

INSTITUTO TECNOLÓGICO

Y DE ESTUDIOS SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018,

publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

DOCTORADO EN CIENCIAS DE LA INGENIERÍA

DISEÑO E IMPLEMENTACIÓN DE UNIDADES DE RAÍZ

CUADRADA INVERSA EN TECNOLOGÍA ASIC DIGITAL

PARA APLICACIONES EMBEBIDAS DE BAJA POTENCIA

Tesis que para obtener el grado de

DOCTOR EN CIENCIAS DE LA INGENIERÍA

presenta: Cuauhtémoc Rafael Aguilera Galicia

Director de tesis: Dr. Omar Humberto Longoria Gándara

Co-director de tesis: Dr. José Luis Pizano Escalante

Tlaquepaque, Jalisco. Marzo de 2019

DOCTOR EN CIENCIAS DE LA INGENIERÍA (2019) ITESO, Tlaquepaque, Jal., México

TÍTULO: Diseño e implementación de unidades de raíz cuadrada

inversa en tecnología ASIC digital para aplicaciones

embebidas de baja potencia

AUTOR: Cuauhtémoc Rafael Aguilera Galicia

Ingeniero en Telecomunicaciones y Electrónica (Universidad

de Guanajuato, México)

Maestro en Diseño Electrónico (ITESO, México)

DIRECTOR DE TESIS: Omar Humberto Longoria Gándara

Departamento de Electrónica, Sistemas e Informática, ITESO

Ingeniero en Electrónica y Comunicaciones (ITESM, Campus

Monterrey, México)

Maestro en Ciencias de Ingeniería Eléctrica, opción

Telecomunicaciones (CINVESTAV, México)

Doctor en Ciencias de Ingeniería Eléctrica, opción

Telecomunicaciones (CINVESTAV, México)

NÚMERO DE PÁGINAS: xxiii, 131

ITESO – The Jesuit University of Guadalajara

Department of Electronics, Systems, and Informatics

DOCTORAL PROGRAM IN ENGINEERING SCIENCES

DESIGN AND IMPLEMENTATION OF RECIPROCAL SQUARE ROOT

UNITS ON DIGITAL ASIC TECHNOLOGY FOR LOW POWER

EMBEDDED APPLICATIONS

Thesis to obtain the degree of

DOCTOR IN ENGINEERING SCIENCES

Presents: Cuauhtémoc Rafael Aguilera-Galicia

Thesis Director: Dr. Omar Humberto Longoria-Gandara

Thesis Co-director: Dr. José Luis Pizano-Escalante

Tlaquepaque, Jalisco, Mexico

March 2019

PHD IN ENGINEERING SCIENCES (2019) ITESO, Tlaquepaque, Jal., Mexico

TITLE: Design and Implementation of Reciprocal Square Root

Units on Digital ASIC Technology for Low Power

Embedded Applications

AUTHOR: Cuauhtémoc Rafael Aguilera-Galicia

Bachelor’s degree in telecommunications and electronics

engineering (University of Guanajuato, Mexico)

Master’s degree in electrical engineering (ITESO, Mexico)

THESIS DIRECTOR: Omar Humberto Longoria-Gándara

Department of Electronics, Systems, and Informatics, ITESO

Bachelor’s degree in electronics engineering (ITESM, Mexico)

Master’s degree in electrical engineering (CINVESTAV,

Mexico)

Ph.D. degree in electrical engineering (CINVESTAV, Mexico)

NUMBER OF PAGES: xxiii, 131

v

To all humans who want to make this world a better place for all living beings.

vii

Resumen

Aplicaciones emergentes tales como el internet de las cosas (IoT, por sus siglas en inglés), ciudades

inteligentes, y vehículos autónomos, demandan sistemas electrónicos más eficientes y más

pequeños. Esto impone la necesidad de desarrollar dichos sistemas con bajo consumo de energía,

tamaño reducido, y tiempos de desarrollo cortos para un mercado mundial. En este escenario, el

desarrollo de sistemas en circuito integrado (SOC, por sus siglas en inglés) es una solución

atractiva y viable, ya que las tecnologías SOC permiten realizar diseños a la medida, en tecnologías

nanométricas, y con arquitecturas y tecnologías para bajo consumo de potencia. Un SOC se

desarrolla con la integración de múltiples módulos pequeños previamente diseñados y verificados,

los cuales son conocidos como propiedades intelectuales de semiconductor o núcleos IP. Esta tesis

doctoral plantea el diseño e implementación de núcleos IP implementados en tecnologías de

circuito integrado de aplicación específica (ASIC, por sus siglas en inglés). En particular se

presenta el diseño e implementación de dos núcleos IP para calcular el recíproco de la raíz cuadrada

(RSR, por sus siglas en inglés). La operación RSR es una de las operaciones fundamentales más

complejas; su ejecución requiere varios ciclos de reloj y es altamente demandante de recursos de

hardware. Esta operación es utilizada en sistemas de comunicaciones inalámbricas, renderizado de

imágenes en sistemas multimedia, entre otras aplicaciones. El algoritmo implementado para

calcular la operación RSR está basado en el método de Newton-Raphson, donde la semilla es

proporcionada por una aproximación polinomial por partes. El primer núcleo IP propuesto, 2C-

RSR, utiliza aritmética de punto fijo con 16 bits, el cual fue manufacturado por MOSIS en

tecnología ASIC CMOS de 130 nm. Mediciones del circuito integrado propuesto son comparadas

con las de diseños existentes; los resultados muestran que las características de baja latencia y bajo

consumo de potencia de la IP 2C-RSR, son adecuadas para aplicaciones en sistemas embebidos de

bajo consumo de potencia y bajo costo computacional. El segundo núcleo IP propuesto, HF-

2cRSR, también calcula la operación RSR y utiliza aritmética de punto flotante de media precisión

(FP16); este formato está definido en el estándar 754-2008 del IEEE. La IP HF-2cRSR fue

implementada en dos tecnologías FPGA con el propósito de ser comparado con núcleos IP

comerciales de Intel y Xilinx. Los resultados muestran las ventajas de la baja latencia del HF-

2cRSR en su rendimiento, y el impacto del formato FP16 en los recursos utilizados.

ix

Summary

Current and emerging applications of information and communication technologies (ICT), such as

the internet of things (IoT), smart cities, autonomous vehicles, among others, demand more

efficient and smaller size electronic and computer systems. This imposes challenges to electronic

designers, to create the corresponding systems with low-power consumption, small size, and short

development times for a world market. In this scenario, the development of systems on chips

(SOC) is an attractive and viable solution because SOC technologies allow tailored designs in

nanometric technologies, and with architectures and technologies for low-power consumption. A

SOC is developed by the integration of multiple small modules previously designed and verified.

These modules are known as semiconductor intellectual properties or IP cores. This doctoral

dissertation proposes the design and implementation of IP cores implemented on ASIC technology.

Specifically, this document presents the design and implementation of two IP cores to calculate

the reciprocal of the square root (RSR). The RSR operation is one of the most complex

fundamental operations; its execution requires several clock cycles and it is highly demanding of

hardware resources. This operation is used in wireless communication systems, images rendering

for multimedia systems, among other applications. The implemented algorithm to calculate the

RSR operation is based on the Newton-Raphson method, were the seed is provided by a piecewise-

polynomial approximation. The first proposed IP core, 2C-RSR, uses 16-bit fixed-point arithmetic.

The 2C-RSR was manufactured by MOSIS on 130 nm CMOS ASIC technology. Experimental

measurements of the proposed integrated circuit are compared with corresponding existing

designs; the results show that the low latency and low-power consumption characteristics of the

2C-RSR are suitable for low power and low-computational cost embedded-system applications.

The second proposed IP core, HF-2cRSR, also calculates the RSR operation and it uses half-

precision floating-point (FP16) arithmetic to perform the computation. This arithmetic format is

defined by the IEEE 754-2008 standard. In addition to performing the logic synthesis of the HF-

2cRSR on ASIC technology, it was also implemented on two FPGA technologies with the purpose

of comparing with commercial IP cores from Intel and Xilinx. The results show the advantages of

the HF-2cRSR low latency on its throughput, and the impact of the FP16 format on the utilized

resources.

xi

Acknowledgements

The author wishes to express his sincere appreciation to Dr. Omar Humberto Longoria-

Gándara, professor of the Department of Electronics, Systems, and Informatics at ITESO, for his

encouragement, expert guidance and keen supervision as doctoral thesis director throughout the

course of this work. The author offers his gratitude to Dr. José Luis Pizano-Escalante, from the

Department of Electronics, Systems, and Informatics at ITESO, for his valuable contributions as

doctoral thesis co-director during the development of this work. He also thanks to Dr. Manuel

Salim-Maza, Dr. Víctor Avendaño-Fernández, and Dr. Javier Vázquez-Castillo, members of his

Ph.D. Thesis Committee, for their interest, assessment, and suggestions.

It is the author’s pleasure to express his thankfulness to Dr. José Ernesto Rayas-Sánchez

for his outstanding labor as Chair of this doctoral program, and his diligent and patient help with

the development of my internal research reports, and this thesis document.

The author is grateful to Dr. Dong S. Ha, professor of Virginia Tech for making the VTVT

180 nm standard-cell library available for this work.

Special thanks are due to Joaquín García, Oscar Guzmán, and Alfredo Delgado from Intel

Design Center of Guadalajara, for their decisive cooperation and help for testing the manufactured

integrated circuit developed in this doctoral dissertation.

The author thanks to Diego Armando Hernández-Ramírez for his valuable help to the

Cadence CAD tools set up.

The author gratefully acknowledges the authorities of ITESO for the financial support

through an assistantship granted by the ITESO’s Program for Academic Level Enhancement

(Programa de Superación del Nivel Académico, PSNA).

Finally, special thanks are due to my family and friends: my son Jonathan Rafael, my

parents Gloria Galicia and Rafael Aguilera, my sisters Lilia, Chelito, and Minerva, my brothers

Benito, and Salvador. My friends Joaquín Fortun, Miriam Galindo, and José María Valencia for

their help, understanding, and continuous loving support.

xiii

Contenido

Resumen ... vii

Summary .. ix

Agradecimientos ... xi

Contenido .. xiii

Contents .. xvii

Lista de Figuras .. xxi

Lista de Tablas ... xxiii

Introducción ... 1

1. Flujo de Diseño Digital de ASICs y Herramientas Cadence 5

1.1. FLUJO DE DISEÑO DIGITAL DE ASICS ... 6

 1.1.1 Primera Etapa del Diseño de un ASIC ... 6

1.1.1.1 Síntesis Lógica... 8

 1.1.2 Segunda Etapa del Diseño de un ASIC .. 8

1.2. HERRAMIENTAS CADENCE PARA DISEÑO DE ASICS DIGITALES 10

1.3. PROCESO DE SÍNTESIS LÓGICA .. 17

 1.3.1 Fase de Elaboración .. 19

 1.3.2 Fase de Síntesis ... 19

 1.3.3 Análisis y Reportes ... 20

1.4. CONCLUSIONES ... 21

2. Implementación de Diseño VLSI Digital en ITESO23

2.1. SELECCIÓN DEL PROCESO DE FABRICACIÓN DE CIRCUITOS INTEGRADOS 23

 2.1.1 Procesos de Fabricación de MOSIS ... 24

CONTENIDO

xiv

 2.1.2 Tipos de Cuentas Académicas de MOSIS y sus Características 24

2.2. COMPONENTES FUNDAMENTALES PARA DISEÑO VLSI DIGITAL AUTOMÁTICO 27

 2.2.1 Kit de Diseño de Proceso de la Universidad Estatal de Carolina del Norte 27

 2.2.2 Biblioteca de Celdas Estándar .. 28

 2.2.3 Biblioteca de Celdas Estándar de Virginia Tech .. 30

2.3. SÍNTESIS LÓGICA USANDO RTL COMPILER .. 32

 2.3.1 Circuito Digital a Sintetizar .. 33

 2.3.2 Entradas y Salidas del Flujo de Síntesis con RTL Compiler 35

 2.3.3 Archivo de Comandos para Síntesis con RTL Compiler 37

2.3.3.1 Definición de Variables Globales y Atributos ... 37

2.3.3.2 Especificación Explicita de Rutas de Búsqueda .. 37

2.3.3.3 Definición de Biblioteca de Tecnología .. 38

2.3.3.4 Definición del Modo de Síntesis .. 38

2.3.3.5 Lectura de Archivos HDL ... 39

2.3.3.6 Ejecución de la fase de Elaboración ... 39

2.3.3.7 Definición de Restricciones ... 40

2.3.3.8 Restricciones de Optimización .. 41

2.3.3.9 Ejecución de la Síntesis ... 41

2.3.3.10 Reportes de Resultados de Síntesis ... 42

2.3.3.11 Escritura de Archivos para la Herramienta de Colocación y Ruteo 42

2.3.3.12 Cerrando RTL Compiler ... 43

 2.3.4 Resultados de la Síntesis Lógica .. 43

2.3.4.1 Archivos de Salida ... 43

2.3.4.2 Reportes de Resultados de la Síntesis ... 44

2.4. CONCLUSIONES ... 48

3. Implementación en Chip de Unidad RSR de Punto Fijo, Baja Latencia y

Exacta a Nivel de Bit ..49

3.1. IMPORTANCIA DE LA RAÍZ CUADRADA INVERSA Y TRABAJOS PREVIOS 49

3.2. ALGORITMO 2C-RSR .. 51

 3.2.1 Propiedad Bit-Accurate... 52

 3.2.2 Descripción del Algoritmo 2C-RSR ... 53

 3.2.3 Método Newton-Raphson ... 53

 3.2.4 Cálculo de la Semilla .. 54

 3.2.5 Operaciones de Escalamiento y Desescalamiento .. 54

 3.2.6 Operación de Redondeo.. 55

3.3. ARQUITECTURA DEL HARDWARE DE LA UNIDAD 2C-RSR .. 55

CONTENIDO

 xv

 3.3.1 Detector de Desborde y Unidad de Control.. 56

 3.3.2 Módulo de Escalamiento .. 57

 3.3.3 Aproximación Polinomial y Módulo NR (PNR) .. 59

 3.3.4 Módulo de Desescalamiento ... 62

 3.3.5 Módulo de Redondeo ... 62

3.4. IMPLEMENTACIÓN EN ASIC DE LA UNIDAD 2C-RSR Y RESULTADOS 62

 3.4.1 Implementación en ASIC ... 62

 3.4.2 Resultados de la Medición del Chip ... 66

3.5. COMPARACIÓN DEL CHIP 2C-RSR CON PREVIOS DISEÑOS SINTETIZADOS 69

3.6. CONCLUSIONES ... 71

4. Núcleo IP RSR de Media Precisión IEEE-754 Punto Flotante y Baja

Latencia ...73

4.1. INTRODUCCIÓN A LOS NUMEROS PUNTO FLOTANTE DE MEDIA PRECISIÓN 74

4.2. OPERACIÓN RSR DE PUNTO FLOTANTE DE MEDIA PRECISIÓN 75

4.3. ARQUITECTURA DEL NÚCLEO IP HF-2CRSR .. 76

 4.3.1 Operaciones de Escalamiento y Desescalamiento de Punto Flotante 76

 4.3.2 Método Polinomial y de Newton-Raphson .. 77

 4.3.3 Operación de Redondeo Punto Flotante ... 79

 4.3.4 Módulo Codificador ... 80

 4.3.5 Selector de Salida y Unidad de Control.. 81

4.4. MULTIPLICADOR DE PUNTO FLOTANTE PARA EL NÚCLEO IP HF-2CRSR 81

 4.4.1 Requerimientos de Diseño del Multiplicador Punto Flotante 82

4.4.1.1 Rango de Entrada y Salida del Multiplicador FP ... 82

4.4.1.2 Tamaño de Palabra del Multiplicador FP .. 82

4.4.1.3 Modo de Redondeo del Multiplicador FP ... 83

 4.4.2 Arquitectura del Multiplicador Punto Flotante de 23 bits 84

4.4.2.1 Multiplicación Punto Flotante ... 84

4.4.2.2 Arquitectura de Hardware del Multiplicador de Punto Flotante 85

 4.4.3 Implementación y Verificación del Multiplicador FP de 23 bits 87

4.4.3.1 Verificación del Multiplicador FP de 23 bits .. 88

4.4.3.2 Resultados de la Síntesis Lógica del Multiplicador FP de 23 bits 90

4.5. RESULTADOS DE LA IMPLEMENTACIÓN DEL HF-2CRSR Y COMPARACIONES 91

 4.5.1 Implementación en FPGA .. 91

CONTENIDO

xvi

 4.5.2 Comparación del HF-2cRSR con Núcleos IP de Intel y Xilinx 94

 4.5.3 Implementación en Celdas Estándar... 95

4.6. CONCLUSIONES ... 95

General Conclusions ...97

Conclusiones Generales ...101

Apéndices ..105

A. LISTA DE REPORTES INTERNOS DE INVESTIGACIÓN ... 107

B. LISTA DE PUBLICACIONES ... 109

C. GLOSARIO ... 110

D. ARCHIVO DE COMANDOS PARA LA SÍNTESIS LÓGICA CON RTL COMPILER 112

Bibliografía ...119

Índice de Autores ...125

Índice de Términos...129

xvii

Contents

Resumen ... vii

Summary ... ix

Acknowledgements... xi

Contenido .. xiii

Contents ... xvii

List of Figures ... xxi

List of Tables .. xxiii

Introduction .. 1

1. Digital ASIC Design Flow and Cadence Tools .. 5

1.1. DIGITAL ASIC DESIGN FLOW ... 6

1.1.1 Front-End Design .. 6

1.1.1.1 Logic Synthesis .. 8

1.1.2 Back-End Design .. 8

1.2. CADENCE TOOLS FOR DIGITAL ASIC DESIGN FLOW ... 10

1.3. LOGIC SYNTHESIS PROCESS... 17

1.3.1 Elaboration Step .. 19

1.3.2 Synthesis Step ... 19

1.3.3 Analysis and Reports .. 20

1.4. CONCLUSIONS ... 21

2. Implementation of a Digital VLSI Front-End Design at ITESO23

2.1. SELECTION OF INTEGRATED CIRCUIT FABRICATION PROCESS 23

2.1.1 MOSIS Fabrication Processes... 24

CONTENTS

xviii

2.1.2 Kinds of MOSIS Academic Accounts and Their Characteristics 24

2.2. FUNDAMENTAL COMPONENTS FOR AUTOMATED DIGITAL VLSI DESIGN 27

2.2.1 The Process Design Kit of North Carolina State University 27

2.2.2 Standard-Cell Libraries ... 28

2.2.3 Virginia Tech Standard-Cell Library .. 30

2.3. LOGIC SYNTHESIS USING RTL COMPILER ... 32

2.3.1 Digital Circuit to Be Synthesized ... 33

2.3.2 RTL Compiler Synthesis Flow Inputs and Outputs .. 35

2.3.3 Synthesis Script for RTL Compiler .. 37

2.3.3.1 Presetting Global Variables and Attributes .. 37
2.3.3.2 Specifying Explicit Search Paths ... 37
2.3.3.3 Setting the Target Technology Library ... 38
2.3.3.4 Setting the Synthesis Mode .. 38
2.3.3.5 Loading the HDL Files .. 39
2.3.3.6 Performing Elaboration .. 39
2.3.3.7 Applying Constraints ... 40
2.3.3.8 Applying Optimization Constraints ... 41
2.3.3.9 Performing Synthesis ... 41
2.3.3.10 Reporting Synthesis Results... 42
2.3.3.11 Writing Out Files for Place-and-Route Tool ... 42
2.3.3.12 Exiting RTL Compiler ... 43

