Convert Half Float Types. Jun. 21, 2017, https://software.intel.com/en-

us/node/524286.  

http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review
https://software.intel.com/en-us/node/524286
https://software.intel.com/en-us/node/524286
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[Piñeiro-02], however, since they are mainly focused on accelerating high-precision FP units, they 

are not suitable for embedded systems. Similarly, 32-bit FP RSR designs have been reported 

[Suresh-13], [Butts-11]. Although 32-bit FP architectures can be applied in embedded mobile 

devices, their power consumption and implementation area make them poorly suited for low-

power embedded applications that do not require high accuracy. For mobile low-power systems, 

fixed-point (FxP) implementations are preferred due to their reduced hardware area and better 

performance [Wang-10], [Aguilera-Galicia-18], [Liu-17a], however, the dynamic range of FxP 

formats are smaller than FP systems with the same number of bits, and their interface with FP 

systems requires additional resources. 

The HF-2cRSR is implemented on two FPGA technologies and the results are compared 

with similar intellectual-property (IP) cores [Xilinx-12], [Altera-16] of the top-two FPGA 

companies: Xilinx and Intel. The results show that the proposed half-precision implementation 

exhibits better throughput than Intel IP with 30% resource savings. With respect to the Xilinx IP, 

the HF-2cRSR gives 66% more throughput at the cost of more LUT resources. In both 

comparisons, the proposed implementation exhibits lower latency and better throughput at lower 

clock frequency. All the above makes the proposed IP core suitable for low-cost, half-precision 

embedded applications where area and power consumption are important design trade-offs. 

4.1. Introduction to Half-Precision Floating Point Numbers 

The FP16 format is shown in Fig. 4.1. The representation is based on three fields: sign, S; 

biased exponent, E; and trailing significand, m. 

All FP numbers, including zeros and infinities, are signed. The exponent is encoded using 

an offset-binary representation, i.e., a constant that is known as bias is added to the exponent to 

make the biased-exponent range non-negative. For the FP16 format, the exponent bias is 1510. 

When E ≠ 0, the FP number is of the normalized type and its value, xN, is computed using 

 

Fig. 4.1 IEEE 754-2008 half-precision floating-point format. 

 

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Sign
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Exponent E Significand m
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 ( )1 1. 2
S E bias

Nx m −= −    (4-1) 

where E is defined by 
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E E
=



=    (4-2) 

and m is defined by  

 
10

1

2 .
i

i

i

i

m m
=

−



=    (4-3) 

For normalized FP numbers, it is assumed that there is an implicit-leading bit of value one in the 

significand, which have an 11-bit precision (only ten bits of the significand are stored in memory). 

When the exponent is zero (E = 0), the FP value is zero (+/- 0) if the significand is zero; 

otherwise, the FP number is of the denormalized type. The value of a denormalized FP16 number 

is computed using  

 ( ) 141 0. 2 .
S

Dx m −= −    (4-4) 

When the exponent is 3110, the FP16 value is infinite (+/- ∞) if the significand is zero; 

otherwise, the FP16 value is not-a-number (NaN). Table 4.1 shows a summary of the FP16 

encoding depending on the exponent and significand values. 

4.2. Half-Precision Floating-Point RSR Operation 

The proposed half-precision FP RSR IP core computes the operation defined by (3-1), 

where x, and y in this case are binary half-precision FP numbers, which can be normalized or 

denormalized according to [IEEE-08]. When x is positive normalized or denormalized, the 

TABLE 4.1. SUMMARY OF HALF-PRECISION FLOATING-POINT ENCODING 

Decimal 

Exponent E 

Significand 

m = 0 

Significand 

m ≠ 0 
Equation 

0 +/- 0 Denormalized  ( ) 141 0. 2
S

Dx m −= −    

1 – 30 Normalized ( ) 151 1. 2
S E

Nx m −= −   

31 +/- ∞ Not-a-Number - 
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correctly rounded value ( )1 x  must be given back as a half-precision FP number. For other 

special values of x, the RSR operation must return the results that are shown in Table 4.2. The 

special value quiet not-a-number, qNaN, is used to represent the result of an invalid operation 

exception without signaling exceptions [Muller-10]. 

4.3. HF-2cRSR Architecture 

The proposed IP-core architecture is based on the algorithm introduced in Section 3.2. As 

is explained in such section, this algorithm applies the NR method. The required seed is computed 

using a piecewise-polynomial approximation in a reduced range, rr = [0.5, 2) of the RSR function, 

which contributes to provide a seed with enough accuracy to achieve the IEEE 754-2008 half-

precision accuracy standard in only one NR iteration. The proposed hardware FP architecture is 

represented in Fig. 4.2. In the following sections, the design considerations to implement the 

corresponding blocks of the HF-2cRSR architecture using floating-point arithmetic, are described. 

4.3.1 Floating-Point Scaling and De-scaling Operations 

The scaling and de-scaling operations are performed implementing the products defined by 

(3-6), and (3-11) respectively. These operations are represented by the Scaler and De-scaler blocks 

in Fig. 4.2. 

To implement the scaling operation, it must be detected if the input x is of the normalized 

or denormalized type, that is why the Scaler module requires the normalized x flag, Norm, as shown 

in Fig. 4.2. When the input x is of the denormalized type, it must be normalized by left shifting the 

TABLE 4.2. OUTPUT RESULTS FOR THE HF-2CRSR IP CORE 

qNaN: quiet not-a-number 

 

x input 

+0 negative 
Denormalized / 

Normalized 
+∞ NaN 

y output +∞ qNaN ( )1 x  +0 qNaN 
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significand bits by the number of leader zeros of the significand, LZC, plus one. The Norm flag and 

LZC count are provided by the Encoder module that is presented in Section 4.3.4. Considering that 

in the proposed design, the possible z exponent values are only 0 or ˗1 since 0.5 2.0,z   the 

implementation of the scaling operation can be simplified as follows. For normalized inputs, the 

scaled exponent is determined by evaluating only the least significant bit (LSB) of the x exponent: 

if LSB of x is zero, then z exponent = ˗1, else 0. For denormalized inputs, the scaled exponent is 

determined by checking the LSB of the LZC count: if LSB is zero, then z exponent = 0, else ˗1. A 

multiplexer is used to select the correct value of the z exponent. For this reason, the scaling 

exponent, n, is only connected to the De-scaler module. 

4.3.2 Polynomial and Newton-Raphson Method 

To evaluate the Newton-Raphson iteration for the RSR function defined by (3-7), the 

 

Fig. 4.2 Architecture of the half-precision floating-point RSR, HF-2cRSR. 
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following FP-arithmetic blocks are required: one squaring module, two multipliers, one adder, and 

one divider by two. 

In the proposed architecture, the seed 0y  is computed using a piecewise-polynomial 

approximation in the rr range. The polynomial fitting is performed by splitting the rr range into 

14 unequal subintervals, as is explained in Section 3.3.3; each subinterval is approximated by a 

second-order polynomial defined by 

 
2

0 0 1 2y a a z a z= + +   (4-5) 

where ai represent the i-th polynomial coefficient. To evaluate (4-5), the following FP-arithmetic 

blocks are required: one squaring module, two multipliers, and two adders. Since some of these 

blocks can be reused, (3-7) and (4-5) are performed in the Polynomial Newton-Raphson (PNR) 

module of Fig. 4.2. The detailed architecture of the PNR module is shown in Fig. 4.3. This module 

 

Fig. 4.3 Floating-point polynomial Newton-Raphson architecture of the HF-2cRSR. 

 

01
Mux1 AGU

D
Q

23

R2

ROM2 ROM1
D
QR1

01
Mux2

z

16

10
Mux3

M1

23

M2

2x

01
Mux4

ROM0

0x210000

M3

23

23

23

23
25

23
23

2523

23

4

3.0=

4
23

23

23 16

23

23

23

23

Sel

Sel

Sel

Sel

A2

A1

1iy z

x2

Clk Rst



4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE 

 79 

requires two clock cycles to compute an approximation of 1 z : in the first clock cycle it evaluates 

(4-5) and in the second cycle it computes one iteration of (3-7). 

To calculate the seed using (4-5), the 14 polynomial coefficients a0, a1, and a2 are stored 

in read only memories ROM0, ROM1, and ROM2, respectively (see Fig. 4.3). The address generator 

unit AGU provides the ROM address of the corresponding coefficients for the z subinterval. The z2 

term is computed in the x2 squaring module. The products a1z, and a2z
2 are performed in the 

multipliers M1 and M2, and the sums are computed in the adders A1 and A2, respectively. In order 

to achieve the required accuracy for the HF-2cRSR unit, the FP arithmetic blocks (x2, M1, M2, A1, 

and A2) are word size customized. The multipliers use 23-bit word length: 1-bit sign, 5-bit 

exponent, and 17-bit significand (18 bits of precision, considering the implicit-leading bit); the 

products are rounded to the nearest FP value, with round-to-nearest-even as the tie-breaking rule. 