2.3.4 Logic Synthesis Results .. 43

2.3.4.1 Output Files ... 43
2.3.4.2 Synthesis Results Reports .. 44

2.4. CONCLUSIONS ... 48

3. On-Chip Implementation of Low-Latency Bit-Accurate Fixed-Point

RSR Unit ...49

3.1. RELEVANCE OF RECIPROCAL SQUARE ROOT AND PREVIOUS WORKS 49

3.2. 2C-RSR ALGORITHM .. 51

3.2.1 Bit-Accurate Property ... 52

3.2.2 Top-level Description of the 2C-RSR Algorithm ... 53

3.2.3 Newton-Raphson Method ... 53

3.2.4 Seed Computation ... 54

3.2.5 Scaling and De-scaling Operations ... 54

3.2.6 Rounding Operation .. 55

3.3. 2C-RSR HARDWARE ARCHITECTURE ... 55

CONTENTS

 xix

3.3.1 Overflow Detector and Control Unit .. 56

3.3.2 Scaling Module ... 57

3.3.3 Polynomial Approximation and NR Module (PNR) .. 59

3.3.4 De-scaling Module .. 62

3.3.5 Rounding Module ... 62

3.4. 2C-RSR ASIC IMPLEMENTATION AND RESULTS .. 62

3.4.1 ASIC Implementation ... 62

3.4.2 Results of Chip Measurements ... 66

3.5. COMPARISON OF 2C-RSR CHIP WITH PREVIOUSLY SYNTHESIZED DESIGNS 69

3.6. CONCLUSIONS ... 71

4. IEEE-754 Half-Precision Floating-Point Low-Latency RSR IP-Core73

4.1. INTRODUCTION TO HALF-PRECISION FLOATING POINT NUMBERS 74

4.2. HALF-PRECISION FLOATING-POINT RSR OPERATION ... 75

4.3. HF-2CRSR ARCHITECTURE .. 76

4.3.1 Floating-Point Scaling and De-scaling Operations ... 76

4.3.2 Polynomial and Newton-Raphson Method ... 77

4.3.3 Floating-Point Rounding Operation .. 79

4.3.4 Encoder Module .. 80

4.3.5 Output Selector and Control Unit ... 81

4.4. FLOATING-POINT MULTIPLIER FOR THE HF-2CRSR IP-CORE 81

4.4.1 Design Requirements of Floating-Point Multiplier .. 82

4.4.1.1 Input and Output Range of the FP Multiplier ... 82
4.4.1.2 Word Size of the FP Multiplier.. 82
4.4.1.3 Rounding Mode of the FP Multiplier .. 83

4.4.2 23-Bit FP Multiplier Architecture ... 84

4.4.2.1 Floating-Point Multiplication ... 84
4.4.2.2 Hardware Architecture of the Floating-Point Multiplier 85

4.4.3 Implementation and Verification of the 23-Bit FP Multiplier 87

4.4.3.1 Verification of the 23-bit FP Multiplier .. 88
4.4.3.2 Logic-Synthesis Results of the 23-bit FP Multiplier.. 90

4.5. HF-2CRSR IMPLEMENTATION RESULTS AND COMPARISONS .. 91

4.5.1 FPGA Implementation .. 91

4.5.2 Comparison of the HF-2cRSR with Xilinx and Intel IP Cores 94

4.5.3 Standard-Cell Based Implementation ... 95

CONTENTS

xx

4.6. CONCLUSIONS ... 95

General Conclusions ..97

Conclusiones Generales ...101

Appendix ...105

A. LIST OF INTERNAL RESEARCH REPORTS .. 107

B. LIST OF PUBLICATIONS .. 109

C. GLOSSARY ... 110

D. RTL COMPILER LOGIC-SYNTHESIS SCRIPT .. 112

Bibliography ...119

Author Index ..125

Subject Index ..129

xxi

List of Figures

Fig. 1.1 General digital ASIC design flow. ... 7

Fig. 1.2 General logic synthesis steps. .. 9

Fig. 1.3 Digital physical design implementation flow. ... 10

Fig. 1.4 Cadence tools training map for digital design using Encounter® technology............ 14

Fig. 1.5 Cadence tools for performing digital ASIC design flow. .. 16

Fig. 1.6 Generic RTL Compiler® workflow. ... 18

Fig. 2.1 Black-box of frequency divider circuit. Sequential digital circuit selected for

implementing the Encounter RTL Compiler workflow using the Virginia Tech

standard-cell library at ITESO integrated circuit laboratory. 33

Fig. 2.2 Frequency divider block-diagram. Sequential digital circuit selected for

implementing the Encounter RTL Compiler workflow using the Virginia Tech

standard cell at ITESO integrated circuit laboratory. .. 34

Fig. 2.3 Frequency divider circuit simulation results. ... 35

Fig. 2.4 Generic RTL Compiler synthesis workflow, inputs and outputs. 36

Fig. 2.5 Schematic diagram of frequency divider circuit (bwco) generated by RTL

Compiler. This is the graphical view of the gate-level netlist for the synthesized

circuit example. .. 44

Fig. 2.6 Gates report (bwco_gates.rpt): standard-cells used and required area for the

frequency divider circuit. ... 45

Fig. 2.7 Quality of silicon report (final.rpt): evolution of timing, cell numbers, and

required area for each synthesis stage. ... 46

Fig. 2.8 Quality of result report (bwco_qor.rpt): summary of critical path slack, total

negative slack of cost-groups, used standard cells, total area and estimated power

consumption. .. 47

Fig. 3.1 Hardware architecture of the 2C-RSR algorithm. .. 56

Fig. 3.2 Hardware architecture of the PNR module that performs the piecewise-

polynomial-seed computation and the NR iteration. The seed computation is

carried out in the first clock cycle (Sel = 0, En = 1) whereas the NR evaluation is

done in the second clock cycle (Sel = 1, En = 0). ... 57

Fig. 3.3 Physical design of the 2C-RSR integrated circuit. ... 64

Fig. 3.4 The 2C-RSR integrated circuit microphotograph. ... 64

Fig. 3.5 Pin layout of the 2C-RSR integrated circuit. ... 65

Fig. 3.6 Measurement of the 2C-RSR chip: test bench setup.. 65

LIST OF FIGURES

xxii

Fig. 3.7 Measurement of the 2C-RSR chip: timing diagram of the chip in operation. 66

Fig. 3.8 2C-RSR-chip output and error versus the double-precision values. 67

Fig. 3.9 2C-RSR chip-operating graph based on real data acquisition: input-output

response. ... 68

Fig. 3.10 Core total power consumption of the 2C-RSR chip versus clock frequency. 69

Fig. 4.1 IEEE 754-2008 half-precision floating-point format. .. 74

Fig. 4.2 Architecture of the half-precision floating-point RSR, HF-2cRSR. 77

Fig. 4.3 Floating-point polynomial Newton-Raphson architecture of the HF-2cRSR. 78

Fig. 4.4 Architecture of the 23-bit floating-point multiplier. .. 86

Fig. 4.5 Test environment for verifying the 23-bit floating-point multiplier. 87

Fig. 4.6 Functional verification of the 23-bit floating-point multiplier and comparison of

the output products with respect to the corresponding double-precision

calculated values. Reduced-range random inputs (−10 < X, Y < 10) are applied

to the multiplier. ... 88

Fig. 4.7 Relative error of the 23-bit FP multiplier versus double-precision FP

computation. ... 89

Fig. 4.8 Relative error histogram of the 23-bit FP multiplier with respect to the

corresponding double-precision calculated values. ... 90

Fig. 4.9 Comparison of the HF-2cRSR outputs with respect to double-precision values. 92

Fig. 4.10 HF-2cRSR relative errors with respect to double-precision FP values. 93

xxiii

List of Tables

Table 1.1. Some Digital ASIC Design Cadence Tools ... 12

Table 1.2. Logic Design Phases and Recommended Cadence Tools ... 13

Table 1.3. Recommended Cadence Tools for Digital ASIC Design at ITESO 15

Table 2.1. Summary of MOSIS Integrated Circuit Fabrication Processes 25

Table 2.2. MOSIS Educational Program Accounts and their Characteristics 26

Table 2.3. Views, Formats, and Cadence Tools in a Typical Standard-Cell Library 31

Table 3.1. Bit-Accurate Assertion ... 52

Table 3.2. Scaling Exponents and Intervals of x ... 58

Table 3.3. Bounds of the 14 Subintervals in which rr Range is Divided for the Piecewise-

Polynomial Approximation .. 60

Table 3.4. Floating-point, °, and Fixed-point, ¤, Coefficients for the Piecewise-Polynomial

Approximation ... 61

Table 3.5. Implementation Results Compared with Reference Designs 70

Table 4.1. Summary of Half-Precision Floating-Point Encoding ... 75

Table 4.2. Output Results for the HF-2cRSR IP Core .. 76

Table 4.3. Intervals of x and Scaling Exponents for Denormalized Numbers 80

Table 4.4. Intervals of x and Scaling Exponents for Normalized Numbers 81

Table 4.5. Rounding to Nearest with Tie to Even Criteria .. 84

Table 4.6. Specification of the 23-Bit FP Multiplier .. 84

Table 4.7. Specification of Multiplication for Positive FP Numbers .. 85

Table 4.8. Logical Synthesis of the 23-Bit FP Multiplier on 130 nm CMOS Technology 91

Table 4.9. Implementation Results Compared with Intel IP Core .. 94

Table 4.10. Implementation Results Compared with Xilinx IP Core ... 95

Table 4.11. Implementation Result Comparison of the Two Proposed IP Cores 96

1

Introduction

The increasing use of mobile computing platforms in commercial and everyday human

activities, demands more efficiency, smaller size, and higher functionality in the corresponding

electronic systems. Communication and multimedia technologies are essential in these systems

which are supported by digital signal processing (DSP) techniques. Therefore, there is a need for

DSP modules implemented in VLSI hardware that enable circuits with the performance, the silicon

area and the power consumption suitable for the specific application.

There are DSP algorithms of extensive and frequent use, which require intensive

computation that is performed commonly by a general-purpose microprocessor, making this the

processing system bottleneck. This type of algorithms could be performed in tailored VLSI

hardware with the aim of improving overall system performance in terms of speed, silicon area,

and power consumption. After implementing the digital signal processing algorithms in VLSI

circuits, these could be integrated into a system on a chip (SOC) through an intellectual-property

(IP) instantiation. Semiconductor intellectual properties, also known as IP cores, are proven and

reusable units, which can be implemented at different abstraction levels: generic logic, technology

cells or chip layout. They are classified on soft, firm, and hard IP cores and are part of a growing

trend in the electronic design industry because reducing design time (time-to-market) and could

improve overall system performance.

Two of the main electronic design challenges that current and future applications impose,

such as IoT and deep learning, are low-power consumption and system design based on modular

reusable components [Blaauw-14]. In front of this scenario, IP cores are essential elements of

design reuse and tailored design to achieve the requirements of silicon area and power

consumption.

An emerging approach to save energy in electronic systems design is approximate

computing [Ho-17], which is useful for many applications that are tolerant to low accuracy. For

example, in the deep-learning field it has been demonstrated that a neural-network accelerator can

be trained and implemented using half-precision floating-point (FP16) arithmetic [Venkatesh-17],

achieving high accuracy and performance in image classification, while reducing power-

consumption and computational requirements. For these kinds of applications, it is advantageous

INTRODUCTION

2

to trade off precision for gain in efficiency and performance. For example, in [Mittal-16] is shown

that admitting only 5% of classification-accuracy loss in the k-means clustering algorithm,

produces 50 times energy saving compared with respect to the fully accurate algorithm.

The reciprocal of the square root (RSR) is one of the most complex fundamental operations,

it demands many hardware resources and requires several clock cycles to be executed by a

sequential microprocessor. For instance, the RSR operation requires from 6 to 10 clock cycles on

Intel 64-bit architectures and approximately 60 clock cycles on an embedded microprocessor such

as the ARM Cortex-M4. The RSR operation is essential in many DSP algorithms where matrix

decomposition techniques are required for the solution of systems of linear equation. For example,

the singular value decomposition (SVD), which is applied in wireless communication systems for

modulation techniques such as the Orthogonal Frequency Division Multiplexing (OFDM); The

Cholesky decomposition for channel estimation; and the Gram-Schmidt QR decompositions for

matrix inversion. Furthermore, the RSR operation is applied in gaming for 3D-image rendering.

The motivation of this research work is the development of silicon IP cores for low-power

embedded applications. In this doctoral dissertation, is presented the design and implementation

of two arithmetic IP cores for computing the RSR operation. Both IP cores are based on the

Newton-Raphson algorithm, where the seed is provided by a piecewise-polynomial approximation

[Pizano-Escalante-15]. Several RSR implementations have been reported, however, they are

mainly focused on accelerating double-precision floating-point (FP64) units [Ercegovac-00],

[Piñeiro-02], or single-precision floating-point (FP32) units [Wires-06], [Kwon-08], [Suresh-13],

which are not suitable for low-power embedded applications. To this kind of applications, fixed-

point (FxP) arithmetic is preferred since utilize fewer hardware resources and lees power

consumption than floating-point (FP) arithmetic.

The first proposed implementation, 2C-RSR, is a hard-IP core implemented on an ASIC

CMOS technology of 130 nm. It computes the RSR of a 16-bit FxP number. The 2C-RSR IP core

was prototyped by MOSIS1, the chip produces a new result in only two clock cycles and all the

results are bit-accurate. Experimental measurements of the 2C-RSR chip show that its power

consumption is several times lower than previously published firm-IP cores, which are synthesized

designs on standard-cell technologies. Since the 2C-RSR IP-core exhibits the lowest latency with

respect to the compared implementations, it produces higher throughput at common working

1 The MOSIS Service, What is MOSIS. Jan. 24, 2019, https://www.mosis.com/what-is-mosis.

https://www.mosis.com/what-is-mosis

INTRODUCTION

 3

frequencies of low-power embedded applications. These characteristics make the proposed chip a

useful silicon intellectual property, suitable for embedded applications where low power, low

latency, and low hardware cost are required.

The second proposed implementation, HF-2cRSR, is a firm-IP Core for computing the RSR

operation using floating-point arithmetic, it exploits the characteristics of the half-precision

floating-point IEEE 754-2008 standard, which offers higher dynamic range than 16-bit FxP format

and utilizes fewer hardware resources than FP64 and FP32 formats. This doctoral dissertation

documents the design and verification of the HF-2cRSR Verilog model, and exemplify the design

of FP-arithmetic modules through the detailed design of a tailored FP multiplier for the HF-2cRSR.

The RTL model of the HF-2cRSR IP-core is synthesized on ARM 130 nm standard-cell CMOS

technology and on FPGA technology. In order to compare the HF-2cRSR with respect to

commercial IP-cores, it is implemented on two FPGAs from Intel and Xilinx. The implementation

results show that the HF-2cRSR IP-core meets the error specification defined by the IEEE 754-

2008 standard. The maximum relative error is 4.8768532×10-4, which is lower than ½ ulp of the

half-precision format. The advantage of the FP16 arithmetic over the corresponding FP32 is

observed on the utilized resources, for example, the multipliers sizes. Both commercial designs

present higher working frequency, however, the HF-2cRSR IP-core, exhibits the lowest latency,

of only 2 clock cycles. For this reason, the proposed implementation offers 40% more throughput

than Xilinx IP and 72% more than Intel IP core. These characteristics make the HF-2cRSR IP-core

adequate for low-power embedded applications.

In order to design and send to manufacture the proposed IP core in this doctoral

dissertation, CAD tools, a CMOS process design kit (PDK), and the corresponding standard-cell

libraries are selected. This allowed making the setup of the ITESO integrated circuit laboratory

and implemented for the first time a digital ASIC design flow.

This doctoral dissertation is organized as follows:

In Chapter 1, the digital ASIC design flow is presented and its front-end and back-end

stages are described. Several Cadence® tools to perform this design flow are presented and a subset

of these tools to implement the digital ASIC design flow at ITESO is recommended. The

Cadence’s workflow for the logic synthesis of an ASIC, which is the main step of the front-end

stage is presented in detail.

Chapter 2 describes some tasks to implement a digital ASIC design flow at ITESO

INTRODUCTION

4

integrated circuit laboratory. The selection of a PDK for prototyping digital ASIC through a

MOSIS research program is presented. The fundamental components to perform the digital ASIC

design are identified and described. The logic synthesis of a basic circuit using the Virginia Tech

standard-cells and Cadence tool is performed, the workflow, input/output elements and the

synthesis results are presented.

In Chapter 3, the design and on-chip implementation of a hard-IP core are presented. This

IP core computes the RSR operation utilizing FxP arithmetic. After introduced the relevance of

the RSR operation in DSP applications, some related works are commented. The implemented

algorithm is discussed, and its architecture is explained. The ASIC physical design is presented,

and the experimental measurement results are reported, as well as the comparison with respect to

existing standard-cell based designs.

Chapter 4 documents the design and implementation of a half-precision floating-point RSR

IP-core. An introduction to the half-precision format and the specifications to the floating-point

RSR operation are presented. The proposed architecture is discussed, and its logic synthesis results

are reported. The FPGA implementation is performed and the comparison with respect to

commercial IP cores from Intel and Xilinx is reported.

This thesis document includes four appendixes. Appendix A presents a reference list of the

internal research reports that were written as part of my doctoral studies. Appendix B shows the

reference list of journal and conference papers published during my doctoral studies. Appendix C

reports a glossary of common acronyms used in Cadence documents about ASIC design tools.

Finally, Appendix D shows a script example to perform ASIC logic synthesis using Cadence RTL

Compiler.

5

1. Digital ASIC Design Flow and Cadence Tools

In this chapter, the general digital ASIC design flow is described and some Cadence® tools

are presented, a specific selection of which is proposed to be installed in the ITESO integrated

circuit laboratory for digital ASIC designing. The logic synthesis steps are presented in detail given

that the tools required for performing this stage have not yet been installed in the ITESO integrated

circuits laboratory and it is of first importance for having the capability to perform the full digital

ASIC design flow.

ITESO plans on having the capacity of designing digital ASIC’s, which can be

implemented using nanometric CMOS standard-cell technology and manufactured by fab’s with

which the ITESO has signed an agreement. These designs and circuits will be produced for

educational and research purposes.

Cadence®, a world leader in EDA tools for designing electronic systems on a single chip

(SoC), offers an enormous variety of products2, 3. Cadence tools systematize the ASIC

development cycle, and verify the different phases, ranging from the concept and system modeling

to packaging.

The wide range of sophisticated Cadence tools makes selecting the appropriate versions to

be installed and maintained by ITESO personnel particularly important. This will allow us to move

towards the goal of implementing a design flow of digital ASIC’s at ITESO, with the tools and

design kits that enable us to design, verify, and send to manufacture digital integrated circuits.

This chapter is a brief presentation of general digital ASIC design flow, emphasizing the

phases that we consider basic aspects of the process and are required to learn at ITESO. In addition,

the appropriate Cadence tools are selected for each stage of the design cycle and its implementation

at ITESO.

2 Cadence-Tools, Integrated Design and Verification Technologies, Methodologies, and Application Specific Kits.

Feb. 02, 2014, http://www.cadence.com/products/pages/default.aspx.
3 Cadence-Download, Cadence Releases Available for Installation. Feb. 02, 2014,

http://downloads.cadence.com/ESDWeb/ProductDetail.eo?methodToCall=viewProductsInRelease&baseReleaseNa

me=REL%20INCISIV12.2&releaseName=INCISIV122&platform=LINUX.

http://www.cadence.com/products/pages/default.aspx
http://downloads.cadence.com/ESDWeb/ProductDetail.eo?methodToCall=viewProductsInRelease&baseReleaseName=REL%20INCISIV12.2&releaseName=INCISIV122&platform=LINUX
http://downloads.cadence.com/ESDWeb/ProductDetail.eo?methodToCall=viewProductsInRelease&baseReleaseName=REL%20INCISIV12.2&releaseName=INCISIV122&platform=LINUX

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 6

1.1. Digital ASIC Design Flow

Digital ASIC design flow consists of several steps [Franzon-99], [Dharwadkar-10], which

can vary depending on the design complexity and the available CAD tools. However digital ASIC

design flow can be divided into two big parts: front-end design and back-end design:

i. Front-End Design includes design specification, architectural design, behavioral

description, functional verification, RTL description, RTL compilation and verification,

and logic synthesis.

ii. Back-End Design, also known as physical design, includes partitioning, floor-planning,

placement, clock tree synthesis, signal routing and timing closure.

The logic synthesis stage consists of several steps that will be described more in detail in

sections 1.1.1.1, and 1.3, given that the tools required for performing this phase have not yet been

installed in the ITESO integrated circuits laboratory and we want to have the capability to carry

out full digital ASIC design flow. Fig. 1.1 outlines a general digital ASIC design flow.

1.1.1 Front-End Design

Digital ASIC design starts with an informal description of the problem to be resolved based

on requirement analysis and includes a list of the new ASIC’s functions. The objective of this step

is to write down design specifications in a complete and formal document (see Fig. 1.1).

The architectural design stage commonly uses the top-down methodology for proposing an

overview of the system; sub-system parts are normally specified using black boxes. The system is

subdivided several times until each building block is perfectly identified with frequently used

digital modules: memories, registers, finite-state machines (FSM), arithmetic circuits, gates, etc.

establishing the relationship between the parts.

In the behavioral description stage, the design team creates a functional model of the system

in a high-level language, which is very useful for verifying specifications, validating the ASIC

functions suitability and developing test vectors used in subsequent verification stages. The

behavioral model must be simulated for verifying that functionality meets specifications.

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 7

The RTL description is a refined model describing the circuit in terms of hardware

registers, combinational logic, and the data flow between them for implementing the designed

architecture.

The RTL model should be verified by exhaustive pre-synthesis simulations for ensuring

Fig. 1.1 General digital ASIC design flow.

Design

Specifications

Architectural

Design

Behavioral

Description

Functionality

Verified

Verification

Vectors

RTL

Description

RTL

Verified

Verification

Vectors

Logic

Synthesis

Logic & Timing

Verified

Design

Implementation

Layout

Functionality &

Timing Verified

GDS II

Chip

Manufacturing

Back-End Design

Front-End Design

No

No

No

No

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 8

that the design will meet specifications.

1.1.1.1 Logic Synthesis

The logic synthesis4 stage [Franzon-99], is a process by which the abstract form of the

designed circuit (RTL model) is transformed into a design implementation in terms of basic logic

blocks taken from a standard-cell library. Standard cells are logic blocks created by every ASIC

manufacturer using known functional, physical, and electrical characteristics. Therefore, they can

be represented by third-party tools enabling performance of full implementation of a very high

gate density and good electrical performance designs, based on standard cells without using the

full factory-specific models. Steps of logic synthesis are shown in Fig. 1.2 and commented below.

The first phase of logic synthesis receives the RTL model and translates this middle

abstraction level HDL file to generic combinational logic and memory elements.

In the Logic Optimization step, equations representing logic circuits are minimized,

flattened and factorized.

The Logic to Technology step translates the optimized logic level description to a gate level

description, using standard cells from a specific technology library. The resulting collection of

standard cells, plus the required electrical interconnections is called gate-level netlist.

The Time and Area Optimization step optimizes the gate-level description, using cell

substitution for meeting specific area and timing constraints.

Logic synthesis produces a gate-level netlist of the optimized circuit with accurate cell

timing information. This stage ends with post-synthesis simulations for verifying that the gate level

circuit fully provides the desired functionality and meets the appropriate timing requirements.

1.1.2 Back-End Design

In the second part of digital ASIC design flow, physical implementation receiving the gate-

level netlist (standard cells and interconnects) converts it into geometric shape representations,

4 U. of Colorado at Boulder, Getting Started with RTL Compiler. Feb. 02, 2014,

http://ecee.colorado.edu/~ecen5837/cadence/RTL_synthesis.html.

http://ecee.colorado.edu/~ecen5837/cadence/RTL_synthesis.html

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 9

which are transformed in the corresponding layers of materials when the chip is manufactured.

This geometric representation is called integrated circuit layout. Physical implementation steps,

depicted in Fig. 1.3, include both design and verification of layout. This thesis document does not

describe details of digital implementation flow because some Cadence tools for this purpose have

already installed in the ITESO integrated circuits laboratory. Additionally, a first version of a

tutorial was reported explaining, step by step, how the digital design implementation stage using

CAD software of Cadence [Castorena-13] is performed. Furthermore, some tutorials introducing

this stage are reported in [Farmer-11], and [Shan-08].

The manufacturing process performed at fab houses follows physical implementation

stage.

Fig. 1.2 General logic synthesis steps.

 RTL HDL

Design

RTL to Logic

Logic

Optimization

Logic to

Technology

Timing/Area

Optimization

Scan Path Insertion &

Test Vector Generation

Netlist

Logic & Timing

Verified

No

Constraints

Constraints

Gate level

Netlist

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 10

1.2. Cadence Tools for Digital ASIC Design Flow

There are several tutorials and web pages5, 6of universities dealing with ASIC design flow

using CAD tools, however the information is incomplete or restricted to enrolled students

[Franzon-99], [Dharwadkar-10], [Farmer-11], [Shan-08]. Some of these public tutorials are not

updated or are very specific to the set of tools installed in their labs [Theocharides-05], [Engel-

5 George Washington University, Design & Testing of VLSI Circuits. Feb. 02, 2014,

http://www.seas.gwu.edu/~vlsi/ece128/SPRING/lab.html.
6 Auburn University, Computer-Aided Design of Digital Circuits. Aug. Jan. 08, 2015,

http://www.eng.auburn.edu/~nelson/courses/elec5250_6250/.

Fig. 1.3 Digital physical design implementation flow.

 Gate Level

Netlist

Partitioning

Floorplanning

Placement

Clock tree

Synthesis

Signal Routing

GDS II

No

Layout

Functionality &

Timing Verified

Circuit

Extraction

Static Timing

Analysis

Power

Analysis

Desing Rule

Checking

Singoff Steps

Signoff

http://www.seas.gwu.edu/~vlsi/ece128/SPRING/lab.html
http://www.eng.auburn.edu/~nelson/courses/elec5250_6250/

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 11

10], [Gurkaynak-06]7-11. Many tool names are mentioned in these documents, some of which were

discontinued12 or the tool names were changed. Table 1.1 shows some names and descriptions of

Cadence tool that were found in the bibliography.

This thesis aims at proposing a flow for implementing digital ASIC design using current

Cadence CAD tools available at ITESO. Many tools for assisting integrated circuit design, divided

into several categories13 were found on the Cadence web page14. Considering only the “logic

design” category, there are 16 products for supporting and verifying different logical design

phases15. Table 1.2 shows these phases and the Cadence recommended tools.

Four categories were established for simplifying the variety of Cadence tools in order to

make an initial selection for study at ITESO:

i. Logic design: the main product in this group is Encounter RTL Compiler16, the key tool

for performing top-down global RTL design synthesis on standard cells.

ii. Digital implementation: the central tools for this are Encounter Digital Implementation

System (formerly known as SOC Encounter) and First Encounter.

iii. Analysis and signoff: Encounter Timing System and Encounter Power System can be used

for performing some tasks at this ASIC design flow stage.

iv. Design Verification: Encounter Conformal and Incisive Formal Verifier are the

recommended Cadence tools for design and verification.

7 MIT Open Course Ware, Complex Digital Systems. Jan. 08, 2015, http://ocw.mit.edu/courses/electrical-engineering-

and-computer-science/6-884-complex-digital-systems-spring-2005/.
8 MIT Open Course Ware, Communication System Design. Jan. 08, 2015, http://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-973-communication-system-design-spring-2006/index.htm.
9 Polytechnic Institute of NYU, CAD Tool Tutorials. Feb. 02, 2014,

http://eeweb.poly.edu/labs/nanovlsi/tutorials.html.
10 U. of Virginia, RTL Logic Synthesis Tutorial. Feb. 02, 2014,

http://www.ee.virginia.edu/~mrs8n/soc/rc_tutorial.html.
11 NCSU EDA Wiki, Tutorials. Feb. 02, 2014, http://www.eda.ncsu.edu/wiki/Tutorial:Contents.
12 Cadence-Online Support, Product & Release Lifecycle. Jan. 08, 2015,

http://support.cadence.com/wps/myportal/cos/COSHome/resources/lifecycle/.
13 Cadence-Tools, Integrated Design and Verification Technologies, Methodologies, and Application Specific Kits.

Feb. 02, 2014, http://www.cadence.com/products/pages/default.aspx.
14 Cadence-Alliances, Cadence and IBM ASIC Partnership. Feb. 02, 2014,

http://www.cadence.com/Alliances/asic_program/ibm/pages/default.aspx.
15 Cadence-Tools, Logic Design. Feb. 02, 2014, http://www.cadence.com/products/ld/Pages/default.aspx.
16 Cadence-Online Support, Encounter RTL Compiler Synthesis Flows. May. 14, 2015,

http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_

GTLt17bGJXNkV4-TsUv0cIv98sYgo-

rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL

63j4AvKpJoM!/.

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-884-complex-digital-systems-spring-2005/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-884-complex-digital-systems-spring-2005/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-2006/index.htm
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-2006/index.htm
http://eeweb.poly.edu/labs/nanovlsi/tutorials.html
http://www.ee.virginia.edu/~mrs8n/soc/rc_tutorial.html
http://www.eda.ncsu.edu/wiki/Tutorial:Contents
http://support.cadence.com/wps/myportal/cos/COSHome/resources/lifecycle/
http://www.cadence.com/products/pages/default.aspx
http://www.cadence.com/Alliances/asic_program/ibm/pages/default.aspx
http://www.cadence.com/products/ld/Pages/default.aspx
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 12

TABLE 1.1. SOME DIGITAL ASIC DESIGN CADENCE TOOLS

Cadence

tool name
Description / Comment

Cadence

Release

NC Verilog

Simulator

This tool is ideal for architecture analysis, system-level verification, and embedded

software development, and it supports transaction recording and analysis for the

SystemC® Verification Library. / Products Incisive NC were discontinued in October 6

2008, but in the releases INCISIV 111 - INCISIV 131 the products Incisive Enterprise

simulator – XL and Cadence Simulation Analysis Environment (SimVision) are

included. In some tutorials the names NC-SIM, NC-SC Simulator, NC Verilog and

SimVision were found for referring to this group of tools.

INCISIV111

Cadence

SimVision

Debug

A unified graphical debugging environment within Incisive Enterprise Simulator

supports signal-level and transaction-based flows across all IEEE-standard design, test-

benches, and assertion languages, in addition to concurrent visualization of hardware,

software, and analog domains. / This tool was found as Cadence Simulation Analysis

Environment (SimVision)

INCISIV111

Verilog®-XL

Simulator NC

Verilog

Simulator

Pre-Synthesis simulation, Post-Synthesis simulation. / In some tutorial this tool was

found as Stand-Alone Cadence Verilog.

Included in

INCISIVE

131

Encounter RTL

Compiler - XL

To synthesize RTL models to standard cells using global algorithms that enables

concurrent optimization of timing, area, and power intent. In some tutorials this tool was

referred as Verilog-XL compiler.

RC111,

RC121,

RC131.

RTL Compiler

Ultra

“RTL Compiler Ultra is a powerful tool for logic synthesis and analysis for digital

designs. It is fully compatible with all other Cadence tools and especially with Cadence

Encounter which is mainly used for physical design automation (floorplanning,

placement and rooting)”. / This tool was not found in Cadence page. The new version

should be Encounter RTL Compiler.

Encounter

Digital

Implementation

System (EDI)

A powerful tool for back-end design: floorplanning, place-and-route, power and clock

distribution. To generate layout from Verilog netlist. The old name for this tool was SoC

Encounter RTL-to-GDSII System

EDI110-

EDI132

First Encounter

Design

Exploration and

Prototyping

For big and hierarchical designs to determine in early stages of design flow area, timing

and power requirements. / In some tutorials this tool was referred as First Encounter

EDI110-

EDI132

Encounter

Conformal

Constraint

Designer

Automated validation and refinement of timing constraints

CONFRML

121

CONFRML

131

Encounter

Conformal XL

To verify and debug multimillion gate designs without using test vectors. From RTL to

final LVS netlist. In some tutorials this tool was referred as Encounter Conformal

Equivalence Checker (EC)

CONFRML

121

Incisive

Enterprise

Simulator (IES)

It is a multi-language simulation, fuels testbench automation, reuse, and analysis to

verify designs from the system level, through RTL, to the gate level. It supports metric

driven verification, and mixed-signal verification. Is the core engine for low-power

verification, working closely with Conformal LP.

INCISIV111

Encounter

Timing System

Encounter Timing System is a full-chip static timing analysis (STA) solution providing

gate-level delay calculation, signoff-level timing and signal integrity (SI) analysis,

statistical timing and leakage analysis, advanced on-chip variation analysis, and

advanced node functionality required for double-patterning and waveform effects.

ETS131

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 13

The following tools for ASIC front-end and back-end design are reported in [Dharwadkar-

10]. Front-End design: NC Verilog® was used for functional verification, RTL description,

compilation and simulation. For visualizing wave forms, SimVision® was used, for synthesis, RTL

Compiler®, and for power estimation, SimVision® and RTL Compiler®.

Back-End design, also known as physical design: SOC Encounter®, currently known as

Encounter Digital Implementation System® is used for partitioning, floor-planning, placement,

clock tree synthesis, signal routing and timing closure.

Due to the complexity of current digital ASIC design flow, Cadence recommends learning

the use of their tools gradually, step by step, and at different levels. The Fig. 1.4 shows the

recommended Cadence tool learning route for digital ASIC design.

TABLE 1.2. LOGIC DESIGN PHASES AND RECOMMENDED CADENCE TOOLS

Design Task Cadence Tools

Chip planning
Cadence Incyte Chip Estimator

Cadence Chip Planning System

Constraint design and validation Encounter Conformal Constraint Designer

Logic synthesis
Encounter RTL Compiler

Encounter RTL Compiler Advanced Physical Option

Equivalence checking Encounter Conformal Equivalence Checker

Low power validation Encounter Conformal Low Power

Engineering change order Encounter Conformal ECO Designer

Test

Encounter DFT Architect

Encounter Test Product

Suite
Encounter True Time ATPG

 Encounter Diagnostics

Static timing analysis Encounter Timing System

Formal analysis Incisive Formal Verifier

Simulation Cadence Low Power Methodology Kit

Design and verification IP modeling Incisive Verification IP

Verification management

Incisive Design Team Manager

Cadence Low Power Methodology Kit

Incisive Desktop Manager

Incisive Verification IP

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 14

Cadence has three product levels: L, XL, and GXL [Cooney-10], basic, intermediate and

advanced respectively. Each tool level has different capacities, such as the number of gates in the

design or the information that can be extracted from it.

After reviewing several ASIC design flow tutorials [Dharwadkar-10], [Engel-10]17-21 and

examining Cadence digital ASIC design tools22, we recommend exploring the tools reported in

17 Virginia Tech VLSI for Telecommunications Group, VTVT ASIC Design Flow. Feb. 02, 2014,

http://www.vtvt.ece.vt.edu/vlsidesign/designFlow.php.
18 George Washington University, Design & Testing of VLSI Circuits. Feb. 02, 2014,

http://www.seas.gwu.edu/~vlsi/ece128/SPRING/lab.html.
19 Chiptalk.org, Cadence Interoperability using OpenAccess. Feb. 02, 2014,

http://www.chiptalk.org/modules/wfsection/article.php?articleid=12.
20 Polytechnic Institute of NYU, CAD Tool Tutorials. Feb. 02, 2014,

http://eeweb.poly.edu/labs/nanovlsi/tutorials.html.
21 U. of Virginia, RTL Logic Synthesis Tutorial. Feb. 02, 2014,

http://www.ee.virginia.edu/~mrs8n/soc/rc_tutorial.html.
22 Cadence-Alliances, Cadence and IBM ASIC Partnership. Feb. 02, 2014,

http://www.cadence.com/Alliances/asic_program/ibm/pages/default.aspx.

Fig. 1.4 Cadence tools training map for digital design using Encounter® technology.

Advanced Synthesis with
Encounter RTL Compiler

Encounter Test Jump
Start to ATPG

Test Synthesis Using
Encounter RTL Compiler

Encounter RTL
Compiler

Encounter Digital
Implementation Hierarchical

Encounter Digital
Implementation Flat

Prototyping and
Partitioning with
First Encounter

Digital Implementation
Basics for Analog

Mixed-Signal Designs

Analog Implementation
Basics for Digital

Mixed-Signal Designs

Analog-on-Top Mixed-Signal
Implementation

Low- Power
Implementation

Signoff Timing Analysis
with Encounter
Timing Systems

Basic Static
Timing Analysis

Signoff Power-Grid
Analysis with

Encounter Power
System

Logic Design Place-and-Route Signoff and

Analysis

Logic Equivalence
Checking with

Encounter
Conformal (EC)

Encounter
Conformal
Constraint
Designer

Design

Verification

Encounter Conformal
ECO

Low Power Verification
with EC

M
as

te
r

E
x

p
er

ie
n
c
ed

C
o

re

http://www.vtvt.ece.vt.edu/vlsidesign/designFlow.php
http://www.seas.gwu.edu/~vlsi/ece128/SPRING/lab.html
http://www.chiptalk.org/modules/wfsection/article.php?articleid=12
http://eeweb.poly.edu/labs/nanovlsi/tutorials.html
http://www.ee.virginia.edu/~mrs8n/soc/rc_tutorial.html
http://www.cadence.com/Alliances/asic_program/ibm/pages/default.aspx

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 15

Table 1.3 for performing this kind of design at ITESO. The following paragraphs indicate the

digital ASIC design stages and the recommended Cadence tools.

For behavioral modeling and verification, System C language and the Incisive Enterprise

simulator XL 13.1 can be used. For putting RTL description and simulation into practice, Incisive

Enterprise simulator XL 13.1 is also recommended. For accomplishing RTL synthesis, Encounter

RTL Compiler 12.1 is the adequate tool23, 24.

The digital design implementation stage can be realized using Encounter Digital

Implementation System 13.1. This tool is useful for design partitioning, floorplanning, placement,

clock-thee synthesis and routing. Additionally, some verification, analysis and signoff activities

can be performed using Encounter Timing System 13.1 and Encounter Conformal XL 12.1. Table

1.3 shows Cadence tools recommended for performing each of these stages at ITESO and in Fig.

1.5 digital ASIC design flow using Cadence tools is depicted.

23 Cadence, Encounter® RTL Compiler Synthesis Flows, Online Support Resources. Jan. 08, 2015,

http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_

GTLt17bGJXNkV4-TsUv0cIv98sYgo-

rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL

63j4AvKpJoM!/.
24 Cadence-Community-Logic Design, RTL Compiler Beginner’s Guides Available on Cadence Online Support. Feb.

02, 2014, http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-

available-on-cadence-online-support.aspx.

TABLE 1.3. RECOMMENDED CADENCE TOOLS FOR DIGITAL ASIC DESIGN AT ITESO

Design Stage Name Tool Cadence Release

Behavioral modeling and

verification

System C, Incisive Enterprise

simulator
XL131

RTL description and

simulation
Incisive Enterprise simulator XL131

RTL synthesis Encounter RTL Compiler RC121

Design implementation
Encounter Digital

Implementation System
EDI131

Verification, analysis

and signoff

Conformal XL, Encounter

Timing System

CONFRML121,

ETS131

http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://support.cadence.com/wps/myportal/cos/!ut/p/a0/Rcc7EoMgEADQs6SwFTCOxjAUdjlCYuMssAZGRMKSz_GTLt17bGJXNkV4-TsUv0cIv98sYgo-rpuPZ7sbSdmo9NQkH6ri2cxUIJe_RFs3FcdPykg0L2F_165sQRJCNu4C5BRvBjgdte6F5nZouwVaYQQg6L6zAjlL63j4AvKpJoM!/
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 16

Fig. 1.5 Cadence tools for performing digital ASIC design flow.

Design

Specifications

Architectural

Design

Behavioral

Description

Functionality

Verified

Verification

Vectors

RTL

Description

RTL

Verified

Verification

Vectors

Logic

Synthesis

Logic & Timing

Verified

Design

Implementation

Layout

Functionality &

Timing Verified

GDS II

Chip

Manufacturing

Back-End Design

Front-End Design

No

No

No

No

Encisive Enterprise

 Simulator

RTL Compiler

Encounter Conformal XL,

Constrain Designer

Encounter Digital

Implementation

Encounter

Timing System

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 17

1.3. Logic Synthesis Process

In the previous section, Encounter RTL Compiler was chosen to perform ASIC logic

synthesis. An overview of the generic RTL Compiler workflow is presented below.

The basic necessary inputs to Encounter RTL Compiler (RC) for synthesizing design are:

i. Descriptions of the circuit using a hardware description language (HDL), such as Verilog

or VHDL at the register transfer level (RTL) abstraction.

ii. Technology libraries for both standard cells and hard-macros.

iii. Design Constraints in either SDC or native RC format.

iv. A script file with compilation directives.

v. Physical Data (optional) such as library exchange format libraries (LEF), cap-table and

design exchange format floorplan (DEF).

The HDL files must be the latest version of the RTL verification process, when the

functionality of the circuit passes the test.

The standard-cell library has timing information for the specific technology to be used for

implementing the circuit.

The script file should have at least the follow information: names of the RTL design files,

the design directory path, and the name of the top-level module and must specify the design

maximum working frequency. The synthesis tool aims at optimizing the design for meeting

working frequency requirements, based on the information provided.

The recommended directory structure for a design logic synthesis using Encounter RTL

Compiler tool is shown as follows [Dharwadkar-10].

/$USER
 /Cadence

 /Design_name_directory
 design_name_file.v
 test_bench_file.v
 /Encounter _directory
 encounter_configuration_file.conf
 encounter.tcl
 encounter_power.tcl
 gds2_encounter.map
 timing_standar_cells.v

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 18

Providing the physical data mentioned above in the point v. is optional. However, it is

advised when readily available. Fig. 1.6 depicts generic RTL Compiler workflow.

The Fig. 1.6 shows the most important steps in the logic synthesis using Encounter RTL

Compiler, those are fundamental in determining the overall optimization strategy, which is

controlled by commands, attributes and variables by the optimization script.

Fig. 1.6 Generic RTL Compiler® workflow.