The design and architecture of the 23-bit FP multiplier are reported in Section 4.4. The adders use 

25-bit word length: 1-bit sign, 5-bit exponent, and 19-bit significand. The significand sizes of the 

FP blocks are determined by circuit-level simulations to achieve the maximum allowed error 

defined by the IEEE-754 standard for the RSR operation, which is ½ unit in the last place (ulp). 

The multipliers and adders are modeled by portable and structured Verilog models that implement 

canonical architectures for these operations [Muller-10]. 

For the computation of the NR iteration (3-7), the zyi
2 term is performed in the x2 squaring 

block and the M2 multiplier; the 3˗zyi
2 difference is realized in the A1 adder; and the (yi/2)( 3˗zyi

2) 

product in the M3 multiplier. As can be seen, the proposed architecture reuses some FP blocks to 

reduce hardware resources. The yi/2 operation is efficiently implemented by decrementing the 

exponent by one, since the PNR module is working with normalized numbers. This is another 

advantage of the proposed architecture: since the approximation is performed in the rr range, all 

the computations inside the PNR module use normalized numbers, which contributes to fewer 

hardware resources in the FP arithmetic blocks. 

4.3.3 Floating-Point Rounding Operation 

The output of the PNR module has the customized 23-bit FP format. To obtain the half-

precision format, the output yi is rounded to 16 bits. This operation is implemented in the Rounding 
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block that is shown in Fig. 4.2, where a round-to-nearest operation is performed. Once the 

approximation to 1 z  is rounded, iy  , this value is de-scaled to obtain the half-precision result 

with an error ≤ ½ ulp. 

4.3.4 Encoder Module 

In order to apply the scaling operation, the x input range that includes denormalized and 

normalized values is divided into 21 intervals. One scaling factor is associated to each interval, in 

this way, all the intervals of x can be scaled into the rr range. The scaling exponents for the 

denormalized and normalized x values are reported in Table 4.3 and Table 4.4, respectively. The 

function of the Encoder module is to identify the corresponding interval of the x input value and 

provide the corresponding scaling exponent n to the De-scaling block. When x < 0.5 (below the rr 

range), n is negative. The implementation of the scaling operation is different for normalized x 

values than for denormalized values of x. For this reason, the Encoder generates the Norm flag to 

indicate to the Scaler block when the input x is of the normalized type. When the input x is of the 

denormalized type, it must be first normalized; to normalize x, the Encoder module provides the 

leading zeros count, LZC, of x to the Scaler module. Furthermore, the Encoder module generates 

the flags negative input, zero, infinite, and NaN, which are useful to determine the output result 

and signaling these special values. 

TABLE 4.3. INTERVALS OF x AND SCALING EXPONENTS FOR DENORMALIZED NUMBERS 

Hexadecimal 

Mantissa 

FP Low 

Boundary ×10−4 

FP Up 

Boundary 

×10−4 

Scaling 

Exponent n 

000 - 001 0 0.0005960 −12 

002 - 007 0.0011921 0.0041723 −1 

008 - 01F 0.0047684 0.0089407 −10 

020 - 07F 0.0190735 0.0756979 −9 

080 - 1FF 0.0762939 0.3045797 −8 

200 - 3FF 0.3051758 0.6097555 −7 

 

 



4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE 

 81 

4.3.5 Output Selector and Control Unit 

The results of the RSR operation have special values that are computed out of the general 

data-path. The Output Selector module selects the correct result depending on the x input value 

and the flags provided by the Encoder block. The possible output values of the HF-2cRSR are 

shown in Table 4.2. 

The control unit CU is a finite-state machine that synchronizes the operation of the PNR 

block and enables an output register when a new result is available. 

4.4. Floating-Point Multiplier for the HF-2cRSR IP-Core 

The design and implementation of a customized floating-point multiplier is presented in 

TABLE 4.4. INTERVALS OF x AND SCALING EXPONENTS FOR NORMALIZED NUMBERS 

Hex. Biased 

Exponents 

Dec. Unbiased 

Exponents 

FP Low 

Boundary 

FP Up 

Boundary 

Scaling 

Exponent n 

01 −14 0.0000610 0.0001220 −7 

02, 03 −13, −12 0.0001221 0.0004880 −6 

04, 05 −11, −10 0.0004883 0.0019522 −5 

06, 07 −9, −8 0.0019531 0.0078087 −4 

08, 09 −7, −6 0.0078125 0.0312347 −3 

0A, 0B −5, −4 0.03125 0.1249390 −2 

0C, 0D −3, −2 0.125 0.4997559 −1 

0E, 0F −1, 0 0.5 1.99902344 0 

10, 11 1, 2 2 7.99609375 1 

12, 13 3, 4 8 31.984375 2 

14, 15 5, 6 32 127.9375 3 

16, 17 7, 8 128 511.75 4 

18, 19 9, 10 512 2047 5 

1A, 1B 11, 12 2048 8188 6 

1C, 1D 13, 14 8192 32752 7 

1E 15 32768 65504 8 
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this section. The proposed multiplier is one of the fundamental modules of the HF-2cRSR IP-core. 

Some of the FP multiplier specifications are customized for the HF-2cRSR, for example, the word 

size, processing of normalized/denormalized numbers, and rounding mode are selected to reduce 

the hardware implementation of the multiplier and to achieve a bit-accurate half-precision FP RSR 

unit. The verification of the FP multiplier is presented and its logic synthesis is performed on ARM 

130 nm CMOS ASIC technology. The results of the logic synthesis, such as required standard-

cells, silicon area, operating frequency, and power consumption, are reported. 

4.4.1 Design Requirements of Floating-Point Multiplier  

This section defines the design requirements of a FP multiplier for the HF-2cRSR unit. 

Specifications such as the word size, input-output range, and rounding mode of the FP multiplier 

are defined. 

4.4.1.1 Input and Output Range of the FP Multiplier 

The input to the PRN module of the HF-2cRSR is in the reduced range, rr = [0.5, 2). For 

this reason, the specification of the input range for the FP multiplier can be reduced to handle only 

normalized FP numbers. Furthermore, since the PNR module computes an approximation of the 

RSR operation in the rr range, the PNR output range is (1/√2, √2]. As the output of the PNR 

module is bounded, the output range of the multiplier is bounded; this means that the number of 

bits required to represent the exponent in the FP multiplier can be reduced. The selected word size 

for the FP multiplier is discussed in the following section. 

4.4.1.2 Word Size of the FP Multiplier 

The representation range of an FP format is mainly determined by the number of bits, w, 

of the exponent, whereas the precision of an FP format is determined by the number of bits, p, of 

the significand. In the following paragraphs, the w and p values for the FP multiplier word size are 

defined.  

The HF-2cRSR unit must provide a result in FP16 format, which has a representation range 

of normalized FP numbers of 142 65,504Nx−   . This range is greater than the expected for the 
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multiplier products inside the PNR module because the output of the later is bounded. The above 

means that five bits are enough for the multiplier exponent, i.e., w = 5. Although w can be reduced, 

in order to work with an exponent size compatible with the FP16 standard, we selected five bits to 

represent the exponent of the FP multiplier. 

The number of bits, p, of the significand, define the precision of the FP multiplier and the 

size of the internal product of the significands, 2p bits, which determines the amount of hardware 

resources of the fixed-point multipliers required to multiply the significands. For this reason, it is 

important to select the multiplier significand size as small as possible without affecting the 

required accuracy in the HF-2cRSR unit. The accuracy goal for the HF-2cRSR unit is ½ ulp of the 

FP16 format, i.e., a maximum error of 2−11. By circuital simulations of an RSR preliminary model, 

showed that a multiplier significand size of at least 18 bits is required to achieve the accuracy goal. 

From the above, the FP multiplier word size is 23 bits: one sign bit, five bits for the 

exponent, and a 17-bit significand. The implicit-leading bit is not part of the word size. 

4.4.1.3 Rounding Mode of the FP Multiplier 

The IEEE 754-2008 standard defines that an FP multiplier product must be rounded, and 

establishes four rounding modes [IEEE-08], [Muller-10]. The recommended default mode is the 

round-to-nearest, with round-to-nearest-even as the tie-breaking rule. This rounding mode is 

presented in the following paragraphs. 