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 19

1.3.1 Elaboration Step

Elaboration involves several checking and optimizing designs. The elaborate command

automatically elaborates the top-level design and all of its references by propagating parameter

values specified for instantiation.

In the elaboration step the RTL Compiler performs the following tasks: a) building data

structures; b) inferring design registers; c) performing higher level HDL optimization, such as dead

code removal; d) checking semantics. Additionally, if there are any gate-level netlist with the RTL

files, RC automatically links the cells to their references in the technology library. Users need not

issue any additional linking command.

After elaboration, RC has an internally created data structure for the whole design, so users

can apply constraints and perform other operations. Users can generate a generic netlist for a

specific Verilog module and all its sub-modules using the following command: elaborate

<top_module_name>. For more information about commands and attributes see25.

1.3.2 Synthesis Step

Synthesis is the process of transforming the RTL-HDL design into a gate-level netlist,

given all the specified constraints and optimization settings. Within RC, synthesis is performed in

the following two phases: a) synthesizing the design to generic logic (RTL and data-path

optimizations are performed in this step); b) mapping the technology library and performing

incremental optimization. These two sequential steps can be performed by the synthesize

command options -to_generic, and -to_mapped respectively.

In the generic synthesis phase, RC performs technology-independent optimizations,

including constant propagation, resource sharing, logic speculation, multiplexor optimization, and

carry save arithmetic optimizations. Users can run this phase with the synthesize –to_generic -

effort <effort_level> command. The medium effort is the default choice, but users can use high

effort for data-path intensive designs, or designs for which it is hard to meet timing.

25 Cadence-Community-Logic Design, RTL Compiler Beginner’s Guides Available on Cadence Online Support. Feb.

02, 2014, http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-

available-on-cadence-online-support.aspx.

http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 20

In the mapping-synthesis phase, RC maps the generic gate-level netlist to the technology

library cells. For performing this phase, user can run the synthesize –to_map -no_incremental -

effort <effort_level> command.

The incremental synthesis (IOPT) is the final optimization phase in the synthesis process.

The primary intent of this stage is cleaning up timing by using local optimizations, such as critical

region synthesis (CRR), and inserting scan chains if it is enabled. All constraint violations arising

from max_cap, max_trans, and max_fanout, are considered and subsequently fixed in this step.

Optimizations performed during IOPT synthesis improve timing and area and fix design rule

checking (DRC) violations.

Timing has the highest priority by default, and RTL Compiler will not fix DRC violations

if it causes timing violations. This priority can be overridden by setting the drc_first attribute to

true. In this case, all violations will be fixed as well as those paths with positive slack.

Optimizations performed during this phase include multi-bit cell mapping, incremental clock

gating and retiming, tie cell insertion and assign removal26.

Users can run this stage using the synthesize –to_map -incremental -effort <effort_level>

command.

1.3.3 Analysis and Reports

Encounter RTL Compiler can generate reports which allow analyzing the synthesis results.

The report timing command should be used for generating reports on the timing of the current

design. The default timing report generates the detailed view of the most critical path in the current

design. The timing report provides the following information: a) type of cell (or, nor, and gates,

flip-flop, etc.); b) the cell’s fan-out and timing characteristics (load, slew, and total cell delay); c)

arrival time for each point on the most critical path.

Use the -from and -to options for reporting the timing value between two points in the

design. The timing points in the report are designated by the “<<<” indicator.

Encounter RTL Compiler also can generate a detailed area report giving the area of each

26 Cadence-Community-Logic Design, RTL Compiler Beginner’s Guides Available on Cadence Online Support. Feb.

02, 2014, http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-

available-on-cadence-online-support.aspx.

http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx
http://www.cadence.com/Community/blogs/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support.aspx

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 21

component in the current design, based on the specified technology library. The report gates is

the command for generating a report of the gate profile being used in the design.

An example of a simple script delineating the very basic Encounter RTL Compiler flow is

shown below:

set_attribute lib_search_path <full_path_of_technology_library_directory> /
set_attribute hdl_search_path <full_path_of_hdl_files_directory> /
set_attribute library <technology_library> /
read_hdl <hdl_file_names>
elaborate <top_level_design_name>
read_sdc <sdc_file_name>
set clock [define_clock -period <periodicity> -name <clock_name> [clock_ports]]
external_delay -input <specify_input_external_delay_on_clock>
external_delay -output <specify_output_external_delay_on_clock>
synthesize -to_mapped
report timing > <specify_timing_report_file_name>
report area > <specify_area_report_file_name>
write_hdl > <specify_netlist_name>
write_script > <script_file_name>

Additionally, the write_template command can be used and subsequently modifying a

basic script skeleton and then modify the same to suit specific designs. These modifications are

minimal and usually contain adding design inputs such as libraries, RTL files and constraints.

Complete and detailed information on the Encounter RTL Compiler workflow and

command for performing the synthesis process can be found in [Cadence-14].

1.4. Conclusions

In this chapter, the general digital ASIC design flow was described, and some Cadence

tools were presented, a specific selection of which was proposed to be installed at ITESO

integrated circuit laboratory for digital ASIC designing.

The logic synthesis steps were presented in detail given that the tools required for

performing this stage have not yet been installed in the ITESO integrated circuits laboratory and

it is of first importance for having the capability to perform full digital ASIC design flow.

This chapter compiles information sources which will be useful to implement the digital

ASIC design flow at ITESO integrated circuit laboratory. This will enable professors to implement

1. DIGITAL ASIC DESIGN FLOW AND CADENCE TOOLS

 22

and teach digital ASIC design in graduate courses, as well as to support research projects.

23

2. Implementation of a Digital VLSI Front-End

Design at ITESO

In this chapter, the fundamental components for implementing digital VLSI front-end

design at ITESO are introduced. Some process design kit (PDK) concepts are presented and the

necessary libraries and technologies enabling ITESO students and teachers to do digital VLSI

designs are identified. MOSIS offers several integrated-circuit fabrication technologies; the most

appropriate one is selected in order to students and teachers are able to do digital VLSI designs

and to be manufactured by this company.

The concepts and characteristics of the North Carolina State University Cadence Design

Kit (NCSU CDK) and the Virginia Tech VLSI for Telecommunications (VTVT) standard-cell

library are presented. These are basic for understanding and performing automated digital VLSI

circuit design. The NCSU CDK and the VTVT standard-cell library are selected to implement for

the first time a digital VLSI front-end design in the ITESO integrated circuit design laboratory.

Furthermore, this chapter describes the details of how to perform the logic synthesis of a

basic sequential digital circuit following the RTL Compiler synthesis flow. The best way to run

RC and controlling the logic synthesis results is through a tool command language (TCL) script

file, which has the attribute definitions, commands, and compilation directives. This chapter

explains the elaboration and contents of an RC synthesis TCL script file for controlling and

administering the task execution of a Cadence recommended synthesis flow, which is implemented

and verified by synthesizing a frequency divider circuit. The inputs to the RC logic synthesis

process and the synthesis results of the design example are discussed.

2.1. Selection of Integrated Circuit Fabrication Process

The most simple and economic way to access the fabrication of an integrated circuit for

teaching and academic research projects is through MOSIS enterprise. ITESO has an agreement

with that company, but a selection of the fabrication technology of integrated circuits is necessary

in order to implement the complete digital VLSI design flow based on standard cells. We need the

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 24

PDK information and the compatible standard-cell library that allow the automation of digital

integrated circuit design. Both components are described in this section.

With the purpose of making the best selection of the technology to usage at ITESO, in the

following section, we will describe the MOSIS options for designing and fabrication digital VLSI

integrated circuits. The defined criteria in order to choose the best technology for ITESO academic

projects are:

i. Availability of the PDK.

ii. Availability of the standard-cell library compatible with the selected PDK.

iii. PDK compatibility with Cadence tools version installed in the ITESO integrated circuit

laboratory.

iv. The selected technology (feature size) must be of interest for research publication, such

that it facilitates scientific publications in renowned journals.

The fabrication cost should be affordable for ITESO.

2.1.1 MOSIS Fabrication Processes

MOSIS offers multiples integrated circuits fabrication technologies from six different

companies. To access these ones, MOSIS has three kinds of accounts for academic and research

institutions. Each kind of account defines the PDK to which the institution is able to access. Table

2.1 shows a summary of MOSIS integrated circuit fabrication processes. It is shown the IC

manufacturer, the feature size, the MOSIS account kind required to access the PDK, and the

standard cells availability in order to do automated digital VLSI design.

2.1.2 Kinds of MOSIS Academic Accounts and Their Characteristics

For academic and research institutions, MOSIS offers three kinds of accounts to access its

IC fabrication services: Instructional, Research, and Commercial27. Each account kind has

different technology access restrictions: maximum silicon area, number of chips per year, price,

etc. For example, the MOSIS Educational Program (MEP) Instructional account has a quantity of

27 The MOSIS Service, MOSIS FAQs: MOSIS Educational Program (MEP). Jun. 05, 2014,

http://www.mosis.com/pages/Faqs/faq-education#16.

http://www.mosis.com/pages/Faqs/faq-education#16

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 25

allocations which are expressed in TinyChip units, rather than dollars or number of integrated

circuits. A TinyChip unit for a given process represents both allocation of project area and a

quantity to be delivered.

MEP Instructional designs must fit into MOSIS TinyChip units. To fit into one TinyChip

unit, a project designed in either the ON Semiconductor 0.50 micron (C5) or IBM 0.18 micron

(7RF) technology must be no larger than 1.5 mm×1.5 mm. MEP Instructional designs may be

larger, by using more TinyChip units in multiples of 1.5 mm×1.5 mm, up to 3.0 mm×3.0 mm

which would be 4 TinyChip units.

Table 2.2 shows a summary of MOSIS accounts, their characteristics, and restrictions.

From Table 2.1 and Table 2.2 we emphasize that the technologies which can be accessed

TABLE 2.1. SUMMARY OF MOSIS INTEGRATED CIRCUIT FABRICATION PROCESSES

IC Manufacturer
Feature Size

(nm)

MOSIS

Account

Kind

Available

Standard

Cell

TSMC 90, 65, 45, 40 Commercial ARM

TSMC TinyChip (90, 65) Commercial ARM

Global

Foundries

350, 180, 130, 65, 28

CMOS
Commercial -

IBM
130 (8XP), 180

(7WL) BiCMOS
Commercial -

IBM 180 (7RF SOI) Commercial -

IBM 130 (8HP) BiCMOS
Commercial,

Research
Limited

IBM 180 (7RF CMOS) Instructional -

IBM
130 CMOS

(8RF-DM)

Commercial,

Research
ARM

ON

Semiconductor

500 CMOS

(C5N)

Instructional,

Research
-

ON

Semiconductor
700, 500, 350 CMOS Commercial -

AMS
350 CMOS,

HVCMOS, BiCMOS
Commercial -

AMS
180 CMOS,

HVCMOS
Commercial -

Imec- ePIXfab SiPhotonics Commercial -

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 26

with the MOSIS Instructional account do not have complete access to standard-cell libraries, so

automation of digital VLSI design cannot be performed using an Instructional account.

The MOSIS Research account is attractive because it allows access to the On

Semiconductor 0.5 µm technology and the IBM 130 nm BiCMOS and CMOS technologies. For

the last one, there is standard-cell library28 from ARM29. This means that we can do automated

digital VLSI designs using the IBM 8RF-DM technology and manufacture these by covering the

packaging cost1 only. The disadvantages of this type of account are that only one design per year

per university can be manufactured, and the access to the kit must be requested through a MOSIS

28 The MOSIS Service, IBM Design Rules and Cell Libraries. Jun. 16, 2014,

http://www.mosis.com/vendors/view/ibm/documents.
29 The MOSIS Service, ARM Library Access for Universities. Jun. 05, 2014,

http://www.mosis.com/pages/Technical/Designsupport/artisan-university.

TABLE 2.2. MOSIS EDUCATIONAL PROGRAM ACCOUNTS AND THEIR CHARACTERISTICS

Characteristic
Account

Instructional Research Commercial

Processes

Available

On Semi 0.5 µm

CMOS (C5N)

IBM 180 nm CMOS

(7RF)

On Semi 0.5 µm CMOS

(C5N)

IBM 130 nm BiCMOS

(8HP)

IBM 130nm CMOS

(8RF-DM)

All available

Area Max (Si) 3 mm × 3 mm 16 mm2 Unlimited

Number of

Designs

According to

authorized budget

(TinyChip)

1 project/university/year Unlimited

Price Free Cost of packaging
Quotation

required

Use
Projects designed by

students

Unfunded research projects,

thesis works, paper, journal

article

Academic

License time
October 1 through

September 30
Not expire Not expire

Chips per design
On C5: 5

IBM 7RF: 40
40

According to

order

Packaging

restrictions

Ceramic or Open

Cavity Plastic (OCP)
According to order

According to

order

http://www.mosis.com/vendors/view/ibm/documents
http://www.mosis.com/pages/Technical/Designsupport/artisan-university

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 27

project application.

2.2. Fundamental Components for Automated Digital VLSI

Design

Three fundamental components are required for implementing digital VLSI design flow:

EDA tools, a process design kit, which has the information about the technology of the integrated

circuits fabrication process, and libraries with timing and physical data of the basic building blocks

named standard cells. Virginia Tech University developed a standard-cell library which is

available for academic and research projects at universities30. This library was designed using the

NCSU CDK installed in the ITESO integrated circuit laboratory. The VTVT standard-cell library

was installed as part of this project. Some concepts and characteristics of these two components

are described below.

2.2.1 The Process Design Kit of North Carolina State University

“The North Carolina State University Cadence Design KIT (CDK) is a collection of

technology files, custom SKILL routines, parts libraries, and Diva rules files aimed at facilitating

full-custom CMOS IC design through MOSIS. The CDK is used at N.C. State University in both

teaching and research, and it has been used to fabricate working chips” [Schaffer-98].

“The NCSU CDK focuses on providing the means to do full-custom CMOS IC design

(SCMOS design rules) through MOSIS, including schematic entry, Verilog digital simulation,

analog circuit simulation, layout DRC checking and device extraction, and mask generation”31.

Some of the NCSU CDK features are:

i. Provides interface to HSPICE/Spectre through Analog Artist, with MOSIS-provided

transistor models in place, as well as with interface to Verilog with technology-independent

parts.

ii. Technology-independent libraries for analog and digital parts. These parts have SKILL

30 Virginia Tech VLSI for Telecommunications, Cell Libraries to Support VLSI Research and Education. Jul. Mar.

31, 2014, http://www.vtvt.ece.vt.edu/vlsidesign/cell.php.
31 NCSU EDA Wiki, NCSU CDK overview. Jun. 10, 2014, http://www.eda.ncsu.edu/wiki/NCSU_CDK_overview.

http://www.vtvt.ece.vt.edu/vlsidesign/cell.php
http://www.eda.ncsu.edu/wiki/NCSU_CDK_overview

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 28

code hooked in to enforce sizing and grid rules, automatic transistor model selection

depending on technology, and drain/source area/perimeter estimation.

iii. Technology libraries, one library for every MOSIS SCMOS process with parameterized

layout cells setup for both manual use and layout synthesis via Virtuoso-XL.

iv. MOSIS wirebond pads (HP 0.6 µm; AMI 0.6 µm; TSMC 0.40 µm).

v. Various user-friendly GUI enhancements: a) simplified library creation and technology file

attachment for MOSIS technologies; b) click on any object to print info about it in the

Command Interpreter Window (CIW); c) enhanced label creation (Virtuoso); d) align

layout objects (Virtuoso); e) Perl/Tk program (BitGen) to easily convert 1's and 0's into

analog voltage sources suitable for circuit simulation in programs as SPICE and Spectre;

f) create a "publication-quality" schematic from a working schematic.

vi. Documentation of all customizations in HTML.

Some things that the NCSU CDK does not have or cannot do are: a) provide a standard-

cell layout library; b) physical implementation (place-and-route stage); c) digital timing analysis;

d) parasitic resistance extraction.

In the ITESO integrated circuit laboratory, the currently installed version of the NCSU

CDK is the 1.6.0 beta. This kit is not yet fully supported but a related technical forum for discussing

problems and solutions is available32.

2.2.2 Standard-Cell Libraries

Automated digital VLSI circuit design is currently based on standard-cell libraries and

synthesizers. This approach has the following benefits: each cell is full custom designed, supports

logic synthesis, automatic layout generation, system physical design and testing; all of these with

the assistance of CAD tools.

A standard-cell library is a set of basic logic blocks, for example, gates, adders, buffers,

and flip-flops, which are used as building blocks of digital ASICs. Each block or cell is

implemented at a physical level. Its full-custom layout is optimized to minimize the required

silicon area and delays. Standard cells are characterized by having a fixed height, which allows

32 Chiptalk.org, Forum. Jun. 23, 2014, http://www.chiptalk.org/modules/newbb/index.php.

http://www.chiptalk.org/modules/newbb/index.php

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 29

them to be arranged in rows to facilitate the automatic generation of digital ASIC layout.

The main components of a typical standard-cell library are:

i. View database.

Consist of different level abstraction models named views, which are needed to support the

digital VLSI circuit design flow:

a. Logical view of a standard cell: The cell’s Boolean function whose behavior can be

captured by a truth table or Boolean algebra equation using a hardware description

language.

b. Schematic view: a graphical view of the transistor design netlist.

c. Layout view: is the physical representation of the cell, consisting of several layers,

which correspond to different structures of transistor devices, interconnect wiring

layers, and via layers, which join together the terminals of the transistor and circuit

formations.

d. Abstract view: is similar to the layout view but contains much less information than

the layout and may be recognizable as a Library Exchange Format (LEF) file or an

equivalent. The abstract view is useful for place-and-route tools in the digital

implementation stage.

The abstract view provides information like [Patel-08a]: cell name; site name and

cell orientation; cell PNR boundary; pin names, locations, pin metal layer, type and

direction (input/output/input-output); location of all metal track and vias in the

layout (obstructions).

The LEF file contains technology information along with all the cell description,

use an ASCCI data format to describe the standard-cell structure. Incudes the design

rules for routing, and the abstract view. A LEF file contains the following sections:

a) technology: layer, design rules, via definitions, metal capacitance; b) site: site

extension; c) macros: cell descriptions, cell dimensions, layout of pins and

blockages, and capacitances.

To know about the structure and syntaxes of LEF file read [Patel-08b].

ii. Timing abstract file (.lib).

Provides functional definition, timing, power consumption, and noise information for each cell.

Generally, in liberty format (.lib), which is an ASCII representation of the timing and power

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 30

parameters associated with any cell in a particular semiconductor technology, these parameters

are obtained by simulating the cells under a variety of conditions and the data is represented in

the .lib format.

The .lib file contains timing models and data to calculate: I/O delay paths, timing check values,

interconnect delays. More information of liberty file can be found in [Patel-08c].

 As we can see from previous sections, a standard-cell library contains different views, and

information formats for each cell. Several tools are needed to use or design them. Table 2.3 shows

the formats and tools to design a standard cell using Cadence tools [Patel-08d].

Access to several standard-cell design tutorials can be found at the University of New

Mexico33.

2.2.3 Virginia Tech Standard-Cell Library

IC manufacturers impose access restrictions on their standard-cell libraries because they

are considered intellectual and technological properties of great economic value. These restrictions

make difficult teaching and research activities in the field of digital VLSI design. One alternative

for educational institutions was proposed by the Virginia Tech VLSI for Telecommunications

Group, whom developed free access standard-cell libraries for academics.

“The VTVT Group has developed three standard-cell libraries targeting the TSMC 0.18um,

TSMC 0.25um, and TSMC 0.35um CMOS processes available via MOSIS. The libraries can be

used with Synopsys synthesis tools and the Cadence SOC Encounter, Place/Route tool. All of the

cells can be viewed and edited using the Cadence Virtuoso layout editor. The standard-cell libraries

require NCSU design kit or other kits that follow MOSIS design rules. Since MOSIS DEEP design

rules are used for our cell library, the NCSU design kit has been modified slightly. Changes to the

NCSU kit are included in this distribution”34.

The development of the VTVT standard-cell library is described in [Sulistyo-10].

The standard-cell library that we obtained from Virginia Tech University was in an old

Cadence data base format (.cdb). To use this in the ITESO integrated circuit laboratory, the VTVT

33 University of New Mexico, Advanced VLSI Design (ECE 595). Apr. 25, 2014,

http://www.ece.unm.edu/~jimp/vlsi_synthesis/.
34 Virginia Polytechnic Institute and State University-MICS Group, Cell Libraries to Support VLSI Research and

Education. Jun. 20, 2014, http://www.mics.ece.vt.edu/ICDesign/Cell_Libraries/Overview/index.html.

http://www.ece.unm.edu/~jimp/vlsi_synthesis/
http://www.mics.ece.vt.edu/ICDesign/Cell_Libraries/Overview/index.html

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 31

library was converted to the Open Access (.oa) data base in order to make this compatible with

new Cadence V6 environment35 [Brunvand-13].

In order to implement the initial digital VLSI design flow in the ITESO integrated circuit

laboratory, the TSMC 0.18 µm standard-cell library was installed in the mentioned lab, with the

following features:

i. 83 primitive cell layouts

ii. Synopsys synthesis (.db/.sdb) and VHDL simulation libraries.

iii. LEF file for the PNR tool.

iv. Symbols and schematic libraries of standard cells.

v. Readme files and a documentation for modification of the NCSU kit.

vi. Other documentations, including the place-and-route flow used to test the library.

After the installation, by using the Cadence Virtuoso Library Manager we can see four

VTVT standard-cell views: layout, physconfig, schematic, and symbol.

In the next section, the logic-synthesis workflow using RTL Compiler Cadence tool and

35 Washington University in Sta. Louis-EDA Wiki, How to Convert a CDB Library to an OA Library. Jun. 27, 2014,

http://eda.engineering.wustl.edu/wiki/index.php/How_to_convert_a_CDB_library_to_an_OA_library.

TABLE 2.3. VIEWS, FORMATS, AND CADENCE TOOLS IN A TYPICAL STANDARD-CELL

LIBRARY

Views Format Cadence Tools Comments

Physical layout GDS-II
Virtuoso Layout

Editor, ICFB

Should follow specific design standard:

Constant height, offset, etc.

Logical
Verilog,

TLF, LIB
Text editor

Verilog model is required for dynamic

simulation, this file should preferably

support back annotation of timing

information.

Place-and-route tools usually can use TLF

Abstract

LEF,

Milkyway

(Synopsys)

Cadence Abstract

Generator, place-

and-route tools

LEF (Layout Extraction Format): contains

information about each cell as well as

technology information

Timing, power,

parasitic
TLF, LIB

Spectre, RTL

Compiler

Detailed timing and power simulations are

performed on the Spice netlist, the results

are recorded in this file, including process,

temperature and supply voltage variations.

Also, this file contains logical information

for each cell

http://eda.engineering.wustl.edu/wiki/index.php/How_to_convert_a_CDB_library_to_an_OA_library

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 32

VTVT standard-cell library is presented, it is implemented and verified by synthesizing a

sequential digital circuit.

2.3. Logic Synthesis Using RTL Compiler

Logic synthesis is the process of translating a behavioral hardware description language

(HDL) circuit model into another HDL model that represents the same circuit through specifying

fundamental logic blocks and their interconnections between them. Therefore, the structure that is

described by the new model represents the same original circuit behavior. The new model is known

as structural model because it is based on logic blocks from a standard-cell library, which contains

the behavioral and physical models (layouts) of the basic logic blocks [Brunvand-10].

The logic synthesis flow comprises the following steps: a) conversion of the RTL model

into Boolean functions, b) technology-independent optimizations, c) technology mapping, d)

technology-dependent optimizations, and e) test logic insertion [Wang-09].

The first step in the logic synthesis converts behavioral or RTL descriptions into

implementations in terms of generic logic gates (AND, OR, NOT, Flip- Flops, etc.), which are not

linked to any technology. This means that later, it can be selected a specific standard-cell library

for the technology mapping step.

In the second step are performed technology-independent optimizations using logic

function reduction methods such as Quine-McCluskey or multilevel logic optimization, being the

later more suitable for standard-cell based designs [Wang-09].

In the technology mapping step, the synthesizer performs an implementation of the

technology-independent optimized design using a specific standard-cell technology.

After technology mapping has been done, additional optimizations are performed such as

those for timing and power consumption [Cadence-12a].

Finally, additional test logic can be inserted in the circuit to support design for testability

(DFT) features.

In the next sections, the RC synthesis flow is presented through an example, and the basic

commands and attributes of a TCL36 synthesis script, required for controlling and administering

36 Tcl Tutor, Tcl Tutor Overview. Jun. 14, 2014, http://www.msen.com/~clif/TclTutor.html.

http://www.msen.com/~clif/TclTutor.html

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 33

the RC synthesis tasks, are explained.

2.3.1 Digital Circuit to Be Synthesized

The circuit example selected to implement and verify the RC synthesis flow [Cadence-14]

at ITESO integrated circuit laboratory, is a basic circuit that has both combinational and sequential

elements. The circuit is selected not with the goal to show the synthesis tool capacities but to

practice the steps into the RC workflow, to know the RC synthesis inputs and outputs, to learn

some RC fundamental commands, and for the first time, to carry out the RC synthesis workflow

at the ITESO integrated circuit laboratory.

The circuit example is a frequency divider controlled by a four-bit binary word. It consists

of a module-16 binary counter and a four-bit comparator-counter, the later controls the overflow

time of the module-16 counter. The circuit example can generate sixteen pulse frequencies

according to a four-bit input word. Fig. 2.1 shows the frequency divider black-box (bwco); it has

three input ports and three output ports; whose functions are as follows:

bw (3:0): is a four-bit input port to define the output frequency on ovf2.

clk: is the clock input port for synchronizing the digital system example.

reset: is an input signal to stablish initial conditions in the system.

q (3:0): is the module-16 counter output. Its count value is incremented each ovf1 is set.

ovf1: is the comparator-counter overflow output. It is set when its count is equal to bw.

Fig. 2.1 Black-box of frequency divider circuit. Sequential digital circuit selected for

implementing the Encounter RTL Compiler workflow using the Virginia Tech

standard-cell library at ITESO integrated circuit laboratory.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 34

ovf2: is the system overflow output. It is set when ovf1 and module-16 counter overflow

are equals to one.

Fig. 2.2 shows the frequency divider block diagram. It has two modules: the

module16_counter and the comparator_counter. Working together, these modules can generate

16 different frequencies according to clk and bw inputs. Fig. 2.3 shows simulation waveforms of

the frequency divider to be synthesized.

Fig. 2.2 Frequency divider block-diagram. Sequential digital circuit selected for

implementing the Encounter RTL Compiler workflow using the Virginia Tech

standard cell at ITESO integrated circuit laboratory.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 35

2.3.2 RTL Compiler Synthesis Flow Inputs and Outputs

Fig. 2.4 depicts a generic RC workflow. It shows the most important steps for the logic

synthesis using Encounter RTL Compiler as well the inputs to each task into the synthesis process

and possible outputs that the RC synthesis tool can generate.

The inputs to the RTL Compiler synthesis process are the following [Cadence-12b]:

a) The design HDL models: Verilog, VHDL, or System Verilog files.

b) The design constraints: restrictions and limitations imposed on the design, regarding the

area, time, power consumption, etc. These are contained in a file that uses the Synopsys

design constraints (.SDC) format or an RC native format.

c) Liberty format library: it is a file with information about the functional definition, timing,

power consumption, and noise for each cell. This file uses generally the liberty (.LIB)

format.

d) Library exchange format file (.LEF): is a file containing the standard-cell technology

information such as layers, design rules, via definitions, metal capacitance, cell

dimensions, pin layout, etc.

e) Synthesis script file (.TCL): is the file that defines variables and commands to control and

administers the RC task execution of the synthesis flow.

f) Technology independent synthesizable macro-cells or IP modules required for design

(GTech and Design Ware (DW) in Synopsys).

g) Optional files: capacitance table file (.CAPTBL), floorplan design exchange format file

(.DEF), switching activity files (.SAIF), toggle count format (.TCF or .VCD), and common

Fig. 2.3 Frequency divider circuit simulation results.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 36

power format (.CPF) file.

The outputs from the RTL Compiler synthesis process are:

a) Optimized gate-level netlist file (.V): this file is the main product of the logic synthesis

process. It is a Verilog model that describes the circuit structure based on standard cells

and its connectivity, which reproduces the same functionality than the behavioral or RTL

model.

b) Constraints file (.SDC): this is the current design constraint output file in Synopsys design

constraint format, which is required in the place-and-route tool.

c) Optional files: scandef, DEF, Do-files, and CONF files which are useful for the back-end

design stage.

The next section explains a synthesis script to control and administer a basic Encounter

RTL Compiler workflow.

Fig. 2.4 Generic RTL Compiler synthesis workflow, inputs and outputs.

Encounter

RTL Compiler

(RC)

.lib, .lef

libraries
synthesis

script

HDL model

(RTL or

behavioral)

constraints

.sdc

optimized

gate-level

netlist

timing, area

reports

place & route

tool files

.sdc

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 37

2.3.3 Synthesis Script for RTL Compiler

The best way to control the RC synthesis process is by using a TCL script. It is highly

recommended to generate this script using the rc_write_template command. This command

should be used for each new design and tool release as it ensures that all attribute and variable

settings are for the latest release and guarantees the use of latest recommended synthesis flow. For

the example here presented, the utilized syntax to generate a synthesis script is [Cadence-15a]:

rc_write_template –outfile synthesis_script_bwco_sdc.tcl

where synthesis_script_bwco_sdc.tcl is the TCL script file name for the design example

considered. The generated script template is modified for the specific design example presented in

this chapter.

To launch RTL Compiler and to execute the synthesis script, use the following command:

rc -gui -f synthesis_script_bwco_sdc.tcl –log run_log_bwco.log

where run_log_bwco.log is the synthesis output log file.

The next subthemes explain the sections of the RC synthesis script,

synthesis_script_bwco_sdc.tcl, which are identified with letters from A to L in Appendix D.

2.3.3.1 Presetting Global Variables and Attributes

The Section A of the synthesis_script_bwco_sdc.tcl file, defines the global variables with

the purpose to concentrate all the design object names in a section of the script in order to facilitate

changes and reuse of the script for new designs. For example, it is useful to define global variables

for the top-level design name, standard-cell libraries, and folder names for output reports.

2.3.3.2 Specifying Explicit Search Paths

The default RTL Compiler search path is the directory path where RC is launched. Specific

search paths can be defined for libraries, script files, and design files. To set specific search paths,

type the following set_attribute commands in the RC synthesis script file [Cadence-15b]:

set_attribute lib_search_path <lib_path> /

set_attribute script_search_path <script_path> /

set_attribute hdl_search_path <hdl_path> /

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 38

where xxx_path is the full path of the technology libraries (.LIB), script, and design files.

The slash (/) in these commands refers to the root-level RTL Compiler object containing

all global RC settings. See Appendix D for specific examples of these and other commands

explained in this chapter.

2.3.3.3 Setting the Target Technology Library

After setting the library search path, specify the target technology library for synthesis

using the library attribute [Cadence-15b]:

set_attribute library <lib_name.lbr> /

After this command, RTL Compiler will use the library named lib_name.lbr to synthesis

the design. RTL Compiler can also accommodate the .lib library format. In either case, ensure that

you specify the library at the root-level (/). If the lib_name.lbr is not in a previously specified

search path (lib_path), specify the full path with the lib_name.lbr attribute.

2.3.3.4 Setting the Synthesis Mode

RTL Compiler has two modes for synthesizing the design. The synthesis mode is

determined by setting the interconnect_mode attribute, establishing whether RTL Compiler uses

wire load (wireload) models or physical layout estimators (ple) during synthesis: a) wireload

(default) indicates the use of wire load models for driving synthesis; b) ple indicates the use of

physical layout estimators (PLE) for driving synthesis.

PLE uses physical information of the technology, such as LEF libraries and capacitance

table file during synthesis, instead of the wireload model from technology library. Thus, the cell

area defined in the LEF file will be used in place of those in the timing library area to provide

better closure with back-end design tools. The timing library area will be used if the physical

libraries do not contain any cell definitions [Cadence-15b].

If the script file specifies to read LEF files, the interconnect_mode attribute is

automatically set to ple. The TCL script example uses the command to read LEF libraries. See

Appendix D.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 39

2.3.3.5 Loading the HDL Files

Use the read_hdl command for reading HDL files into RTL Compiler. When you issue a

read_hdl command, RC reads the files and performs syntax checks.

To load one or more Verilog files, you can use:

read_hdl file1.v

read_hdl file2.v

read_hdl file3.v

Or you can load the files simultaneously:

read_hdl {file1.v file2.v file3.v}

The file order is important, it must respect the design file dependency hierarchy. For the

design example we use:

read_hdl -v2001 {module16_counter.v comparator_counter.v bwco.v}

2.3.3.6 Performing Elaboration

Elaboration is required only for the top-level design. The elaborate command

automatically elaborates the top-level design, and its submodules and references. During

elaboration, RTL Compiler performs the following tasks: a) builds data structures; b) infers

registers in the design; c) performs high-level HDL optimization, such as dead code removal; d)

checks semantics.

If any gate-level netlist is included when reading the RTL files, RC automatically links the

cells to their references in the technology library during elaboration. You do not have to issue an

additional command for linking.

After elaboration, RTL Compiler has an internally created data structure for the whole

design, enabling application of constraints and performing other operations.

The following example shows the TCL set command and the RC elaborate command for

elaborating the frequency divider circuit example:

set DESIGN bwco

elaborate $DESIGN

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 40

2.3.3.7 Applying Constraints

After loading and elaborating the design, constraints must be specified [Cadence-14b].

Constraints include operating conditions, clock waveforms, and I/O timing.

Constraints can be applied in several ways: a) typed manually in the RC shell; b) included

a constraints file; c) read in SDC constraints.

In the script example, the constraints are applied by reading a constraints file using the

read_sdc command.

Constrains can be used to: a) define different clock signal attributes such as the duty cycle,

clock skew, and clock latency; b) specify input and output delay requirements for all ports relative

to clock transition; c) apply environmental attributes, such as load and drive strength for the top-

level-ports; d) set timing exceptions, such as multicycle paths and false paths37.

The following paragraphs show examples for defining clock signals.

Clocks are defined using the define_clock command. The following sentence defines a

clock signal named 200MHz_CLK with a period of 5,000 ps.

define_clock -name 200MHz_CLK -period 5000 [clock_ports]

where clock_ports returns the input ports of the design that are clock inputs.

The clock duty-cycle can be changed by defining rising and falling edges:

define_clock –name 200MHz_CLK –period 5000 –rise 20 –fall 80

The slew clock attribute specifies the minimum rise, minimum fall, maximum rise, and

maximum fall slew values. The following sentence sets these attributes to 250, 300, 300 and 350,

respectively, for the clock signal 200MHz_CLK:

set_attribute slew {250 300 300 350} 200MHz_CLK

RTL Compiler only computes timing constraints among clocks in the same clock domain.

Paths between clocks in different domains are unconstrained by default.

If a clock domain is not specified, RC will assume that all the clocks are in the same

domain. By default, RTL Compiler assigns clocks to domain_1, however, a personalized clock

domain can be created using –domain argument together with the define_clock command. The

following example shows how to create two different clocks in two separated clock domains:

37 Timing Analysis Overview, Timing Exceptions. Feb. 14, 2019,

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_timing_analysis_overview.htm.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_timing_analysis_overview.htm

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 41

define_clock –domain my_domain1 –name clk1 –period 10000

define_clock –domain my_domain2 –name clk2 –period 720

RC enables defining other clock signal attributes such as latency and skew. In [Cadence-

14b] there is a complete description of how clock properties are specified.

2.3.3.8 Applying Optimization Constraints

In addition to applying design constraints, further optimization strategies may be needed to

enable the synthesis tool to achieve the desired performance goals.

RTL Compiler enable the execution of the following optimizations for: a) removing

designer-created hierarchies (ungrouping); b) creating additional hierarchies (grouping); c)

synthesizing a sub-design; d) creating custom cost groups for paths in the design to change the

synthesis cost function. For example, the timing paths in the design can be classified into the

following four cost groups: a) input-to-output paths (I2O); b) input-to-register paths (I2C); c)

register-to-register (C2C); register-to-output paths (C2O).

The read_sdc command reads a constraints file in Synopsys design constraints format into

RTL Compiler. It creates a cost group for each clock defined in the file. RC does not create false

paths between these clocks. The design must be elaborated before reading the designs constraints.

For each path group, the worst timing path drives the synthesis cost function. See Appendix

D to observe the cost groups defined in this design example.

2.3.3.9 Performing Synthesis

After setting constraints, and optimization goals, synthesis can be performed. Within RC,

synthesis is performed in the following two phases: a) synthesizing the design to generic logic

where technology-independent optimizations and datapath optimizations are performed; b)

mapping the technology library where RC maps the generic gate-level netlist into the technology

library cells and performing incremental optimization.

These two sequential steps can be performed by the synthesize command options “-

to_generic” and “-to_mapped”. See Appendix D for examples of synthesize and report

commands.

After synthesis, the RC tool will provide a technology-mapped gate-level netlist which is

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 42

the main input for the place-and-route stage.

2.3.3.10 Reporting Synthesis Results

Encounter RTL Compiler can generate reports which allow analyzing the synthesis results.

After synthesizing the design, detailed timing and area reports can be generated using several

report commands: a) to generate a detailed area report, use report area; b) to generate a detailed

gate selection and area report, use report gates; c) to generate a detailed timing report, including

the worst critical path of the current design, use report timing.

See Appendix D for report command examples used in this design.

2.3.3.11 Writing Out Files for Place-and-Route Tool

The last step in the synthesis flow involves writing out the gate-level netlist, output SDC

file, or Encounter configuration file for processing in a place-and-route tool.

By default, the write commands write output to the standard output (stdout: text terminal).

For saving the information in a specific file, use the redirection symbol (>) and give the filename.

Some writing out file commands are shown as follows:

For writing out the design gate-level netlist to a file called design_netlist.v, use:

write_hdl > design_netlist.v

For writing out a file that contains the timing for all modes and the design rule constraints

of the design use:

write_script > constraints.g

The file constraints.g generated by this command contains the following: a) attributes

related with the wire load models; b) clock objects and their reference to the pins of the design

blocks; c) external_delay on all inputs and outputs; d) timing exceptions; e) max_fanout,

max_capacitance and similar design rule constraints applied; and f) all user defined attributes that

were created with the define_attribute command [Cadence-15a].

For writing out the design constraints in SDC format, use the write_sdc command:

write_sdc > constraints.sdc

To generate all files required by the Cadence place-and-route tool (Encounter Digital

Implementation System EDI) use the write_encounter command:

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 43

write_encounter design design_name –basename dir_name/base_name

This sentence writes all the EDI input files to a single directory and path dir_name/base_name of

the design design_name. Details and examples for this command are documented in [Cadence-

15a].

2.3.3.12 Exiting RTL Compiler

There are three ways out of RTL Compiler when finishing a session: a) use the quit

command; b) use the exit command; c) use the Control-c key combination twice consecutively to

exit the tool immediately.

2.3.4 Logic Synthesis Results

This section presents the logic synthesis results performed by using RTL Compiler for the

frequency divider circuit.

For launching RC and executing the synthesis script explained in the last section, the

following sentence is typed from the command line.

rc -gui -f synthesis_script_bwco_sdc.tcl –log run_log_bwco.log

After the execution has completed, the reports and the results for each synthesis phase

(generic, map, and incremental) are in the folders reports_date_time and outputs_date_time,

respectively. The most important are described below.

2.3.4.1 Output Files

The design gate-level netlist file (bwco_m.v) is a structural Verilog model. It has

instantiated 52 standard cells from the Virginia Tech 180 nm library. This file will be used by the

place-and-route tool during the digital VLSI back-end design stage. Fig. 2.5 shows the schematic

diagram generated by the RC graphic interface from the gate-level netlist file. It can be observed

the circuit inputs and outputs, the standard-cell symbols and their interconnections.

The RC tool also generates others script files which are useful for configuring the place-

and-route tool in the back-end design stage, as is explained in Section 2.3.3.11 of this document.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 44

See Section K of Appendix D for the specific script files generated for this design example.

2.3.4.2 Synthesis Results Reports

The RTL Compiler synthesis tool can generate several reports: timing, silicon area, and

power consumptions. Fig. 2.6 to Fig. 2.8 show report summaries for the incremental synthesis

phase of the design example.

Fig. 2.6 shows the standard cells and area report, bwco_gates.rpt. The design example uses

different gates, flip-flops, and combinational blocks. The required area by each cell is specified,

as well as the library to which the cell belong. The synthesized frequency divider has 44

combinational and eight sequential cells. The total estimated area is 3,812 µm2.

The quality of silicon report, final.rpt, is shown in Fig. 2.7. This shows the evolution of the

logic synthesis through the generic, map, and incremental phases: the changes in the required area

and standard cells are reported. Also, the critical-path slacks for the defined cost groups are listed.

Finally, Fig. 2.8 shows the quality of results report, bwco_qor.rpt, which contains the path

slacks and the total negative slack for the created cost groups, as well as the estimated power

consumption and the maximum and minimum fanout.