The result of rounding a normalized FP product, Z, using p bits of precision is either: a) the 

FP number 

 ( ) ( )0 1 2 1 2
1 . ... 2Z Z

S e

p pZ m m m m −= −   (4-6) 

obtained by truncating the significand m after p-1 bits; or b) the successor of Zp, which is obtained 

by 

 12 .p

ps pZ Z − += +   (4-7) 

The choice between (4-6) or (4-7) depends on the rounding bit, mp, and the sticky bit, which is the 

bit that says there is at least one non-zero bit among the remaining bits to the right of mp. The 

sticky bit may be evaluated by the logical OR operation of all the bits to the right of mp, 

( )1 2, ,...p pOR m m+ + . A summary of the criteria used for rounding the FP multiplier product is shown 
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in Table 4.5. 

The specifications of the 23-bit FP multiplier are summarized in Table 4.6. 

 

4.4.2 23-Bit FP Multiplier Architecture 

This section describes the multiplication specification for two FP numbers and the 

hardware architecture of a customized 23-bit FP multiplier for the HF-2cRSR unit. 

4.4.2.1 Floating-Point Multiplication 

The multiplication product, Z, of two nonzero binary FP numbers ( ) ( )1 XS
X X= −  and 

( ) ( )1 YS
Y Y= −  satisfies   

 ( ) ( )1 ZS
Z X Y X Y=  = −    (4-8) 

TABLE 4.5. ROUNDING TO NEAREST WITH TIE TO EVEN CRITERIA 

Round Bit 

mp 

Sticky Bit 

OR(mp+1, mp+2…) 
Rounded Number 

0 0 Zp 

0 1 Zp 

1 0 Even of {Zp, successor(Zp)} 

1 1 successor (Zp) 

 

 

TABLE 4.6. SPECIFICATION OF THE 23-BIT FP MULTIPLIER 

Variable Value Comment 

Input range [0.5, 2) Normalized FP number 

Minimum output range (1/√2, √2]  Normalized FP number 

Exponent size 5 bits Half-precision format compatible 

Significand size 17 bits Required size for the HF-2cRSR unit 

Rounding mode round-to-nearest Tie-breaking rule: to-nearest-even 
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where 

  0,  1Z X YS S S=     (4-9) 

is the sign of the product, 2 Ye

YY m= , 2 Xe

XX m= , and  

 ( ) 2 X Ye e

X YX Y m m
+

 =    (4-10) 

where X Xe E bias= −  and Y Ye E bias= −  represent the unbiased exponents of X and Y 

respectively. The IEEE 754-2008 specification for (4-10) is summarized in Table 4.7. The 

following section presents the FP multiplier architecture, for the case where both numbers X and 

Y are normalized. 

4.4.2.2 Hardware Architecture of the Floating-Point Multiplier 

To implement the multiplication of two normalized FP numbers, their three format fields– 

sign, exponent, and significand– are processed separately. The proposed hardware architecture of 

the 23-bit FP multiplier is shown in Fig. 4.4. This implements the previously defined equations for 

the multiplication operation. The sign of the product, SZ, is implemented by using (4-9). 

From (4-10), the exponent of the result is computed by  

 X Y X Ye e E bias E bias+ = − + −   (4-11) 

where EX and EY are the biased exponent of X and Y respectively. As the FP format uses a biased 

exponent, the result biased exponent EZ can be computed by 

 .Z X YE E E bias= + −   (4-12) 

The computation of (4-12) is represented in Fig. 4.4 by the left branch of Mux1. Due to the 

TABLE 4.7. SPECIFICATION OF MULTIPLICATION FOR POSITIVE FP NUMBERS 

|X|×|Y| 
|Y| 

+0 De/Normalized +∞ NaN 

|X| 

+0 +0 +0 qNaN qNaN 

De/Normalized +0 ( )X Y   
+∞ qNaN 

+∞ qNaN +∞ +∞ qNaN 

NaN qNaN qNaN qNaN qNaN 
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rounding operation, the computation of (4-7) can produce an overflow of the significand; this 

change in the significand value must be compensated by incrementing the exponent. This operation 

is selected by the right branch of Mux1. 

The product mX×mY, represented by mXmY in Fig. 4.4, is performed using a fixed-point 

multiplier. Because the multiplier inputs are of the normalized type, i.e., 1 2Xm   and 1 2Ym   

the product of significands satisfices 1 ≤ mXmY < 4. As the multiplication result must be of the 

normalized type, when mXmY ≥ 2.0, it needs to be normalized by right-shifting mXmY one position 

when its most significant bit, (MSB), is one. This is the purpose of Mux2, which selects the 

normalized product, mXmY [33:17], or the shifted product, mXmY [34:18], depending on MSB.  

The Rounding block of Fig. 4.4 is the control logic for the rounding operation as presented 

in Section 4.4.1.3. If MSB = 0, the guard bit, Gb in Fig. 4.4, is used as the rounding bit, and the 

sticky signal is used as the sticky bit. When MSB=1, the Rb signal is used as the rounding bit and 

the sticky bit is the result of the logic-OR operation between the signals Gb and sticky, OR(Gb, 

Sticky). The output adder of Fig. 4.4, performs the computation of (4-7), utilizing the signal Inc 

and the selected bits of mXmY. The result of the operation OR(Carry, MSB) selects the correct 

 

Fig. 4.4 Architecture of the 23-bit floating-point multiplier. 
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exponent value. The final rounded result, Z, of the 23-bit FP multiplier is the concatenation of the 

signals {SZ, EZ, mZ} in Fig. 4.4. 

 

4.4.3 Implementation and Verification of the 23-Bit FP Multiplier 

The architecture of the 23-bit FP multiplier, presented in Section 4.4.2, is implemented by 

a hardware description language (HDL) model. The multiplier model is done using portable and 

technology independent Verilog code. This model describes a hierarchical structure based on 

mutiplexers, adders, subtractors and one fixed-point multiplier. The 23-bit FP multiplier model is 

verified using the test environment shown in Fig. 4.5. To determine the performance and the 

hardware resources required for implementation of the propose multiplier, the verified design is 

synthesized on 130 nm ASIC technology by using the Cadence® RTL-Compiler synthesis tool. 

The following sections report the functional verification of the proposed design and its synthesis 

results. 

 

Fig. 4.5 Test environment for verifying the 23-bit floating-point multiplier. 
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4.4.3.1 Verification of the 23-bit FP Multiplier 

The 23-bit FP multiplier has 46 inputs (23 for X and 23 for Y). To perform an exhaustive 

verification of this multiplier, 246 test cases are required. To verify the proposed multiplier, a test-

case subset is selected. This subset corresponds to the expected operating range of the multipliers 

inside the PNR module of the HF-2cRSR unit. Rough estimations show that the multiplier input 

range is [−10, 10].  

The functional verification of the 23-bit FP multiplier is performed by using a Verilog 

testbench, which applies the test vectors to the unit under test, UUT, as seen in Fig. 4.5. Because 

the input-output test vectors have a nonstandard FP format, these are generated by using Matlab 

that helps to analyze and compare the multiplier simulation results. The generated test vectors are 

sequences of uniformly distributed pseudo-random 23-bit FP numbers. 

The simulations are performed using the Xilinx® ISE simulator. The multiplier’s products 

and the input test vectors are exported to a file for their processing and verification using Matlab, 

where the 23-bit results are compared with the corresponding double-precision calculated values. 

 

Fig. 4.6 Functional verification of the 23-bit floating-point multiplier and comparison of 

the output products with respect to the corresponding double-precision calculated 

values. Reduced-range random inputs (−10 < X, Y < 10) are applied to the 

multiplier. 
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A demonstrative simulation is presented in Fig. 4.6. It shows 200 random multiplication 

products, represented by XY, which are compared with respect to the corresponding calculated 

values using a 64-bit computer. It can be seen that the 23-bit FP multiplier outputs are close to the 

corresponding double-precision values. 

In order to know the error of the 23-bit FP multiplier with respect to the corresponding 

products computed by a 64-bit computer, ZDP, the relative error is computed by using 

 .DP
r

DP

Z Z
e

Z

−
=   (4-13) 

The relative error of the 23-bit FP multiplier with respect to the double-precision FP 

computation is plotted in Fig. 4.7. It can be observed that for this demonstrative simulation the 

relative error is 
6 64 10 4 10re− −−     . Simulations of the 23-bit FP multiplier with more test-

case coverage are performed; a histogram of the relative errors of a simulation for one million test 

cases is shown in Fig. 4.8, where the error is reported in units-in-the-last-place (ulp) [Muller-10]. 

It can be seen that the mean is close to zero, and it is a good approximation for the center of the 

data, i.e., the errors are symmetrical. The variance value indicates that the relative errors for 

different products are close to each other. In addition to the good statistical parameters, it can be 

 

Fig. 4.7 Relative error of the 23-bit FP multiplier versus double-precision FP 

computation. 
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seen that the maximum error is less than ½ ulp, i.e., 
63.812065 10re −  . 