Fig. 2.5 Schematic diagram of frequency divider circuit (bwco) generated by RTL

Compiler. This is the graphical view of the gate-level netlist for the synthesized

circuit example.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 45

Fig. 2.6 Gates report (bwco_gates.rpt): standard-cells used and required area for the

frequency divider circuit.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 46

Fig. 2.7 Quality of silicon report (final.rpt): evolution of timing, cell numbers, and

required area for each synthesis stage.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 47

Fig. 2.8 Quality of result report (bwco_qor.rpt): summary of critical path slack, total

negative slack of cost-groups, used standard cells, total area and estimated power

consumption.

2. IMPLEMENTATION OF A DIGITAL VLSI FRONT-END DESIGN AT ITESO

 48

2.4. Conclusions

In this chapter, the basic components needed for implementing digital VLSI front-end

design at ITESO have been identified. The MOSIS IC fabrication processes for education and

research institutions were identified. The IBM 130 nm (8RF-DM) technology was selected as the

most suitable for manufacturing interesting IC designs, for research projects in the context of the

Doctoral Program in Engineering Sciences at ITESO. The PDK and standard-cell libraries

concepts were presented, which are fundamental components for implementing digital VLSI

design at ITESO. Furthermore, the steps for synthesizing a sequential circuit using RTL Compiler

have been documented, which are fundamental in the digital VLSI design flow. A Cadence

recommended logic synthesis flow was implemented and verified by synthesizing a frequency

divider circuit. The gate-level netlist based on a specific standard-cell technology (180 nm Virginia

Tech Library) was generated. This is the main input for the place-and-route tool in the back-end

design stage of a digital VLSI circuit. The RC synthesis process requires a script file with the

attributes and commands for controlling synthesis results and output reports. The creation and

content of the synthesis script were explained. Several synthesis reports such as quality of silicon

and quality of results were presented. They show the outcomes of synthesizing a frequency divider

circuit, for example, the kind of standard-cells used, required silicon area, timing, and power

consumption.

The subjects here documented, allowed to implement for the first time at ITESO integrated

circuit laboratory, the logic synthesis of a digital circuit using RC Cadence tool, and the VTVT

standard-cell library.

49

3. On-Chip Implementation of Low-Latency Bit-

Accurate Fixed-Point RSR Unit

Many popular applications, such as gaming, digital signal processing, and communications

systems, require computation of the reciprocal square root operation (RSR). Although several

architectures have been reported for computing the RSR operation, these are mainly focused on

accelerating high-precision floating-point units. However, in low-power mobile-device

implementations, fixed-point (FxP) units are preferred due to their low-computational cost and

power consumption. This chapter presents an on-chip implementation of a low-latency, bit-

accurate, RSR IP-Core using FxP arithmetic and a 130 nm CMOS ASIC technology.

3.1. Relevance of Reciprocal Square Root and Previous

Works

The reciprocal square root (RSR) is a fundamental and recurrent operation in digital signal

processing (DSP) algorithms where matrix decomposition and solution of systems of linear

equations are required. For example, in multiple-input multiple-output (MIMO) wireless

communication to perform tasks such as digital modulation [Chen-13], channel estimation

[Salmela-06], [Salmela-11], singular-value decomposition [Markovic-07], and matrix inversion

[Mahapatra-12]. Likewise, in the area of digital signal processing these nonlinear operations are

required for matrix decomposition[Singh-07], [Luethi-08], [Liu-17a], [Liu-17b]. Furthermore, the

RSR operation is required for 3D-image rendering in gaming applications [Woo-09], [Kim-11].

Silicon IP-cores can be utilized to improve the performance of electronic applications

implemented in low-power embedded systems and mobile devices with limited computational

resources, for example, the NXP microcontroller based on ARM Cortex-M438. In this kind of

systems, the processing unit could present bottlenecks produced by complex operations, such as

the following elementary functions: exponential, logarithms, trig, hyperbolic trig, roots, RSR,

38 NXP Processors and Microcontrollers, Low-power 32-bit Microcontrollers. Nov. 11, 2017,

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-

mcus:KINETIS.

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 50

among others. In these applications, it is of paramount importance to reduce the microprocessor

load, by implementing the complex operations in silicon IP-cores instead of executing them by

software instructions. These customized IP-cores improve overall system performance in terms of

area, speed, and power consumption [Liu-17a], [Liu-17b], [Woo-09], [Kim-11], [Markovic-06],

[Markovic-07]. Due to its ever-expanding presence, having an off-the-shelf RSR silicon IP-core

reduces time-to-market cycles and increases resource utilization.

Several double-precision floating-point (FP) architectures for computing the RSR

operation have been proposed. In [Takagi-01] and [Lang-03], a modified digit-recurrence

algorithm is used, leading to high-latency (28 cycles). Initial works [Wong-94] used an architecture

based on rectangular multipliers. Later, [Ercegovac-00] showed improved performance when

using smaller multipliers and Taylor series evaluations. The proposal in [Piñeiro-02] presents the

best estimated cost-delay tradeoff among those mentioned here. It is based on look-up tables

(LUTs), polynomial approximation and one Goldschmidt iteration. These architectures focus

mainly on accelerating high-precision FP units. Hence, they are not suitable for low-power, low-

cost mobile devices due to the hardware cost and power consumption.

Furthermore, FP single-precision designs for computing the square-root operation have

been reported. In [Ren-93] and [Srinivas-95], shared divider/square-root designs are reported, the

integrated-circuit layouts are shown, and the area and delay are specified, however, measurements

of the manufactured chips are not reported. Moreover, the technologies (1.2 µm) and design

methodologies used in [Ren-93] and [Srinivas-95] are far below the state-of-the-art. A standard-

cell implementation of the RSR based on LUTs and a modified Newton-Raphson (NR) iteration

is presented in [Schulte-99]. An improved version of [Schulte-99] was later proposed in [Wires-

06]. Alternatively, [Kwon-08] reports a standard-cell implementation of the square root based on

LUTs and Taylor series. Synthesis results from a digit-recurrence square-root circuit for two

standard-cell technologies (40 and 60 nm) are presented in [Suresh-13], which reports an estimated

power consumption for each technology. A digit-recurrence implementation for computing the

1 x , x , and 1 x operations is presented in [Butts-11]; it is based on radix-8 for determining

the next digit and shows a latency of eight cycles.

In real mobile applications, the high-demand computing tasks are implemented in

specialized FxP units. This leverages lower hardware cost and reduces the power consumption of

the FxP implementations [Khirallah-03], [Wang-10], [Salmela-11]. Examples of this trend are the

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 51

applications presented in [Salmela-06], [Singh-07], [Liu-17a], and [Liu-17b], all of which use 16-

bit FxP units to compute either the square-root or the RSR operation. Similarly, [Luethi-08] and

[Sohn-06] report the use of 23-bit and 32-bit FxP units to perform the same operations,

respectively.

Despite the advantages of the FxP arithmetic for real applications on mobile devices, few

papers have reported an FxP implementation, either of the square-root [Wang-10], [Sajid-12],

[Martin-Del-Campo-12], [Seth-11] or the RSR [Salmela-11], [Pizano-Escalante-15], [Rounioja-

03].

In the following section, the algorithm to implement the RSR operation is introduced, it is

based on the NR method and a piecewise-polynomial approximation in a reduced range. The

algorithm is patented by the authors in [Parra-Michel-18], [Pizano-Escalante-15]. Hereafter the

algorithm is named 2C-RSR, which is presented for being implemented as a silicon IP using FxP

arithmetic on a 130 nm ASIC technology.

3.2. 2C-RSR Algorithm

The 2C-RSR algorithm computes the operation

 1y x= (3-1)

where
1

, | , 2
k i

ii f
x y x y b

−

=−
 = with {0,1}ib  , and ,k f  are the number of bits for

representing the integer and fractional parts, respectively, of x and y in FxP format.

In this thesis document, an FxP format is represented by notation Q(w, f, sign), where

w k f= + is the word-length and  ,sign s u indicates signed or unsigned format, respectively.

Due to the finite size of w in real implementations, the result computed by (3-1) is an

approximation of the exact value, i.e., 1 x computed using infinite precision. Nevertheless, the

2C-RSR algorithm is able to provide a result with a maximum error of 2 2f−
, which makes the

result bit-accurate with respect to the result computed by a double-precision FP unit (IEEE 754-

2008 standard) [IEEE-08] when this is represented in the selected Q(16,11,u) FxP format. We

selected this format because it allows representing the magnitude of standard-Gaussian random

variables, which is useful to study real-valued random variables whose distributions are unknown

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 52

[Williams-16].

3.2.1 Bit-Accurate Property

Since bit-accurate is not a standardized concept, we define it below as used in this thesis

document.

The conversion operation of v , from decimal to binary FxP format, is

,{ }f w f

wQ v v= (3-2)

where v is the decimal representation of the result obtained from any arithmetic operation 

performed by an FxP arithmetic unit. The expression
,w fv stands for the binary representation of

v in FxP format considering w and f parameters. Likewise, the conversion operation of FPv ,

from decimal to binary FxP format, is

,{ }f w f

w FP FPQ v v= (3-3)

where FPv denotes the decimal representation of the result performed by a double-precision FP

arithmetic unit, and
,w f

FPv is the binary representation of FPv in FxP format. Therefore, the bit-

accurate property holds for v when (3-4) is met,

, , .w f w f

FPv v= (3-4)

To illustrate the bit-accurate property, Table 3.1 shows the comparison of two numerical

results. The first row shows the result of the 1
9

 operation performed by an FP arithmetic unit and

its equivalent value when this is represented in FxP format (which can be obtained by using the

fi(v,0,w,f) Matlab function). The second row shows the result of the same operation performed by

a bit-accurate FxP arithmetic unit using w = 16 and f = 11. When this result is represented in

TABLE 3.1. BIT-ACCURATE ASSERTION

1 / 9 =

Value xv 11

16
{ }

x
Q v 15

20
{ }

x
Q v

vFP = 0.333333333333333 0.01010101011 0.010101010101011

 v = 0.33349609375 0.01010101011 0.010101010110000

Is v bit-accurate? yes no

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 53

Q(16,11,u) format, all the bits are equal to the corresponding
16,11

FPv value, and it can be said that

the obtained result is bit-accurate. It must be noted that this does not necessarily holds for a

different format, Q(20,15,u) in this example. The advantage of a bit-accurate result computed by

an FxP unit is that the result can be shared with a more-precise FP unit without introducing a

conversion error.

3.2.2 Top-level Description of the 2C-RSR Algorithm

The 2C-RSR algorithm reported in [Pizano-Escalante-15] is based on the NR method. The

seed for the NR iteration is computed by a piecewise-polynomial approximation. Due to the

nonlinearity of the RSR function, the polynomials are evaluated in a reduced range of x, namely

the reduced range (rr). This condition improves the polynomial fit and results in a better

approximation. For computing the RSR of x when x is outside rr range, a scaling and a de-scaling

step are required. At the end, a rounding step is applied to obtain a bit-accurate result with a

maximum error of ½ unit in the last place (ulp), with ulp 2 f−= for the Q(w, f, sign) format. Each

step of the algorithm is summarized below.

3.2.3 Newton-Raphson Method

The Newton-Raphson iteration for computing the RSR operation [Ercegovac-05] is

obtained by applying the general NR equation

 () ()1i i i iy y f y f y+
= − (3-5)

to the function () 21f y y z= − , where ()f y denotes the first derivative and z wr represents

the scaled value of x defined by

22 nz x= , (3-6)

where n is the scaling exponent, and
22 n

 is the scaling factor. From the foregoing, the NR

iteration for the RSR function is defined by

 () 2

1 2 (3)i i iy y zy+ = − , (3-7)

where iy represents the ith iteration, which converges quadratically to 1 z for any seed

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 54

()0 0, 3y z [Joldes-16]. The quadratic convergence of (3-7) is observed from the error

relation between two consecutive iterations and is defined by

 ()2

1 2i i izy z + = − − , (3-8)

where 1i iy z = − is the NR approximation error of the ith iteration and
1 1 1i iy z + += − is the

approximation error of the next iteration, which is roughly the square of the ith-iteration error. Due

to the quadratic convergence of (3-7), the number of correct bits of 1iy + roughly doubles on each

iteration [Ercegovac-05].

3.2.4 Seed Computation

In the proposed architecture, the NR method is provided with a seed value 0y close to

1 z by a piecewise-polynomial approximation. Since the piecewise approximation is performed

for a limited range of x (rr), the polynomial grade is reduced [Ercegovac-04], resulting in a better

polynomial fitting for the RSR function, and helps to meet the approximation error requirements.

The first approximation of 1 z is obtained by using a polynomial defined by

 0 0
,

M i

ii
y a z

=
= (3-9)

where ia are the polynomial coefficients and M is the polynomial’s degree. In order to apply the

piecewise-polynomial approximation, the following factors are considered: the error objective, the

rr range, the number of subintervals into which rr range is divided, the polynomials’ degree, and

the hardware-implementation cost.

3.2.5 Scaling and De-scaling Operations

A good feature of the 2C-RSR algorithm is the scaling step, as this allows improving the

polynomial approximation and the algorithm architecture for the target rr range. In the scaling

step, the range of x is divided into several intervals, each of which is linearly mapped into the

reduced range rr using different scaling exponent n. From (3-1) and (3-6), the scaling effect yields

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 55

 ()()
2

1
2 1 .

2 2

n

n n
y z

x

−= = (3-10)

Since (3-7) converges to 1 z , an approximation of y is obtained by

 2 n

iy y−= , (3-11)

where 2˗n represents the de-scaling factor.

3.2.6 Rounding Operation

In the rounding step, a round to nearest operation39 [Ercegovac-04], with a tie-breaking

rule is applied to the de-scaled approximation y obtained using (3-11). Thus, a bit-accurate RSR

result is obtained in Q(w, f, sign) format, with an error of 2 2f− as the maximum. This operation

is expressed by

  f

wy RNQ y= . (3-12)

3.3. 2C-RSR Hardware Architecture

This section describes the hardware architecture of the 2C-RSR algorithm. Each step of the

algorithm is implemented by hardware modules, which are shown in Fig. 3.1. The proposed

architecture computes the RSR using the Q(16,11,u) format, a new bit-accurate result is produced

in only two clock cycles. The first cycle is used to compute the seed, and the second one to perform

the NR iteration. Therefore, in order to meet the maximum error condition, a seed with eight-bit

of accuracy must be fed to the NR iteration.

The names of the modules represented in Fig. 3.1 and the operation that implement are: the

encoder, ENC, and barrel shifter, BS1, perform the scaling operation; the polynomial and Newton-

Raphson, PNR, implement the seed computation and NR iteration; the ENC and BS2 perform the

de-scaling operation; the RND module implements the rounding operation; the control unit, CU,

synchronizes the functions of the 2C-RSR modules; the overflow detector, OVD, and saturation,

39 EE Times, An introduction to different rounding algorithms. Sep. 30, 2017,

http://www.eetimes.com/document.asp?doc_id=1274485.

http://www.eetimes.com/document.asp?doc_id=1274485

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 56

SAT, modules are for signaling that the result cannot be represented in the Q(w, f, sign) format.

In the following sections, each module and its design considerations are described.

3.3.1 Overflow Detector and Control Unit

Before computing the RSR operation, it is necessary to detect any overflow conditions,

which depend on the selected FxP format. For the Q(16,11,u) format, the 2C-RSR architecture

produces an overflow when
102x − . If an overflow occurs, the overflow detector (OVD in Fig.

3.1) triggers the Ovf signal to indicate to CU that y must be assigned to the maximum-representable

value by the FxP format. This is performed in the saturation block SAT. The CU input signals are:

the reset Rst that establishes the initial conditions; the clock Clk for controlling the timing in the

circuit; and the Strt that commands the start of a new operation. The CU outputs are the selection

Sel and enable En signals used to control the PNR module shown in Fig. 3.2.

Fig. 3.1 Hardware architecture of the 2C-RSR algorithm.

BS1

ENCx

PNR

32,29,s

BS2
4

32,29,s

RND

17,12,u

SAT

16,11,u

OVD

16,11,u16,11,u

16,11,u

16,11,u

 CU

En
Sel

En

Sel

Clk

Rst

y =1/ x

16,11,u

4

4

n

Clk

Rst

Strt

Rdy

Ovf

Sat

Scaling

De-scaling

yi

z

y

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 57

3.3.2 Scaling Module

The RSR architecture proposed in this thesis document is nearly agnostic to the x range.

The scaling module not only improves the polynomial fitting but also enables this feature. For

Fig. 3.2 Hardware architecture of the PNR module that performs the piecewise-

polynomial-seed computation and the NR iteration. The seed computation is

carried out in the first clock cycle (Sel = 0, En = 1) whereas the NR evaluation is

done in the second clock cycle (Sel = 1, En = 0).

AGU ROM 3
a0

ROM 1
a2

ROM 2
a1

0 1

MUX1

1 0

MUX2

0 1

MUX3

32,29,s

M1

M3

32,29,s

4

 REG1

M2

0 1

MUX4

ADD/SUB

+

32,29,s

32,29,s

32,29,s

M4
Sel

Sel

Sel

SHT
(>>1)

32,29,s

Sel

32,29,s

 REG2

32,29,s

z

32,29,s

En

En Sel

Clk

Clk

Clk Rst

Sel

4

0x60000000

1i iy z = +

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 58

example, if a different FxP format is required, this change can be addressed by modifying the

scaling and descaling modules accordingly, and representing in the new required FxP format the

MUX3 input constant, which is the “3” number in (3-7).

From (3-6) and (3-11), the scaling and de-scaling operations can be implemented by bit-

shifting of x and yi, respectively. Each n value transforms an x interval [xLBn, xUBn] into the rr range.

The interval bounds are defined by

2 22 , 2 2 , 2n n f

LBn UBnx x f n k  −= = − −   . (3-13)

In the proposed architecture, the values of α and β impact: a) the piecewise polynomial-

approximation error; b) the required number of subintervals (polynomials) in which the rr range

is to be divided in order to meet the target error; and c) scaling and de-scaling operations. In this

case, the values of α = 0.5 and β = 2.0 are obtained by using piecewise-polynomial approximation

for the RSR function. Furthermore, α and β values are selected to be powers of two, to achieve an

efficient implementation of the scaling and de-scaling modules.

The selected input and output FxP format is Q(16,11,u), i.e., w = 16 bits, f = 11 bits, sign

= u, and therefore k = 5 bits. This format allows representing the magnitude of standard-Gaussian

random variables, which is useful to study real-valued random variables whose distributions are

unknown. Once the variables α, β, f, and k are defined, the intervals of x are calculated using (3-13)

; these are given in Table 3.2.

The scaling operation is performed as follows. If there is no overflow condition, the

encoder ENC and barrel shifter BS1 modules scale the input x to the reduced range rr, according to

TABLE 3.2. SCALING EXPONENTS AND INTERVALS OF x

α = 0.5, β = 2, w = 16, k = 5, f = 11

Scaling Exponent n XLBn XUBn

2 8 31.99951171875

1 2 7.99951171875

0 0.5 1.99951171875

-1 0.125 0.49951171875

-2 0.03125 0.12451171875

-3 0.0078125 0.03076171875

-4 0.001953125 0.00732421875

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 59

(3-6). The ENC provides the correct scaling exponent n, depending on the interval in which x is

located. The scaling exponents and x intervals are reported in Table 3.2. The ENC is a logic

comparator implemented by defining the bounds of scaling intervals as powers of two. Thus, the

comparator uses the 14 most significant bits of x to provide n. The BS1 performs the operation

defined by (3-6), shifting x by 2n-bits in the direction given by the sign of n. Moreover, to avoid

losing seed-computation accuracy, 16 bits are concatenated to the fractional part of the shifted x,

increasing its precision for computing the NR seed using the Q(32,29,s) format.

3.3.3 Polynomial Approximation and NR Module (PNR)

To ensure a seed with eight-bit of accuracy from the polynomial approximation, an FxP

analysis is performed by using the DSP techniques proposed in [Sung-95], [Menard-05]. This

analysis shows that the word format for computing the seed and yi needs to be Q(32,29,s).

To reduce hardware complexity for implementing the polynomial approximation and NR

method, we choose two as the polynomials’ degree. The parameters for the piecewise-polynomial

approximation are computed using the minimax and least-square error criteria [Muller-05]. In both

cases, the required seed with eight-bit of accuracy is achieved using 14 polynomials. The unequal

subintervals associated to the polynomials into which rr range is divided are shown in Table 3.3.

To minimize the polynomial-selection hardware, the subinterval boundaries rrLB and rrUB are

defined to be accurately represented by the selected FxP format. Table 3.4 shows the polynomial

coefficients computed using the least-square approximation.

It is important to note that the number of subintervals and polynomial coefficients does not

change when another FxP format is required; it is only necessary to apply a new scaling exponent

n, as discussed in Section 3.3.2.