The IEEE 754-2008 standard establishes that IEEE-compliant multipliers must produce 

results with maximum errors of ½ ulp. The relative error corresponding to ½ ulp for a binary FP 

format with a precision of p bits is defined [Goldberg-91] by 

 ( )1 1
2 ulp 2 .

2

p p− + −    (4-14) 

The precision p of the 23-bit FP multiplier is 18 bits, therefore, the upper bound evaluation 

of (4-14) is 2−18, which is greater than the maximum relative error of the proposed design. 

Therefore, the 23-bit FP multiplier meets the IEEE-754-2008 error specification. 

4.4.3.2 Logic-Synthesis Results of the 23-bit FP Multiplier 

In order to determine the hardware resources required to implement the 23-bit FP 

multiplier, the logic synthesis of the multiplier is performed on ASIC technology. The result of the 

synthesis is a structured netlist based on ARM® standard cells of the Globalfoundries 130 nm 

CMOS 8RF-DM process. The logic synthesis is performed using the Cadence® RTL Compiler 

tool. 

 

Fig. 4.8 Relative error histogram of the 23-bit FP multiplier with respect to the 

corresponding double-precision calculated values. 
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The results of the synthesis are shown in Table 4.8. The total silicon area is 0.060835 mm2. 

49.77% of the total area corresponds to 2,055 standard cells; the remaining area corresponds to the 

interconnection nets. 

The timing optimization of the proposed design is performed to determine the maximum 

operating frequency. The static timing analysis shows that the multiplier critical-timing path is 

5,714 ps, which corresponds to a maximum clock frequency of 175.00 MHz. The total power 

consumption at this clock frequency is 13.89 mW. 

The design and logical synthesis of a 23-bit FP multiplier has been presented. The purpose 

of the proposed multiplier is to be used in the HF-2cRSR IP core. The specifications of the 23-bit 

FP multiplier are customized to reduce the hardware requirements and to achieve bit-accurate 

results of the HF-2cRSR unit. In the next section, the FPGA implementation of the proposed IP 

core is reported in order to be compared with commercial IP cores from Intel and Xilinx. 

4.5. HF-2cRSR Implementation Results and Comparisons 

4.5.1 FPGA Implementation 

Each block of the HF-2cRSR architecture is modeled using Verilog hardware description 

language, synthesized on an FPGA technology, and verified using the digital circuit simulator 

ModelSim. The HF-2cRSR top-level design is a structured Verilog model, where the verified 

modules of the proposed architecture are instantiated and interconnected as shown in Fig. 4.2 and 

Fig. 4.3. The functionality of the synthesized top-level design is exhaustively verified using a 

TABLE 4.8. LOGICAL SYNTHESIS OF THE 23-BIT FP MULTIPLIER ON 130 nm CMOS 

TECHNOLOGY 

Variable Value 

Cell Number 2055 

Cell Area 0.030280 mm2 (49.77 %) 

Net Area  0.030555 mm2 (50.23 %) 

Total Area 0.060835 mm2 (100 %) 

Max. Frequency 175.00 MHz 

Total Power 13.89 mW 
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Verilog test bench, which applies all the possible valid test-vectors (215) to the unit under test. 

Since the test-vectors and circuit-simulation results have half-precision FP format, the input-result 

pairs are exported to a text file as integer numbers to be post-processed in Matlab. 

To evaluate the correct functionality and accuracy of the HF-2cRSR IP core, the circuit-

level simulation results are compared with the golden values, which are computed evaluating 1 x  

for all the possible input values using double-precision FP arithmetic and converting the results to 

half-precision FP bit-patterns using Matlab functions44. By means of this comparison, we check 

that all the circuit simulation results (215) are exact with respect to the golden values. 

A comparison of selected HF-2cRSR results with respect to the corresponding double-

precision calculated values, DPy , is shown in Fig. 4.9. As it can be seen, the plot differences are 

small to be observed at a glance. In order to determine the HF-2cRSR relative error, r , with 

respect to DPy , the following expression is used 

                                                 
44 MathWorks, IEEE 754r Half Precision Floating Point Converter. Jul. 19, 2018, 

https://la.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-

converter?focused=5133569&tab=function. 

 

Fig. 4.9 Comparison of the HF-2cRSR outputs with respect to double-precision values. 

 

https://la.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-converter?focused=5133569&tab=function
https://la.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-converter?focused=5133569&tab=function
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 .DP
r

DP

y y

y


−
=   (4-15) 

The relative errors for all results provided by the HF-2cRSR circuit with respect to the 

corresponding DPy  values are shown in Fig. 4.10. The relative errors of the selected results are 

highlighted by the black line; the horizontal line represents the average relative error. The 

maximum relative error is 4.8768532×10˗4, which is lower than ½ ulp of the half-precision format. 

With the purpose of comparing the performance of the HF-2cRSR unit versus similar IP 

cores of Xilinx and Intel, the purposed design is implemented on FPGAs of both companies. The 

Xilinx and Intel RSR IP cores are available for evaluation in double-precision and single-precision 

only, therefore, the single-precision version is implemented in this work. The selected FPGAs are 

Xilinx Artix7 xc7a100t-3csg324 and Intel Stratix 5sgxmb6r3f43c4. The feature size of both 

devices is 28 nm. The implementations are performed using ISE 14.7 Design Suit and Quartus 

Prime 16.0 from Xilinx and Intel, respectively. Using the same tools, the single-precision FP IP 

cores of Xilinx [Xilinx-12] and Intel [Altera-16] for the RSR operation are implemented on their 

respective FPGAs. The implementation results are shown in Table 4.9 and Table 4.10. The timing 

of the three post-placed and routed designs are verified by a static-timing analysis performed with 

 

Fig. 4.10 HF-2cRSR relative errors with respect to double-precision FP values. 
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the respective companies’ tools. The maximum operating frequencies, ClkF, are reported for a 

slow process (85 °C, 850 mV). The reported throughput (Tp) is calculated dividing the ClkF by 

the latency of the corresponding implemented IP cores. 

4.5.2 Comparison of the HF-2cRSR with Xilinx and Intel IP Cores 

For the three IP cores, two types of FPGA implementations are created: using the internal 

DSP blocks and using only logic. The latter provides a fairer comparison between the commercial 

IPs and the HF-2cRSR since the number and size of the utilized DSP blocks are very different in 

the three IP cores. For the implementations using DSP blocks, the HF-2cRSR IP-core utilizes more 

LUTs than Xilinx and Intel IP cores; this is because many hardware resources of the required 

multipliers are placed in the DSP blocks. The proposed IP core utilizes fewer and smaller 

multipliers than the compared implementations. When the implementations are performed without 

DSP blocks, the HF-2cRSR utilizes 30% fewer LUTs than Intel IP and 50% more than Xilinx IP. 

Regarding the throughput of the compared designs, the proposed IP core exhibit 66% more 

throughput than Xilinx IP and 3.5 times more than Intel IP core. The main advantage of the HF-

2cRSR is its low latency, which contributes to better throughput at a low clock frequency, which 

TABLE 4.9. IMPLEMENTATION RESULTS COMPARED WITH INTEL IP CORE 

ClkF: clock frequency; C: cycles; Tp: throughput; MOPs: million operations per second 

Variable 
Intel with 

DSP 

This work with 

DSP 

Intel 

without 

DSP 

This work 

without 

DSP 

FP Format single half single half 

FPGA (28 nm) Stratix V Stratix V Stratix V Stratix V 

DSPs (27x27) 5 0 0 0 

DSPs (18x18) 1 4 0 0 

LUTs 449 658 2884 2028 

ClkF (MHz) 122.7 40.76 121.67 33.26 

Latency (C) 26 2 26 2 

Tp (MOPs) 4.72 20.38 4.68 16.63 
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is an important factor in low-power embedded systems. 

4.5.3 Standard-Cell Based Implementation 

In order to test the portability of the HF-2cRSR HDL model, and for documenting the 

required hardware resources for this IP core on ASIC technology, Table 4.11 reports the logic 

synthesis results of the HF-2cRSR IP core on the 8RF-DM 130nm CMOS technology.  

Comparing the implementation results of the two proposed IP cores: the 2C-RSR, and the 

HF-2cRSR, it can be observed from Table 4.11, that the half-precision floating-point 

implementation is adequate for applications with limited hardware resources and power 

consumption. In this case, the HF-2cRSR utilizes 37% less silicon area, and 32% less power 

consumption than the fixed-point implementation, 2C-RSR. This is at the costs of lower 

throughput. 

4.6. Conclusions 

The design and FPGA implementation of a half-precision floating-point RSR IP core has 

been presented. The design considerations of the modules that make up the HF-2cRSR architecture 

were discussed. To exemplify the design and verification of FP arithmetic modules a customized 

TABLE 4.10. IMPLEMENTATION RESULTS COMPARED WITH XILINX IP CORE 

ClkF: clock frequency; C: cycles; Tp: throughput; MOPs: million operations per second 

Variable 
Intel with 

DSP 

This work with 

DSP 

Intel 

without 

DSP 

This work 

without 

DSP 

FP Format single half single half 

FPGA (28 nm) Artix 7 Artix 7 Artix 7 Artix 7 

DSPs (25x18) 9 4 0 0 

LUTs 366 970 1988 3004 

ClkF (MHz) 302.85 33.61 219.68 28.17 

Latency (C) 26 2 26 2 

Tp (MOPs) 11.65 16.81 8.45 14.08 
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23-bit FP multiplier is documented, which is one of the fundamental modules of the HF-2cRSR 

unit. The proposed IP core meets the IEEE 754-2008 accuracy defined for the half-precision RSR 

operation, it is able to produce a new result in only two clock cycles and the results are accurate at 

least ½ ulp. The comparisons with respect to Xilinx and Intel IP cores show the impact of half-

precision arithmetic on the multiplier size and the advantages of the proposed low-latency design. 

The proposed implementation contributes to reduce the lack of half-precision floating-point 

IP cores, which are suitable options for use in low-precision tolerant applications, such as deep-

learning and approximate computing, implemented on low-power embedded systems. 

 

 

 

TABLE 4.11. IMPLEMENTATION RESULT COMPARISON OF THE TWO PROPOSED IP CORES 

Variable HF-2cRSR 2C-RSR Gain 

Feature size (nm) 130 130 - 

Arithmetic 16-bit FP 16-bit FxP - 

Latency (cycles) 2 2 - 

Total Area (mm2) 0.145189725 0.2289 37% 

Max. Frequency (MHz) 25.00 MHz 49.62 -50% 

Throughput (MOP) 12.5 24.81 -50% 

Total Power (mW) 4.77364 7.06 32% 

 

 



 

97 

General Conclusions 

In this doctoral dissertation, the design and implementation on ASIC technology of two 

arithmetic units to calculate the reciprocal of the square root (RSR) were presented. The purpose 

of the implementation was to venture into the development of IP cores on VLSI technology for 

low-power and low-computational cost embedded applications. The two proposed 

implementations use an algorithm based on the Newton-Raphson method and on a piecewise-

polynomial approximation in a reduced range of the RSR function. The first implementation, 2C-

RSR, uses 16-bit fixed-point arithmetic in Q(16,11, u) format. The second one, HF-2cRSR, takes 

advantage of the IEEE 754-2008 half-precision floating-point standard. 

In order to carry out the proposed implementations, it was required to have at ITESO 

integrated circuits laboratory CAD tools and some CMOS technology kit to develop digital ASIC 

design and to know the design flow of digital integrated circuits using synthesis tools. In Chapter 

1 of this doctoral dissertation, the design flow of digital ASICs was presented, some of the 

Cadence® tools to support this task were described, and the tools that were installed at ITESO 

integrated circuits laboratory were selected. This enabled laboratory users to perform digital-ASIC 

designs. 

In Chapter 2, the fundamental components for designing digital ASICs were described in 

detail and a specific CMOS technology (8RF-DM, 130 nm) was selected to be able to send to 

manufacture the proposed designs. In addition, the workflow and results of the main step of a 

digital ASIC design front-end, called logic synthesis, was reported, which was implemented for 

the first time at ITESO integrated circuits laboratory. 

In Chapter 3, the design, verification, and physical implementation of a digital integrated 

circuit that calculates the reciprocal of the square root of a 16-bit fixed-point number were 

presented. It was proved that all the results of the proposed silicon IP are bit-accurate and have a 

latency of only two clock cycles. The results of the experimental measurements of the 

manufactured ASIC on 130 nm CMOS technology were reported. A comparison of the results of 

the proposed 2C-RSR unit with previously published designs was done; it was shown that the 

power consumption and latency of the proposed silicon IP are lower. It was then confirmed that 

these characteristics are suitable for using the 2C-RSR chip in embedded system applications with 

low-power consumption and low-computational cost. 
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To evaluate the computational cost and take advantage of the characteristics of the IEEE 

754-2008 half-precision floating-point format, in Chapter 4 of this doctoral dissertation the design 

and implementation of another IP core (HF-2cRSR) that calculates the reciprocal of the square 

root was documented. The same algorithm was implemented as that one used in the first 

implementation, however, in this case, 16-bit floating-point arithmetic was used. To illustrate the 

development of the proposed IP core using this type of arithmetic, the design of a 23-bit floating-

point multiplier, tailored to be used in the HF-2cRSR unit, was presented in detail. This second 

implementation satisfies the accuracy specification defined by the IEEE 754-2008 standard. The 

HF-2cRSR IP was compared with commercial IP cores from Intel and Xilinx that were 

implemented on FPGAs. The results of the performed comparisons showed the advantages of the 

proposed implementation low latency and the positive impact of using half-precision floating-point 

arithmetic on the required hardware resources and on the word size of the multiplier circuits. 

The following research lines are suggested for those interested in giving continuity to this 

research project or in developing other derived research lines. 

The implemented algorithm in the two proposed IP cores uses a 14-segment piecewise-

polynomial approximation in a reduced range of the RSR function. In such algorithm, the selection 

of the number of segments and their location were performed experimentally to achieve the 

required accuracy. It is suggested, in order to develop a new version of the proposed IP core or for 

implementing any other IP core, to use function-segmentation methodologies [Trejo-Arellano-17], 

[Lee-09], for optimizing the number of segments and their location. This could help to obtain a 

better approximation to the function and a reduction of the required hardware resources to 

implement it due to the segment number optimization. Furthermore, new methods could be 

experimented for calculating the seed that the Newton-Raphson method requires, for example, 

hardware implementations of the magic-number based algorithm [Lomont-03] could be explored, 

using low-precision floating-point arithmetic with tailored-word size for a specific application. 

The IP cores implemented in this project met with the maximum accuracy specification for 

16-bit binary arithmetic, which increased the use of hardware resources. However, there are low-

precision tolerant applications in the areas of deep learning, fuzzy logic, and encryption algorithms 

for IoT, among others. It is recommended to identify some specific application in the previously 

mentioned fields and developing tailored IP cores with the required precision and power 

consumption by the application. The developed half-precision floating-point modules in this 
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research project (multiplier, adder, squaring, and RSR) can be modified and completed to create a 

library of tailored arithmetic IP cores, which can be reused to implement the previously identified 

low-precision tolerant applications. 

It is suggested to explore low-power design techniques such as clock and power-supply 

gating. This can be added to the implemented workflow at ITESO integrated circuits laboratory 

with the purpose of applying these techniques to IP cores to be developed. 

Another possibility is to develop macromodels based on low-precision floating-point 

arithmetic functions, using Matlab language or another programming language, to perform 

analysis of the required precision in algorithms, functions, and modules to be implemented. The 

macromodels will help quantify the approximation error and determine the optimal-word size for 

the algorithms or functions to be implemented. 

Finally, if an RSR unit with higher working frequency than the implemented IP cores is 

required, the proposed architecture could be modified to create a pipelined architecture to reduce 

the critical datapath of the current architecture, which is defined by the multipliers and adders. 
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Conclusiones Generales 

En esta tesis doctoral se presentó el diseño e implementación en tecnología de circuito 

integrado de aplicación específica (ASIC) de dos unidades aritméticas para calcular el recíproco 

de la raíz cuadrada (RSR). El propósito de las implementaciones fue incursionar en el desarrollo 

de núcleos de propiedad intelectual en tecnología VLSI para aplicaciones en sistemas embebidos 

de baja potencia y bajo costo computacional. Las dos implementaciones propuestas utilizan un 

algoritmo basado en el método de Newton-Raphson y en una aproximación polinomial por partes 

en un rango reducido de la función RSR. La primera implementación propuesta, 2C-RSR, utiliza 

aritmética de punto fijo en un formato de 16 bits, Q(16,11,u). La segunda implementación, HF-

2cRSR, aprovecha el estándar IEEE 754-2008 de media precisión de punto flotante. 