The seed computation (3-9) and NR iteration (3-7) steps both perform a quadratic-

polynomial evaluation. We take advantage of this to reduce silicon area by implementing both

operations in the same module PNR, as shown in Fig. 3.2. The architecture of the PNR module is

composed of three read-only memories ROM1-ROM3 for storing the polynomial coefficients, one

address-generator unit AGU, four multipliers M1-M4, two registers REG, one combinational shifter

SHT, four multiplexers MUX, one adder/subtractor ADD/SUB, and one adder. All of these modules

use the Q(32,29,s) format.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 60

The operation of the PNR module shown in Fig. 3.2 is executed in two clock cycles. In the

first cycle, the seed computation is performed as follows. The CU module provides the signals Sel

and En to configure the data path (MUX, REG, and ADD/SUB) to evaluate (3-9). With Sel = 0 and

En = 1, the scaled data z is connected to the input of the modules AGU, M1, M3, SHT, and REG1.

The AGU generates the ROM addresses of the polynomials’ coefficients depending on the

subinterval to which z belongs according to Table 3.3. The AGU is a priority encoder, where the

bounds of rr subintervals are defined as powers of two. M1 computes the quadratic term
2z of

(3-9), M2 computes
2

2a z and M3 computes 1a z . The last two products are added in the ADD/SUB

block. The outputs of ADD/SUB block and ROM3 ()0a are added to complete the seed calculation

()0y . The former is stored in REG2.

TABLE 3.3. BOUNDS OF THE 14 SUBINTERVALS IN WHICH rr RANGE IS DIVIDED FOR THE

PIECEWISE-POLYNOMIAL APPROXIMATION

Subinterval rrLB rrUB

1 0.5 0.513671875

2 0.513671875 0.529296875

3 0.529296875 0.5537109375

4 0.5537109375 0.5849609375

5 0.5849609375 0.62890625

6 0.62890625 0.6875

7 0.6875 0.75

8 0.75 0.8125

9 0.8125 0.9375

10 0.9375 1.125

11 1.125 1.3125

12 1.3125 1.5

13 1.5 1.75

14 1.75 2

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 61

The NR method starts with the rising edge of the second clock cycle, storing z in REG1,

0y in REG2, setting Sel = 1, and En = 0. At this point, the architecture datapath is configured to

TABLE 3.4. FLOATING-POINT, °, AND FIXED-POINT, ¤, COEFFICIENTS FOR THE

PIECEWISE-POLYNOMIAL APPROXIMATION

N: number of subinterval

N T a2 a1 a0

1
° 2.070310683729 -3.490936206251 2.642141527551

¤ 0x423FFC30 0x904A4027 0x548C6C63

2
° 1.927325916268 -3.344069470610 2.604519952278

¤ 0x3DACA766 0x94FD6205 0x53583A3A

3
° 1.754197082325 -3.160906134777 2.556195569455

¤ 0x382261EB 0x9AD9DB60 0x51CC5AA6

4
° 1.547088157005 -2.931440188928 2.492793983503

¤ 0x3181BF05 0xA231A458 0x4FC4F7E3

5
° 1.320898869568 -2.666469549047 2.415382966010

¤ 0x2A44CDB4 0xAAAC480D 0x4D4AD137

6
° 1.077967960168 -2.360542638366 2.319293191251

¤ 0x227EB6A9 0xB4766F48 0x4A37A65A

7
° 0.965936441256 -2.213950778620 2.271577691221

¤ 0x1EE8F38A 0xB92750B2 0x48B0C3B2

8
° 0.700440349993 -1.821489125616 2.126890448060

¤ 0x166A01E1 0xC5B65C6F 0x440F7C8E

9
° 0.529134728524 -1.540725263357 2.012053720623

¤ 0x10EEABF4 0xCEB260EE 0x4062BE7B

10
° 0.351737406365 -1.206434709560 1.854793408661

¤ 0x0B416ECE 0xD964E309 0x3B5A77B4

11
° 0.230822482097 -0.936210142810 1.703970519464

¤ 0x0762E5D4 0xE20A9106 0x3686ED2E

12
° 0.161037227787 -0.7539341201073 1.585033998371

¤ 0x0527378B 0xE7DFC58D 0x32B89938

13
° 0.112221918030 -0.607157667474 1.474757219720

¤ 0x0397526B 0xEC922A15 0x2F31360D

14
° 0.078327429971 -0.489116629813 1.372019228973

¤ 0x0281A886 0xF0592814 0x2BE794DE

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 62

evaluate (3-7): the MUX1 output is 0y , M1 computes
2

0y and SHT generates 0 2y . MUX2 selects

z and M2 multiplies it by
2

0y . MUX3 selects the constant 0x60000000 (+3 in Q(32,29,s) format).

ADD/SUB performs
2

03 zy− with the outputs of MUX3 and M2. Finally, M4 multiplies the outputs

of the SHT and ADD/SUB modules. The output of MUX4, iy , is the NR approximation of 1 z in

Q(32,29,s) format.

3.3.4 De-scaling Module

As shown in Fig. 3.1, we reuse the ENC module, and the other barrel shifter BS2 to perform

the de-scaling step. With n already determined, BS2 performs (3-11) shifting iy by n bits in the

opposite direction of the sign of n. The result y is truncated into Q(17,12,u) format to preserve

the rounding bit.

3.3.5 Rounding Module

To achieve a bit-accurate result, the output of BS2, y , should be rounded. For this reason,

the de-scaling output is one-bit wider than the required output format Q(16,11,u). The RND module

performs the round to nearest operation (round-half-up)40. Using the least significant bit (LSB) of

y , the following criterion is taken: if LSB = 0, the result is correct in 16 bits, otherwise,
112−

 is

added to the result to achieve the bit-accurate result y in Q(16,11,u) format.

3.4. 2C-RSR ASIC Implementation and Results

3.4.1 ASIC Implementation

The Verilog register-transfer-level (RTL) model of the 2C-RSR architecture is verified by

implementing a test bench in the Mentor Graphics® ModelSim environment. All the valid input

40 EE Times, An introduction to different rounding algorithms. Sep. 30, 2017,

http://www.eetimes.com/document.asp?doc_id=1274485.

http://www.eetimes.com/document.asp?doc_id=1274485

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 63

values are applied to the design, and the outputs are exhaustively compared with the corresponding

golden values, which are computed by using the double-precision-RSR operation and representing

the results in Q(16,11,u) format. Checkers and monitors are implemented in the test bench in order

to guarantee that the circuit model achieved the bit-accurate property.

The verified RTL model is synthesized and implemented using the ARM standard-cell

library for the Globalfoundries 130 nm CMOS (8RF-DM) process. The logic and physical

synthesis are performed with RTL Compiler and Encounter Digital Implementation, respectively,

both tools from Cadence®. In addition, the netlist model passed the logic-equivalence check and

the static-timing-analysis tests.

The post-placed and routed netlist of the 2C-RSR chip is verified using the same test bench

as that one used for verifying its RTL model. The timing and the functionality are correct.

The chip layout-versus-schematic (LVS) and design-rule-checking (DRC) tests are

performed using the Virtuoso and Calibre tools. The final 2C-RSR physical design is shown in

Fig. 3.3. The standard-cell area is 0.2289 mm2, and the total chip area including the pad-frame is

1.598 mm2. The 2C-RSR is manufactured by the MOSIS MEP program using the 130 nm CMOS

(8RF-DM) process. The chip microphotograph is shown in Fig. 3.4.

The pin count of the 2C-RSR chip is as follows (see Fig. 3.5): the 16-bit input, x[15:0],

Start input, Reset input, clk input, the 16-bit output, y[15:0], READY output, 1.2V core power supply

(VDD and VSS) and 2.5V input-output (I/O) power supply (DVDD and DVSS). We decided to

dispense with the overflow signal in order to implement the chip in a DIP40 package.

The functional and timing tests of the 2C-RSR chip are carried out with a test platform

[Aguilera-Galicia-16] based on an FPGA board (Xilinx Spartan-6), a mixed-signal oscilloscope

(Keysight MSO9064A), and a logic analyzer (Keysight 16862A), as shown in Fig. 3.6. The test

vectors are sequentially and exhaustively applied by a finite-state machine inside the FPGA. Full

coverage of test cases is achieved and the input-output pairs of the chip for several frequencies are

acquired with the logic analyzer.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 64

Fig. 3.3 Physical design of the 2C-RSR integrated circuit.

Fig. 3.4 The 2C-RSR integrated circuit microphotograph.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 65

Fig. 3.5 Pin layout of the 2C-RSR integrated circuit.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

x[15]

DVSS

x[13]

x[14]

x[11]

x[12]

x[9]

x[10]

clk

x[8]

x[7]

Start

x[5]

x[6]

x[3]

x[4]

x[1]

x[2]

VSS

x[0]

y[12]

y[11]

y[10]

y[9]

y[8]

/ Reset

READY

y[7]

y[6]

y[5]

y[4]

y[3]

y[2]

y[1]

y[0]

DVDD

VDD

y[15]

y[14]

y[13]

Fig. 3.6 Measurement of the 2C-RSR chip: test bench setup.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 66

3.4.2 Results of Chip Measurements

The timing diagram of the 2C-RSR-circuit functionality is shown in Fig. 3.7. The Input

signal is the 16-bit x input to the chip, for which the RSR operation is computed. The 16-bit chip

results are shown by the signal RSR represented in decimal format. To interpret these as Q(16,11,u)

FxP numbers, the decimal values should be multiplied by 2-11 (one ulp). For example, the Input =

00,008 multiplied by 2-11 yields 2-8, and the corresponding output RSR = 32,768 yields 16, i.e.,

81 2 16− = , which verifies that the chip result is correct for this value. The next signal in the

timing diagram is the clock CLK; the cursors M3 and M4 show a rough measurement of the clock

period, which corresponds to a frequency of 50 MHz. The Ready signal indicates that a new result

is available. Note that the Ready signal remains at zero for three clock cycles; this is because the

architecture requires two cycles for the RSR calculation and one cycle to put the result at the chip-

output pins, which is not required when the design is interconnected with other units.

An exhaustive test of the 2C-RSR chip is performed applying all the possible input values

to the chip and capturing its response using a logic analyzer. The 65,536 input-output data pairs

are post-processed in Matlab to compare the chip output versus the golden values, which are

calculated using the RSR operation in a double-precision floating-point (FP) computer and

representing the results in Q(16,11,u) format. From this comparison, we observe that all the chip

results are exact for a maximum clock frequency of 49.62 MHz, i.e., the 65,536 RSR results are

Fig. 3.7 Measurement of the 2C-RSR chip: timing diagram of the chip in operation.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 67

bit-accurate with respect to the golden values. Additionally, in order to determine the accuracy of

the 2C-RSR chip results versus those calculated by 64-bit computers, the chip results are compared

with the corresponding double-precision FP values. The comparison is illustrated in Fig. 3.8; this

shows that the maximum absolute error is ½ ulp of the Q(16,11,u) format, i.e., the maximum

absolute error of the 2C-RSR chip is
122−

 with respect to the values computed by a double-

precision FP computer.

The detailed functionality of the 2C-RSR chip can be verified in Fig. 3.9, which shows the

chip’s response to the x input represented in radix 10 for the range of (0, 4]. The input and output

data of the chip are acquired with the logic analyzer and then plotted. The labels show selected

values, to illustrate the correct operation of the chip.

Fig. 3.8 2C-RSR-chip output and error versus the double-precision values.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 68

The current consumption of the chip is measured by using a digital multimeter (Keysight

U1241B) for several clock frequencies. The chip-core power supply (VDD) is 1.2V. Using the

current and voltage measurements, we calculate the total power consumption of the chip core. The

core-total-chip power consumption for different clock frequencies is shown in Fig. 3.10. As can

be seen, the power consumption is maintained approximately constant: 0.1615P F  =

mW/MHz, from 14 MHz to 44.21 MHz. Here, P and F denote increments of power

consumption and frequency, respectively. From 44.21 MHz, P F  decreases due to the

reduction of swing voltage (Vswing) in internal nodes of the 2C-RSR integrated circuit, i.e., the

dynamic power consumption follows the expression

 dynamic DD swingP CFV V= (3-14)

where C is the average capacitance of the internal nodes, and F is the switching frequency. The

reduction of Vswing is due to the inherent resistive-capacitive (RC) switching delay of the internal

nets, which impose a maximum working frequency.

Fig. 3.9 2C-RSR chip-operating graph based on real data acquisition: input-output

response.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 69

3.5. Comparison of 2C-RSR Chip with Previously Synthesized

Designs

To the best of our knowledge, performance and results of on-chip implementations for RSR

circuits have not been reported in the open literature. For comparison purposes, we use the

simulation results of the ASIC designs presented in [Wires-06], [Kwon-08], and [Suresh-13],

which are implemented at the level of logic synthesis using CMOS standard cells. The comparison

outcomes are given in Table 3.5. As these designs are implemented using different feature-size

technologies, Table 3.5 reports the original values of the comparison variables and the scaled

values, which are calculated assuming Dennard scaling [Weste-11], i.e., the comparison variables

of area, maximum working frequency, and power consumption of the three designs are scaled into

the 130 nm feature size. The design in [Wires-06] and the 2C-RSR chip perform 1 x directly,

whereas the design in [Kwon-08] computes both x and 1 x operations. In the reported

throughput values for computing 1 x with the implementation of [Kwon-08], we consider the

Fig. 3.10 Core total power consumption of the 2C-RSR chip versus clock frequency.

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 70

concatenation of x and 1 x operations. This implies 24 latency cycles. The design in [Suresh-

13] only computes x ; hence, for computing 1 x an extra division is required. It is important

to note that x operation can be computed with the proposed 2C-RSR chip using only an

additional multiplication, i.e., ()1x x x= .

From Table 3.5, the design in [Suresh-13] has the smallest area and the highest clock

frequency. In contrast, this design has the worst latency and throughput. The implementation with

the lowest latency is the 2C-RSR chip, with only two clock cycles; this contributes to higher

throughput for lower clock frequency. Furthermore, lower clock frequency means less dynamic

power consumption and better signal integrity. For example, using the scaled values of Table 3.5,

design in [Suresh-13] has a consecutive throughput (CTP) (i.e., when consecutive operations are

being processed) of 11.25 million operations per second (MOPS) at a clock frequency of 450 MHz,

TABLE 3.5. IMPLEMENTATION RESULTS COMPARED WITH REFERENCE DESIGNS

TS: transistor scaling; ClkF: clock frequency; CTP: consecutive throughput;

NCTP: nonconsecutive throughput

Variable
[Wires-

06]

[Kwon-

08]
[Suresh-13]

This

work

Operation 1 x 1 x x 1 x

Word format 32 FP 32 FP 32 FP 16 FxP

On-chip realization No No No Yes

Feature size (nm) 250 90 65/40 130

Latency (cycles) 5 24 40 2

Area (mm2) 0.4094 0.0453 0.0147/0.0057 0.2289

ClkF (MHz) 152.67 500 900 49.62

Power (mW) 92.87 NA 18.86/7.18 7.06

TS 0.52 1.44 2/3.25 1

Area×TS2 (mm2) 0.1107 0.0945 0.0588/0.0621 0.2289

ClkF/TS (MHz) 293.6 346.2 450 49.62

Power×TS2 (mW) 25.11 NA 75.44/75.84 7.06

CTP (MOPS) 293.6 34.62 11.25 24.81

NCTP @ 100 MHz 20 4.17 2.5 24.81@ 50MHz

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 71

and a power consumption of 75.44 mW, whereas the 2C-RSR chip has a throughput of 24.81

MOPS at a clock frequency of 49.62 MHz and 7.06 mW. Hence, the 2C-RSR circuit doubled the

throughput of design in [Suresh-13] with only 10% of power consumption and a clock frequency

nine times lower.

Both designs presented in [Wires-06] and [Kwon-08] have better throughput than the 2C-

RSR chip, at the expense of higher clock frequency and the negative effects on power

consumption. The estimated power consumption of the design reported in [Wires-06] is 3.56 times

higher than the proposed chip implementation. Designs presented in [Wires-06] and [Suresh-13]

are attractive for high-performance single-precision FP-units, in applications where power

constraint is not important; nevertheless, mobile-embedded systems require power consumption

reduction and high-clock frequencies are not desired due to the dynamic-power consumption of

CMOS technology.

Current commercial low-power embedded microcontrollers work in the range of few tens

of MHz. For example, the NXP microcontrollers L-Series and K-Series based on ARM Cortex-

M4 operate in the range of 48-96 MHz and 50-180 MHz, respectively41. For this reason, the last

row of Table I shows the nonconsecutive throughput (NCTP) comparison of all reference designs

running with a practical-clock frequency of 100 MHz; since the 2C-RSR is unable to run at 100

MHz, its maximum throughput is used. The results confirm the low-latency advantage of the 2C-

RSR chip, which performs the fastest RSR computation for nonconsecutive operations.

3.6. Conclusions

The on-chip implementation of a fixed-point RSR unit has been presented. Its main

characteristics are low latency and bit-accurate results for the Q(16,11,u) format. Even though the

RSR operation is widely used in mobile-multimedia devices, to the best of our knowledge, its FxP

on-chip implementation has not been reported before. The architecture of the presented digital

integrated circuit is based on the Newton-Raphson method, where the seed is provided by a

piecewise-polynomial approximation in a reduced range of the RSR function. The 2C-RSR chip

41 NXP Processors and Microcontrollers, Low-power 32-bit Microcontrollers. Nov. 11, 2017,

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-

mcus:KINETIS.

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/kinetis-cortex-m-mcus:KINETIS

3. ON-CHIP IMPLEMENTATION OF LOW-LATENCY BIT-ACCURATE FIXED-POINT RSR UNIT

 72

produces a new result in only two clock cycles, with a maximum error of
122−

, which is equivalent

to ½ ulp of the Q(16,11,u) format.

The chip was manufactured using a 130 nm CMOS process; the standard-cell area is 0.2289

mm2 and the total chip area including the 40-I/O-pad frame is 1.598 mm2. The measured power

consumption is 7.06 mW at the maximum clock frequency of 49.62 MHz. Comparisons of the 2C-

RSR-chip measurements with simulation results of existing standard-cell-based implementations

show that the proposed implementation exhibits the lowest latency. Furthermore, the 2C-RSR-

chip power consumption is one order of magnitude lower than the design reported in [Suresh-13],

and 3.56 times lower than the estimated in [Wires-06]. This makes the presented design suitable

as a silicon intellectual property for applications with low latency and low-power consumption in

mobile devices with severe hardware constraints.

73

4. IEEE-754 Half-Precision Floating-Point Low-

Latency RSR IP-Core

The IEEE 754-2008 standard for floating-point (FP) arithmetic defines a binary

interchange format of 16 bits, i.e., binary16, which can be used for the exchange of FP data

between different implementations [IEEE-08]. The binary16 format, better known as half-

precision floating-point (FP16) format, has been widely applied in gaming and other applications.

For example, a programmable renderer is reported in [Peercy-00], where it is demonstrated that

the FP16 format is sufficient for most of the shaders performed. In addition, interest in FP16

arithmetic has arisen because in the breakthrough neural-network technique known as deep

learning, most of the math required to train neural networks can be executed in FP16 arithmetic

[Foley-17]. For instance, a convolutional neural-network accelerator has been implemented using

FP16 arithmetic [Venkatesh-17], achieving high accuracy and performance in image classification,

while reducing computational requirements. These works show the advantages of the FP16 format

for low-precision tolerant applications.

In the arena of approximate-computing applications, FP16 arithmetic is becoming relevant

for designs that require low-power consumption and low computational cost [Yin-16]. In fact,

NVIDIA recently added native FP16 computational support to some of its GPU architectures in

order to take advantage of FP16 performance for deep-learning applications42 [Foley-17].

Moreover, Intel has added instructions to convert FP16 values to/from single-precision floating-

point (FP32) numbers43. The main advantages of FP16 format over the FP32 format are: adequate

accuracy for many applications, half the storage space requirements, half the memory bandwidth,

and better speed performance.

This chapter describes an FPGA implementation of the 2C-RSR algorithm that is presented

in Section 3.2 of this thesis document, with the variation that the new implementation is performed

by using half-precision floating-point arithmetic. The new implementation is named HF-2cRSR.