Para poder realizar las implementaciones propuestas, se requería contar en el laboratorio 

de circuitos integrados del ITESO con herramientas de diseño asistido por computadora (CAD) y 

alguna biblioteca de tecnología CMOS para desarrollar el diseño de ASICs digitales y conocer el 

flujo de diseño de circuitos integrados digitales utilizando herramientas de síntesis. En el Capítulo 

1 de esta tesis doctoral se presentó el flujo de diseño de ASICs digitales, se describieron algunas 

de las herramientas de Cadence® para soportar dicha tarea, y se seleccionaron las herramientas 

CAD que se instalaron en el laboratorio de circuitos integrados del ITESO; lo anterior habilitó el 

laboratorio para que los usuarios puedan realizar diseño digital de ASICs. 

 En el Capítulo 2 se describieron de forma detallada los componentes fundamentales para 

realizar diseño de ASICs digitales, se seleccionó una tecnología CMOS específica (8RF-DM, 130 

nm) para poder fabricar los diseños propuestos. Además, se reportaron el flujo de trabajo y los 

resultados de la primera fase del flujo de diseño de un ASIC digital, denominada síntesis lógica, 

la cual fue realizada por primera vez en el laboratorio de circuitos integrados del ITESO. 

 En el Capítulo 3 se presentó el diseño, verificación, e implementación física de un circuito 

integrado digital que calcula el recíproco de la raíz cuadrada de un numero de 16 bits en punto fijo. 

Se comprobó que los 16 bits de todos los resultados de la IP de silicio propuesta son exactos y 

tienen una latencia de solamente dos ciclos de reloj. Se reportaron los resultados de las mediciones 

experimentales del ASIC manufacturado en tecnología CMOS de 130 nm. Se realizó una 

comparación de los resultados del circuito integrado 2C-RSR con diseños publicados previamente 
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y se demostró que las características de consumo de potencia y latencia del núcleo IP propuesto 

son menores. Por lo tanto, se confirmó que dichas características son adecuadas para utilizar la IP 

2C-RSR en aplicaciones de sistemas embebidos de bajo consumo de potencia y bajo costo 

computacional. 

Para evaluar el costo computacional y aprovechar las características del formato de punto 

flotante y media precisión que ofrece el estándar 754-2008 del IEEE, en el Capítulo 4 de esta tesis 

doctoral se documentó el diseño e implementación de otro núcleo IP (HF-2cRSR) que calcula el 

recíproco de la raíz cuadrada. Se implementó el mismo algoritmo que el utilizado en la primera 

implementación, sin embargo, en este caso se usó aritmética de punto flotante de 16 bits. Para 

ejemplificar el desarrollo de la IP propuesta utilizando esté tipo de aritmética, se presentó en forma 

detallada el diseño de un multiplicador de punto flotante de 23-bits, realizado a la medida para ser 

utilizado en la unidad HF-2cRSR. Esta segunda implementación cumple con la especificación de 

exactitud definida por el estándar 754-2008 del IEEE. Se realizó la comparación la IP HF-2cRSR 

con núcleos IP comerciales de Intel y Xilinx que fueron implementados en FPGAs. Los resultados 

de las comparaciones realizadas mostraron las ventajas de la baja latencia de la implementación 

propuesta y el impacto positivo de utilizar aritmética de punto flotante de media precisión en los 

recursos de hardware requeridos y en el tamaño de palabra de los circuitos multiplicadores. 

Enseguida se sugieren algunas líneas de investigación para darle continuidad a este 

proyecto de investigación, o para emprender otros que se pueden derivar de éste. 

El algoritmo implementado en los dos núcleos IP propuestos, utiliza una aproximación 

polinomial por partes de 14 segmentos en un rango reducido de la función RSR. En el algoritmo 

implementado, la selección del número de segmentos y su localización se realizó de forma 

experimental hasta lograr la exactitud requerida. Se propone, para desarrollar una nueva versión 

los núcleos IP propuestos o para implementar otra función, utilizar metodologías de segmentación 

de funciones [Trejo-Arellano-17], [Lee-09], para optimizar el número de segmentos y su 

localización, lo cual puede contribuir a obtener una mejor aproximación a la función y una 

reducción de recursos de hardware requeridos para implementarla. Esto es debido a la 

optimización del número de segmentos. También se podría experimentar con nuevos métodos para 

el cálculo de la semilla que requiere el método de Newton-Raphson, por ejemplo, se podrían 

explorar realizaciones en hardware del algoritmo basado en el número mágico [Lomont-03], 

usando aritmética de punto flotante de baja precisión, con tamaño de palabra a la medida de alguna 
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aplicación específica. 

Los núcleos IP implementados en este proyecto cumplen con la máxima especificación de 

exactitud que se puede lograr con aritmética binaria de 16 bits, lo cual incrementa el uso de 

recursos de hardware. Sin embargo, existen aplicaciones tolerantes a baja precisión en las áreas de 

aprendizaje profundo, lógica difusa, y algoritmos de encriptación para IoT, entre otras. Se 

recomienda identificar alguna aplicación específica en dichos campos y desarrollar los núcleos IP 

a la medida, con la precisión y consumo de potencia requerida por la aplicación. Los núcleos de 

punto flotante de media precisión desarrollados en este proyecto de investigación (multiplicador, 

sumador, elevación al cuadrado, y RSR) pueden ser reutilizados, modificados, y completados para 

crear una biblioteca de núcleos IP aritméticos, los cuales se puedan reusar para implementar las 

aplicaciones tolerantes a baja precisión previamente identificadas. 

También se sugiere explorar técnicas de diseño para bajo consumo de potencia, por 

ejemplo, apagado de señal de reloj y fuente de alimentación, las cuales se puede agregar al flujo 

de trabajo implementado en el laboratorio de circuitos integrados del ITESO. Lo anterior con el 

propósito de aplicar dichas técnicas a los núcleos IP a desarrollar. 

Otra línea de posible trabajo futuro consiste en desarrollar macromodelos basados en 

funciones aritméticas de punto flotante y baja precisión, en lenguaje de Matlab o en otro lenguaje 

de programación, que sirvan para hacer análisis de la precisión requerida en los algoritmos, 

funciones y módulos que se pretendan implementar. Los macromodelos ayudarían a cuantificar el 

error de aproximación y a dimensionar el tamaño de palabra óptimo para el algoritmo o función a 

implementar. 

Finalmente, si se requiere una unidad RSR con una frecuencia de trabajo más alta que los 

núcleos IP implementados, la arquitectura propuesta podría modificarse para crear una arquitectura 

segmentada para reducir la ruta de datos crítica de la arquitectura actual, que está definida por los 

multiplicadores y sumadores.  

 

 

 





 

105 

Appendix 
 

 

 





 

107 

A. LIST OF INTERNAL RESEARCH REPORTS  

1) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Digital integrated circuit design flow 

using Cadence tools at ITESO,” Internal Report PhDEngScITESO-13-04-R, ITESO, 

Tlaquepaque, Mexico, Dec. 2013.  

2) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Fundamental components for 

implementing digital VLSI frontend design at ITESO,” Internal Report PhDEngScITESO-14-

04-R, ITESO, Tlaquepaque, Mexico, Aug. 2014.  

3) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Logical synthesis of a basic sequential 

circuit using RTL Compiler,” Internal Report PhDEngScITESO-14-10-R, ITESO, 

Tlaquepaque, Mexico, Dec. 2014.  

4) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, and L. Pizano-Escalante, “Proposal for 

MOSIS to fabricate a fast bit-accurate reciprocal square root circuit prototype under its 

educational research program,” Internal Report PhDEngScITESO-14-21-R, ITESO, 

Tlaquepaque, Mexico, Dec. 2014.  

5) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Logical effort method for estimating 

path delay of synthesized logic circuits using global foundries 8RF-DM 130nm technology,” 

Internal Report PhDEngScITESO-15-22-R, ITESO, Tlaquepaque, Mexico, Dec. 2015.  

6) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Test-vector generator for testing a 16-

bit reciprocal square root integrated circuit,” Internal Report PhDEngScITESO-16-33-R, 

ITESO, Tlaquepaque, Mexico, Dec. 2016.  

7) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, and L. Pizano-Escalante, “A two-cycle bit-

accurate fixed-point reciprocal square root algorithm,” Internal Report PhDEngScITESO-17-

42-R, ITESO, Tlaquepaque, Mexico, Dec. 2017.  

8) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, and L. Pizano-Escalante, “VLSI architecture 

of a two-cycle bit-accurate fixed-point reciprocal square root unit,” Internal Report 

PhDEngScITESO-17-47-R, ITESO, Tlaquepaque, Mexico, Dec. 2017.  

9) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, L. Pizano-Escalante, J. Vazquez-Castillo, 

and M. Salim-Maza, “On-chip implementation of a low-latency bit-accurate reciprocal square 

root unit,” Internal Report PhDEngScITESO-18-10-R, ITESO, Tlaquepaque, Mexico, May 

2018.  



 

 108 

10) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, O. A. Guzmán-Ramos, and L. Pizano-

Escalante, “23-bit floating-point multiplier for a half-precision RSR unit,” Internal Research 

Report PhDEngScITESO-18-14-R, ITESO, Tlaquepaque, Mexico, May 2018.  

11) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, O. A. Guzmán-Ramos, and L. Pizano-

Escalante, “IEEE-754 half-precision floating-point low-latency reciprocal square root IP-

Core,” Internal Research Report PhDEngScITESO-18-25-R, ITESO, Tlaquepaque, Mexico, 

Sep. 2018. 

 

  



 

 109 

B. LIST OF PUBLICATIONS 

B.1.  Conference Papers 

 

1) C. R. Aguilera-Galicia, O. Longoria-Gandara, O. A. Guzmán-Ramos, and L. Pizano-Escalante, 

“IEEE-754 half-precision floating-point low-latency reciprocal square root IP-core,” in IEEE 

Latin-American Conf. on Communications (LATINCOM-2018), Guadalajara, Mexico, Nov. 

2018, vol. 1, pp. 1-6. (ISSN: 2330-989X; p-ISBN: 978-1-5386-6755-2; e-ISBN: 978-1-5386-

6754-5; DOI: 10.1109/LATINCOM.2018.8613254). 

2) C. R. Aguilera-Galicia, O. Longoria-Gandara, and L. Pizano-Escalante, “Half-precision 

floating-point multiplier IP core based on 130 nm CMOS ASIC technology,” in IEEE Latin-

American Conf. on Communications (LATINCOM-2018), Guadalajara, Mexico, Nov. 2018, 

vol. 1, pp. 1-5. (ISSN: 2330-989X; p-ISBN: 978-1-5386-6755-2; e-ISBN: 978-1-5386-6754-

5; DOI: 10.1109/LATINCOM.2018.8613231). 

 

 

B.2.  Journal Paper 

 

1) C. R. Aguilera-Galicia, O. Longoria-Gandara, L. Pizano-Escalante, J. Vázquez-Castillo, and 

M. Salim-Maza, “On-chip implementation of a low-latency bit-accurate reciprocal square root 

unit,” Integration - the VLSI Journal, vol. 63, pp. 9-17, Sep. 2018. (ISSN: 0167-9260; 

published online: 26 May 2018; DOI: 10.1016/j.vlsi.2018.04.016). 

 

  



 

 110 

C. GLOSSARY  

Word or 

Acronym 
Meaning 

ADE Analog Design Environment 

AMS Analog Mixed Signal 

ATPG Automatic Test Pattern Generation 

CCOpt Clock Concurrent Optimization 

CDB Storage format for Cadence 5: Cadence Data Base 

CDCs Clock Domain Crossings 

CPF Common Power Format 

CPF Common Power Format 

DFM Design for Manufacturing 

DFY Design for Yield 

DRC Design Rule Checking 

DVFS Dynamic Voltage and Frequency Scaling 

ECO Engineering Change Order 

EDI Encounter Digital Implementation 

GDSII Is a data base file format for data exchange of IC layout 

GFM Global Focus Mapping 

ICFB Integrated Circuit Front to Back 

LOCV Location base On Chip Variation 

LPS 
Low Power Synthesis Option (Cadence tool for addressing low power 

design issues early in the design cycle) 

MDP Module Data Path 

MMMC Multi-Mode Multi Corner 

MSMV Multi Supply Multi Voltage 

MSV Multiple Supply Voltage 

MTCMOS power gating low power techniques 

NEQ Non-equivalence 

OA Storage format for Cadence 6: Open Access 

OSCI Open System C Initiative 

OVM Open Verification Methodology 

PPA Power Performance and Area 
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PSO Power Shut Off 

QoR Quality of Results 

QoS Quality of Silicon 

RDL Re-Distribution Layer 

SDC Synopsys Design Compiler 

SDR Segment Representative Design 

SKILL Cadence Scripting environment/language 

SMART 
Signal Integrity, Manufacturing Aware Routability and Timing 

Optimization 

Spectre Cadence’s SPICE 

SPP Tool to convert spice to Spectre 

SSTA Statistical Static Timing Analysis 

TCF 
Toggle Count Format: A special input file to low power synthesis in 

Cadence tool 

TNS Total Negative slack 

UVM Universal Verification Methodology 

VIP Verification IP 
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D. RTL COMPILER LOGIC-SYNTHESIS SCRIPT 

#### Template Script for RTL->Gate-Level Flow (generated from RC v12.10-s012_1) 
## Cuauhtemoc Aguilera 
## ITESO 
 
if {[file exists /proc/cpuinfo]} { 
  sh grep "model name" /proc/cpuinfo 
  sh grep "cpu MHz"    /proc/cpuinfo 
} 
 
puts "Hostname : [info hostname]" 
 
############################################################################## 
## A      Presetting Global Variables and Attributes 
############################################################################## 
 
## In this template DESIGN is the name of the top level module 
 
set DESIGN bwco 
 
## This design use the Virginia Tech 180nm standard-cell library. Next line defines a frienly name  
set my_stdcell_library vtvt_tsmc180.lib 
 
## Next line defines a frienly name for the Viriginia Tech LEF library 
set my_lef_library {/home/usuario/Cuauh/BibliotecasSCells/convert/cdb/vtvt_tsmc180_lef/vtvt_tsmc180.lef} 
 
set SYN_EFF medium 
 
###set MAP_EFF medium 
set MAP_EFF high 
set DATE [clock format [clock seconds] -format "%b%d-%T"]  
set _OUTPUTS_PATH outputs_${DATE} 
set _REPORTS_PATH reports_${DATE} 
set _LOG_PATH logs_${DATE} 
##set ET_WORKDIR <ET work directory> 
 
######################################################### 
## B   Specifying Explicit Serch Path Attributes 
######################################################### 
set_attribute lib_search_path {/home/usuario/Cuauh/BibliotecasSCells/convert/cdb/Synopsys_Libraries/libs} /  
 
set_attribute script_search_path {.} / 
 
set_attribute hdl_search_path {/home/usuario/Cuauh/Cadence/my_designs/bwco} / 
 
##Uncomment and specify machine names to enable super-threading. 
##set_attribute super_thread_servers {<machine names>} / 
 
##Default undriven/unconnected setting is 'none'.   
##set_attribute hdl_unconnected_input_port_value 0 | 1 | x | none / 
##set_attribute hdl_undriven_output_port_value   0 | 1 | x | none / 
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##set_attribute hdl_undriven_signal_value        0 | 1 | x | none / 
##set_attribute wireload_mode <value> / 
 
## next attribute controls the amount of information RTL produce  
## when executing commands. The higher the value, the more verbose the output (0-9) 
set_attribute information_level 9 / 
 
############################################################### 
##  C   Setting the Target Technology Library (Library setup) 
############################################################### 
 
set_attribute library $my_stdcell_library / 
 
############################################################### 
## D  Setting the Synthesis Mode 
############################################################### 
 
## PLE (PHYSICAL LAYOUT ESTIMATOR) 
 
set_attribute lef_library $my_lef_library / 
 
## set_attribute cap_table_file <file> / 
 
##generates <signal>_reg[<bit_width>] format 
#set_attribute hdl_array_naming_style %s\[%d\] /   
 
## Turn on TNS, affects global and incr opto 
## Forces optimization for all the endpoints (Total Negative Slack) 
 
set_attribute tns_opto true / 
 
#################################################################### 
## E  Loading the Design (HDL files) 
#################################################################### 
 
set_attribute hdl_language v2001 
 
read_hdl -v2001 {contador_m16.v contador_comparador.v bwco.v } 
 
#################################################################### 
## F Performing Elaboration 
#################################################################### 
 
elaborate $DESIGN 
 
puts "Runtime & Memory after 'read_hdl'" 
timestat Elaboration 
 
## Reports all the information for the design (undriven, multidriven, ports and pins, etc.) 
## with a summary at the end 
 
puts "Saving check_design_${DESIGN}_all.txt" 
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check_design -all > check_design_${DESIGN}_all.txt 
 
#################################################################### 
## G Applying Constraints 
#################################################################### 
 
## read_sdc <file_name> 
 
read_sdc {/home/usuario/Cuauh/Cadence/my_designs/bwco/ucf_bwco_sdc.sdc} 
 
puts "The number of exceptions is [llength [find /designs/$DESIGN -exception *]]" 
 
## Check syntax  
# set_attribute force_wireload <wireload name> "/designs/$DESIGN" 
## Forces RTL Compiler to use the specified wire-load model 
## auto_select automatically selects wire-load models according to the 
## wire-load selection table or default wire-load model in the technology library. 
 
#set_attribute force_wireload [find /designs/$DESIGN] 
 
## set_attribute force_wireload [find [find / -library $my_stdcell_library] \ 
## -wireload "10x10"] [find / -design $DESIGN] 
 
## Creating reports folders 
 
if {![file exists ${_LOG_PATH}]} { 
  file mkdir ${_LOG_PATH} 
  puts "Creating directory ${_LOG_PATH}" 
} 
if {![file exists ${_OUTPUTS_PATH}]} { 
  file mkdir ${_OUTPUTS_PATH} 
  puts "Creating directory ${_OUTPUTS_PATH}" 
} 
 
if {![file exists ${_REPORTS_PATH}]} { 
  file mkdir ${_REPORTS_PATH} 
  puts "Creating directory ${_REPORTS_PATH}" 
} 
 
## report timing -ling: 
## Reports, in an abbreviated output, possible timing problems in 
## the design. These problems can be caused by generated 
## clocks, paths constrained with different clocks, ports that have 
## no external delays, primary inputs that have no external driver 
## or input transition set, primary outputs without external load, 
## timing exceptions that cannot be satisfied, constraints that may 
## have no impact on the design, and so on. 
 
puts "####################" 
puts "Timing -lint Report" 
puts "####################" 
 
report timing -lint 
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################################################################################### 
## H     Applying Optimization Constraints 
## Define cost groups (clock-clock, clock-output, input-clock, input-output) 
################################################################################### 
 
## Uncomment to remove already existing costgroups before creating new ones. 
## rm [find /designs/* -cost_group *] 
 
puts "Defining Cost Groups" 
 
if {[llength [all::all_seqs]] > 0} {  
  define_cost_group -name I2C -design $DESIGN 
  define_cost_group -name C2O -design $DESIGN 
  define_cost_group -name C2C -design $DESIGN 
  path_group -from [all::all_seqs] -to [all::all_seqs] -group C2C -name C2C 
  path_group -from [all::all_seqs] -to [all::all_outs] -group C2O -name C2O 
  path_group -from [all::all_inps]  -to [all::all_seqs] -group I2C -name I2C 
} 
 
define_cost_group -name I2O -design $DESIGN 
path_group -from [all::all_inps]  -to [all::all_outs] -group I2O -name I2O 
foreach cg [find / -cost_group *] { 
  report timing -cost_group [list $cg] >> $_REPORTS_PATH/${DESIGN}_pretim.rpt 
} 
 
#### To turn off sequential merging on the design  
#### uncomment & use the following attributes: 
 
##set_attribute optimize_merge_flops false / 
##set_attribute optimize_merge_latches false / 
#### For a particular instance use attribute 'optimize_merge_seqs' to turn off sequential merging.  
 
#############################################################################################
####### 
## I Performing Synthesis  
## Synthesizing to generic  
#############################################################################################
####### 
 
synthesize -to_generic -eff $SYN_EFF 
puts "Runtime & Memory after 'synthesize -to_generic'" 
timestat GENERIC 
report datapath > $_REPORTS_PATH/${DESIGN}_datapath_generic.rpt 
generate_reports -outdir $_REPORTS_PATH -tag generic 
summary_table -outdir $_REPORTS_PATH 
 
#############################################################################################
####### 
## I Performing Synthesis  
## Synthesizing to gates 
#############################################################################################
####### 
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synthesize -to_mapped -eff $MAP_EFF -no_incr 
puts "Runtime & Memory after 'synthesize -to_map -no_incr'" 
timestat MAPPED 
report datapath > $_REPORTS_PATH/${DESIGN}_datapath_map.rpt 
 
foreach cg [find / -cost_group *] { 
  report timing -cost_group [list $cg] > $_REPORTS_PATH/${DESIGN}_[basename $cg]_post_map.rpt 
} 
generate_reports -outdir $_REPORTS_PATH -tag map 
summary_table -outdir $_REPORTS_PATH 
 
 
##Intermediate netlist for LEC verification.. 
write_hdl -lec > ${_OUTPUTS_PATH}/${DESIGN}_intermediate.v 
write_do_lec -revised_design ${_OUTPUTS_PATH}/${DESIGN}_intermediate.v -logfile 
${_LOG_PATH}/rtl2intermediate.lec.log > ${_OUTPUTS_PATH}/rtl2intermediate.lec.do 
 
## ungroup -threshold <value> 
#############################################################################################
######### 
## I Performing Synthesis  
## Incremental Synthesis 
#############################################################################################
########## 
 
## Uncomment to remove assigns & insert tiehilo cells during Incremental synthesis: 
 
## Removes assigns statements and replaces with buffer/inverter 
##set_attribute remove_assigns true / 
 
## Controls the aspects of the replacement of assign statements in the design with buffers or 
## inverters, which is controlled by the remove_assigns root attribute 
 
##set_remove_assign_options -buffer_or_inverter <libcell> -design <design|subdesign>  
 
## Determines whether a constant assignment should be replaced with a tie cell in the netlist 
##set_attribute use_tiehilo_for_const <none|duplicate|unique> / 
 
synthesize -to_mapped -eff $MAP_EFF -incr    
generate_reports -outdir $_REPORTS_PATH -tag incremental 
summary_table -outdir $_REPORTS_PATH 
 
puts "Runtime & Memory after incremental synthesis" 
timestat INCREMENTAL 
 
foreach cg [find / -cost_group -null_ok *] { 
  report timing -cost_group [list $cg] > $_REPORTS_PATH/${DESIGN}_[basename $cg]_post_incr.rpt 
} 
################################################### 
## Spatial mode optimization 
################################################### 
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## Uncomment to enable spatial mode optimization 
##synthesize -to_mapped -spatial 
 
#############################################################################################
######### 
## write Encounter file set (verilog, SDC, config, etc.) 
#############################################################################################
######### 
##write_encounter design -basename <path & base filename> -lef <lef_file(s)> 
 
## Reports the critical path slack, total negative slack (TNS), number of gates on the critical path, 
## and number of violating paths for each cost group. It also gives the instance count, total area 
## (net and cell area), cell area, runtime, and host name information 
 
 
############################################# 
## J Reporting Synthesis Results 
############################################# 
report qor > $_REPORTS_PATH/${DESIGN}_qor.rpt 
report area > $_REPORTS_PATH/${DESIGN}_area.rpt 
report datapath > $_REPORTS_PATH/${DESIGN}_datapath_incr.rpt 
report messages > $_REPORTS_PATH/${DESIGN}_messages.rpt 
report gates > $_REPORTS_PATH/${DESIGN}_gates.rpt 
 
## Generates all the files needed to reload the session in RTL Compiler (for example, .g, .v.and .tcl files) 
## If you want to generate all the files that are need to loaded in both a RTL 
## Compiler and Encounter session, use the -encounter option 
write_design -basename ${_OUTPUTS_PATH}/${DESIGN}_m -encounter $DESIGN 
 
## Generates one of the following design implementations in Verilog format: 
## a) A structural netlist using generic logic 
## b) A structural netlist using mapped logic 
write_hdl  > ${_OUTPUTS_PATH}/${DESIGN}_m.v 
 
############################################# 
## K  Writing Out Files for Place and Route Tool 
############################################# 
## Generates a script that contains the timing for all modes and  
## the design rule constraints of the design 
write_script > ${_OUTPUTS_PATH}/${DESIGN}_m.script 
 
## Writes out the current design constraints in Synopsys Design Constraint (SDC) format 
write_sdc > ${_OUTPUTS_PATH}/${DESIGN}_m.sdc 
 
################################# 
### write_do_lec 
################################# 
## Translates RTL Compiler settings to Encounter Conformal Logical Equivalence Checking commands 
write_do_lec -golden_design ${_OUTPUTS_PATH}/${DESIGN}_intermediate.v -revised_design 
${_OUTPUTS_PATH}/${DESIGN}_m.v -logfile  ${_LOG_PATH}/intermediate2final.lec.log > 
${_OUTPUTS_PATH}/intermediate2final.lec.do 
 
##Uncomment if the RTL is to be compared with the final netlist.. 
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write_do_lec -revised_design ${_OUTPUTS_PATH}/${DESIGN}_m.v -logfile ${_LOG_PATH}/rtl2final.lec.log > 
${_OUTPUTS_PATH}/rtl2final.lec.do 
 
puts "Final Runtime & Memory." 
timestat FINAL 
puts "============================" 
puts "Synthesis Finished ........." 
puts "============================" 
 
## Copy the rc log to the specifyed path  
file copy [get_attr stdout_log /] ${_LOG_PATH}/. 
 
################################# 
### L Exiting RTL Compiler  
################################# 
 
## quit 
## exit 
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