Several 64-bit floating-point (FP) RSR architectures have been developed [Lang-03],

42 Anandtech, The NVIDIA GeForce GTX 1080 & GTX 1070. Jun. 17, 2017,

http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review.
43 Intel Software, Overview: Intrinsics to Convert Half Float Types. Jun. 21, 2017, https://software.intel.com/en-

us/node/524286.

http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review
https://software.intel.com/en-us/node/524286
https://software.intel.com/en-us/node/524286

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 74

[Piñeiro-02], however, since they are mainly focused on accelerating high-precision FP units, they

are not suitable for embedded systems. Similarly, 32-bit FP RSR designs have been reported

[Suresh-13], [Butts-11]. Although 32-bit FP architectures can be applied in embedded mobile

devices, their power consumption and implementation area make them poorly suited for low-

power embedded applications that do not require high accuracy. For mobile low-power systems,

fixed-point (FxP) implementations are preferred due to their reduced hardware area and better

performance [Wang-10], [Aguilera-Galicia-18], [Liu-17a], however, the dynamic range of FxP

formats are smaller than FP systems with the same number of bits, and their interface with FP

systems requires additional resources.

The HF-2cRSR is implemented on two FPGA technologies and the results are compared

with similar intellectual-property (IP) cores [Xilinx-12], [Altera-16] of the top-two FPGA

companies: Xilinx and Intel. The results show that the proposed half-precision implementation

exhibits better throughput than Intel IP with 30% resource savings. With respect to the Xilinx IP,

the HF-2cRSR gives 66% more throughput at the cost of more LUT resources. In both

comparisons, the proposed implementation exhibits lower latency and better throughput at lower

clock frequency. All the above makes the proposed IP core suitable for low-cost, half-precision

embedded applications where area and power consumption are important design trade-offs.

4.1. Introduction to Half-Precision Floating Point Numbers

The FP16 format is shown in Fig. 4.1. The representation is based on three fields: sign, S;

biased exponent, E; and trailing significand, m.

All FP numbers, including zeros and infinities, are signed. The exponent is encoded using

an offset-binary representation, i.e., a constant that is known as bias is added to the exponent to

make the biased-exponent range non-negative. For the FP16 format, the exponent bias is 1510.

When E ≠ 0, the FP number is of the normalized type and its value, xN, is computed using

Fig. 4.1 IEEE 754-2008 half-precision floating-point format.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Sign

 S E 4 E 3 E 2 E 1 E 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10

Exponent E Significand m

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 75

 ()1 1. 2
S E bias

Nx m −= −  (4-1)

where E is defined by

4

0

2 ,
i

i

i

i

E E
=



=  (4-2)

and m is defined by

10

1

2 .
i

i

i

i

m m
=

−



=  (4-3)

For normalized FP numbers, it is assumed that there is an implicit-leading bit of value one in the

significand, which have an 11-bit precision (only ten bits of the significand are stored in memory).

When the exponent is zero (E = 0), the FP value is zero (+/- 0) if the significand is zero;

otherwise, the FP number is of the denormalized type. The value of a denormalized FP16 number

is computed using

 () 141 0. 2 .
S

Dx m −= −  (4-4)

When the exponent is 3110, the FP16 value is infinite (+/- ∞) if the significand is zero;

otherwise, the FP16 value is not-a-number (NaN). Table 4.1 shows a summary of the FP16

encoding depending on the exponent and significand values.

4.2. Half-Precision Floating-Point RSR Operation

The proposed half-precision FP RSR IP core computes the operation defined by (3-1),

where x, and y in this case are binary half-precision FP numbers, which can be normalized or

denormalized according to [IEEE-08]. When x is positive normalized or denormalized, the

TABLE 4.1. SUMMARY OF HALF-PRECISION FLOATING-POINT ENCODING

Decimal

Exponent E

Significand

m = 0

Significand

m ≠ 0
Equation

0 +/- 0 Denormalized () 141 0. 2
S

Dx m −= − 

1 – 30 Normalized () 151 1. 2
S E

Nx m −= − 

31 +/- ∞ Not-a-Number -

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 76

correctly rounded value ()1 x must be given back as a half-precision FP number. For other

special values of x, the RSR operation must return the results that are shown in Table 4.2. The

special value quiet not-a-number, qNaN, is used to represent the result of an invalid operation

exception without signaling exceptions [Muller-10].

4.3. HF-2cRSR Architecture

The proposed IP-core architecture is based on the algorithm introduced in Section 3.2. As

is explained in such section, this algorithm applies the NR method. The required seed is computed

using a piecewise-polynomial approximation in a reduced range, rr = [0.5, 2) of the RSR function,

which contributes to provide a seed with enough accuracy to achieve the IEEE 754-2008 half-

precision accuracy standard in only one NR iteration. The proposed hardware FP architecture is

represented in Fig. 4.2. In the following sections, the design considerations to implement the

corresponding blocks of the HF-2cRSR architecture using floating-point arithmetic, are described.

4.3.1 Floating-Point Scaling and De-scaling Operations

The scaling and de-scaling operations are performed implementing the products defined by

(3-6), and (3-11) respectively. These operations are represented by the Scaler and De-scaler blocks

in Fig. 4.2.

To implement the scaling operation, it must be detected if the input x is of the normalized

or denormalized type, that is why the Scaler module requires the normalized x flag, Norm, as shown

in Fig. 4.2. When the input x is of the denormalized type, it must be normalized by left shifting the

TABLE 4.2. OUTPUT RESULTS FOR THE HF-2CRSR IP CORE

qNaN: quiet not-a-number

x input

+0 negative
Denormalized /

Normalized
+∞ NaN

y output +∞ qNaN ()1 x +0 qNaN

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 77

significand bits by the number of leader zeros of the significand, LZC, plus one. The Norm flag and

LZC count are provided by the Encoder module that is presented in Section 4.3.4. Considering that

in the proposed design, the possible z exponent values are only 0 or ˗1 since 0.5 2.0,z  the

implementation of the scaling operation can be simplified as follows. For normalized inputs, the

scaled exponent is determined by evaluating only the least significant bit (LSB) of the x exponent:

if LSB of x is zero, then z exponent = ˗1, else 0. For denormalized inputs, the scaled exponent is

determined by checking the LSB of the LZC count: if LSB is zero, then z exponent = 0, else ˗1. A

multiplexer is used to select the correct value of the z exponent. For this reason, the scaling

exponent, n, is only connected to the De-scaler module.

4.3.2 Polynomial and Newton-Raphson Method

To evaluate the Newton-Raphson iteration for the RSR function defined by (3-7), the

Fig. 4.2 Architecture of the half-precision floating-point RSR, HF-2cRSR.

16

16
LZC z

x

ScalerEncoder

Polynomial
Newton
Raphson

De-scaler

16

Rounding

CU

4
Clk Rst

Norm

En/Sel

Clk Rst

Output Selector

23

5
n

Flags 4

En

yi

16

16

1616

1iy z=

1y x=

()2 n

iy−

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 78

following FP-arithmetic blocks are required: one squaring module, two multipliers, one adder, and

one divider by two.

In the proposed architecture, the seed 0y is computed using a piecewise-polynomial

approximation in the rr range. The polynomial fitting is performed by splitting the rr range into

14 unequal subintervals, as is explained in Section 3.3.3; each subinterval is approximated by a

second-order polynomial defined by

2

0 0 1 2y a a z a z= + + (4-5)

where ai represent the i-th polynomial coefficient. To evaluate (4-5), the following FP-arithmetic

blocks are required: one squaring module, two multipliers, and two adders. Since some of these

blocks can be reused, (3-7) and (4-5) are performed in the Polynomial Newton-Raphson (PNR)

module of Fig. 4.2. The detailed architecture of the PNR module is shown in Fig. 4.3. This module

Fig. 4.3 Floating-point polynomial Newton-Raphson architecture of the HF-2cRSR.

01
Mux1 AGU

D
Q

23

R2

ROM2 ROM1
D
QR1

01
Mux2

z

16

10
Mux3

M1

23

M2

2x

01
Mux4

ROM0

0x210000

M3

23

23

23

23
25

23
23

2523

23

4

3.0=

4
23

23

23 16

23

23

23

23

Sel

Sel

Sel

Sel

A2

A1

1iy z

x2

Clk Rst

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 79

requires two clock cycles to compute an approximation of 1 z : in the first clock cycle it evaluates

(4-5) and in the second cycle it computes one iteration of (3-7).

To calculate the seed using (4-5), the 14 polynomial coefficients a0, a1, and a2 are stored

in read only memories ROM0, ROM1, and ROM2, respectively (see Fig. 4.3). The address generator

unit AGU provides the ROM address of the corresponding coefficients for the z subinterval. The z2

term is computed in the x2 squaring module. The products a1z, and a2z
2 are performed in the

multipliers M1 and M2, and the sums are computed in the adders A1 and A2, respectively. In order

to achieve the required accuracy for the HF-2cRSR unit, the FP arithmetic blocks (x2, M1, M2, A1,

and A2) are word size customized. The multipliers use 23-bit word length: 1-bit sign, 5-bit

exponent, and 17-bit significand (18 bits of precision, considering the implicit-leading bit); the

products are rounded to the nearest FP value, with round-to-nearest-even as the tie-breaking rule.

The design and architecture of the 23-bit FP multiplier are reported in Section 4.4. The adders use

25-bit word length: 1-bit sign, 5-bit exponent, and 19-bit significand. The significand sizes of the

FP blocks are determined by circuit-level simulations to achieve the maximum allowed error

defined by the IEEE-754 standard for the RSR operation, which is ½ unit in the last place (ulp).

The multipliers and adders are modeled by portable and structured Verilog models that implement

canonical architectures for these operations [Muller-10].

For the computation of the NR iteration (3-7), the zyi
2 term is performed in the x2 squaring

block and the M2 multiplier; the 3˗zyi
2 difference is realized in the A1 adder; and the (yi/2)(3˗zyi

2)

product in the M3 multiplier. As can be seen, the proposed architecture reuses some FP blocks to

reduce hardware resources. The yi/2 operation is efficiently implemented by decrementing the

exponent by one, since the PNR module is working with normalized numbers. This is another

advantage of the proposed architecture: since the approximation is performed in the rr range, all

the computations inside the PNR module use normalized numbers, which contributes to fewer

hardware resources in the FP arithmetic blocks.

4.3.3 Floating-Point Rounding Operation

The output of the PNR module has the customized 23-bit FP format. To obtain the half-

precision format, the output yi is rounded to 16 bits. This operation is implemented in the Rounding

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 80

block that is shown in Fig. 4.2, where a round-to-nearest operation is performed. Once the

approximation to 1 z is rounded, iy , this value is de-scaled to obtain the half-precision result

with an error ≤ ½ ulp.

4.3.4 Encoder Module

In order to apply the scaling operation, the x input range that includes denormalized and

normalized values is divided into 21 intervals. One scaling factor is associated to each interval, in

this way, all the intervals of x can be scaled into the rr range. The scaling exponents for the

denormalized and normalized x values are reported in Table 4.3 and Table 4.4, respectively. The

function of the Encoder module is to identify the corresponding interval of the x input value and

provide the corresponding scaling exponent n to the De-scaling block. When x < 0.5 (below the rr

range), n is negative. The implementation of the scaling operation is different for normalized x

values than for denormalized values of x. For this reason, the Encoder generates the Norm flag to

indicate to the Scaler block when the input x is of the normalized type. When the input x is of the

denormalized type, it must be first normalized; to normalize x, the Encoder module provides the

leading zeros count, LZC, of x to the Scaler module. Furthermore, the Encoder module generates

the flags negative input, zero, infinite, and NaN, which are useful to determine the output result

and signaling these special values.

TABLE 4.3. INTERVALS OF x AND SCALING EXPONENTS FOR DENORMALIZED NUMBERS

Hexadecimal

Mantissa

FP Low

Boundary ×10−4

FP Up

Boundary

×10−4

Scaling

Exponent n

000 - 001 0 0.0005960 −12

002 - 007 0.0011921 0.0041723 −1

008 - 01F 0.0047684 0.0089407 −10

020 - 07F 0.0190735 0.0756979 −9

080 - 1FF 0.0762939 0.3045797 −8

200 - 3FF 0.3051758 0.6097555 −7

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 81

4.3.5 Output Selector and Control Unit

The results of the RSR operation have special values that are computed out of the general

data-path. The Output Selector module selects the correct result depending on the x input value

and the flags provided by the Encoder block. The possible output values of the HF-2cRSR are

shown in Table 4.2.

The control unit CU is a finite-state machine that synchronizes the operation of the PNR

block and enables an output register when a new result is available.

4.4. Floating-Point Multiplier for the HF-2cRSR IP-Core

The design and implementation of a customized floating-point multiplier is presented in

TABLE 4.4. INTERVALS OF x AND SCALING EXPONENTS FOR NORMALIZED NUMBERS

Hex. Biased

Exponents

Dec. Unbiased

Exponents

FP Low

Boundary

FP Up

Boundary

Scaling

Exponent n

01 −14 0.0000610 0.0001220 −7

02, 03 −13, −12 0.0001221 0.0004880 −6

04, 05 −11, −10 0.0004883 0.0019522 −5

06, 07 −9, −8 0.0019531 0.0078087 −4

08, 09 −7, −6 0.0078125 0.0312347 −3

0A, 0B −5, −4 0.03125 0.1249390 −2

0C, 0D −3, −2 0.125 0.4997559 −1

0E, 0F −1, 0 0.5 1.99902344 0

10, 11 1, 2 2 7.99609375 1

12, 13 3, 4 8 31.984375 2

14, 15 5, 6 32 127.9375 3

16, 17 7, 8 128 511.75 4

18, 19 9, 10 512 2047 5

1A, 1B 11, 12 2048 8188 6

1C, 1D 13, 14 8192 32752 7

1E 15 32768 65504 8

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 82

this section. The proposed multiplier is one of the fundamental modules of the HF-2cRSR IP-core.

Some of the FP multiplier specifications are customized for the HF-2cRSR, for example, the word

size, processing of normalized/denormalized numbers, and rounding mode are selected to reduce

the hardware implementation of the multiplier and to achieve a bit-accurate half-precision FP RSR

unit. The verification of the FP multiplier is presented and its logic synthesis is performed on ARM

130 nm CMOS ASIC technology. The results of the logic synthesis, such as required standard-

cells, silicon area, operating frequency, and power consumption, are reported.

4.4.1 Design Requirements of Floating-Point Multiplier

This section defines the design requirements of a FP multiplier for the HF-2cRSR unit.

Specifications such as the word size, input-output range, and rounding mode of the FP multiplier

are defined.

4.4.1.1 Input and Output Range of the FP Multiplier

The input to the PRN module of the HF-2cRSR is in the reduced range, rr = [0.5, 2). For

this reason, the specification of the input range for the FP multiplier can be reduced to handle only

normalized FP numbers. Furthermore, since the PNR module computes an approximation of the

RSR operation in the rr range, the PNR output range is (1/√2, √2]. As the output of the PNR

module is bounded, the output range of the multiplier is bounded; this means that the number of

bits required to represent the exponent in the FP multiplier can be reduced. The selected word size

for the FP multiplier is discussed in the following section.

4.4.1.2 Word Size of the FP Multiplier

The representation range of an FP format is mainly determined by the number of bits, w,

of the exponent, whereas the precision of an FP format is determined by the number of bits, p, of

the significand. In the following paragraphs, the w and p values for the FP multiplier word size are

defined.

The HF-2cRSR unit must provide a result in FP16 format, which has a representation range

of normalized FP numbers of 142 65,504Nx−   . This range is greater than the expected for the

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 83

multiplier products inside the PNR module because the output of the later is bounded. The above

means that five bits are enough for the multiplier exponent, i.e., w = 5. Although w can be reduced,

in order to work with an exponent size compatible with the FP16 standard, we selected five bits to

represent the exponent of the FP multiplier.

The number of bits, p, of the significand, define the precision of the FP multiplier and the

size of the internal product of the significands, 2p bits, which determines the amount of hardware

resources of the fixed-point multipliers required to multiply the significands. For this reason, it is

important to select the multiplier significand size as small as possible without affecting the

required accuracy in the HF-2cRSR unit. The accuracy goal for the HF-2cRSR unit is ½ ulp of the

FP16 format, i.e., a maximum error of 2−11. By circuital simulations of an RSR preliminary model,

showed that a multiplier significand size of at least 18 bits is required to achieve the accuracy goal.

From the above, the FP multiplier word size is 23 bits: one sign bit, five bits for the

exponent, and a 17-bit significand. The implicit-leading bit is not part of the word size.

4.4.1.3 Rounding Mode of the FP Multiplier

The IEEE 754-2008 standard defines that an FP multiplier product must be rounded, and

establishes four rounding modes [IEEE-08], [Muller-10]. The recommended default mode is the

round-to-nearest, with round-to-nearest-even as the tie-breaking rule. This rounding mode is

presented in the following paragraphs.

The result of rounding a normalized FP product, Z, using p bits of precision is either: a) the

FP number

 () ()0 1 2 1 2
1 2Z Z

S e

p pZ m m m m −= − (4-6)

obtained by truncating the significand m after p-1 bits; or b) the successor of Zp, which is obtained

by

 12 .p

ps pZ Z − += + (4-7)

The choice between (4-6) or (4-7) depends on the rounding bit, mp, and the sticky bit, which is the

bit that says there is at least one non-zero bit among the remaining bits to the right of mp. The

sticky bit may be evaluated by the logical OR operation of all the bits to the right of mp,

()1 2, ,...p pOR m m+ + . A summary of the criteria used for rounding the FP multiplier product is shown

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 84

in Table 4.5.

The specifications of the 23-bit FP multiplier are summarized in Table 4.6.

4.4.2 23-Bit FP Multiplier Architecture

This section describes the multiplication specification for two FP numbers and the

hardware architecture of a customized 23-bit FP multiplier for the HF-2cRSR unit.

4.4.2.1 Floating-Point Multiplication

The multiplication product, Z, of two nonzero binary FP numbers () ()1 XS
X X= − and

() ()1 YS
Y Y= − satisfies

 () ()1 ZS
Z X Y X Y=  = −  (4-8)

TABLE 4.5. ROUNDING TO NEAREST WITH TIE TO EVEN CRITERIA

Round Bit

mp

Sticky Bit

OR(mp+1, mp+2…)
Rounded Number

0 0 Zp

0 1 Zp

1 0 Even of {Zp, successor(Zp)}

1 1 successor (Zp)

TABLE 4.6. SPECIFICATION OF THE 23-BIT FP MULTIPLIER

Variable Value Comment

Input range [0.5, 2) Normalized FP number

Minimum output range (1/√2, √2] Normalized FP number

Exponent size 5 bits Half-precision format compatible

Significand size 17 bits Required size for the HF-2cRSR unit

Rounding mode round-to-nearest Tie-breaking rule: to-nearest-even

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 85

where

  0, 1Z X YS S S=   (4-9)

is the sign of the product, 2 Ye

YY m= , 2 Xe

XX m= , and

 () 2 X Ye e

X YX Y m m
+

 =  (4-10)

where X Xe E bias= − and Y Ye E bias= − represent the unbiased exponents of X and Y

respectively. The IEEE 754-2008 specification for (4-10) is summarized in Table 4.7. The

following section presents the FP multiplier architecture, for the case where both numbers X and

Y are normalized.

4.4.2.2 Hardware Architecture of the Floating-Point Multiplier

To implement the multiplication of two normalized FP numbers, their three format fields–

sign, exponent, and significand– are processed separately. The proposed hardware architecture of

the 23-bit FP multiplier is shown in Fig. 4.4. This implements the previously defined equations for

the multiplication operation. The sign of the product, SZ, is implemented by using (4-9).

From (4-10), the exponent of the result is computed by

 X Y X Ye e E bias E bias+ = − + − (4-11)

where EX and EY are the biased exponent of X and Y respectively. As the FP format uses a biased

exponent, the result biased exponent EZ can be computed by

 .Z X YE E E bias= + − (4-12)

The computation of (4-12) is represented in Fig. 4.4 by the left branch of Mux1. Due to the

TABLE 4.7. SPECIFICATION OF MULTIPLICATION FOR POSITIVE FP NUMBERS

|X|×|Y|
|Y|

+0 De/Normalized +∞ NaN

|X|

+0 +0 +0 qNaN qNaN

De/Normalized +0 ()X Y
+∞ qNaN

+∞ qNaN +∞ +∞ qNaN

NaN qNaN qNaN qNaN qNaN

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 86

rounding operation, the computation of (4-7) can produce an overflow of the significand; this

change in the significand value must be compensated by incrementing the exponent. This operation

is selected by the right branch of Mux1.

The product mX×mY, represented by mXmY in Fig. 4.4, is performed using a fixed-point

multiplier. Because the multiplier inputs are of the normalized type, i.e., 1 2Xm  and 1 2Ym 

the product of significands satisfices 1 ≤ mXmY < 4. As the multiplication result must be of the

normalized type, when mXmY ≥ 2.0, it needs to be normalized by right-shifting mXmY one position

when its most significant bit, (MSB), is one. This is the purpose of Mux2, which selects the

normalized product, mXmY [33:17], or the shifted product, mXmY [34:18], depending on MSB.

The Rounding block of Fig. 4.4 is the control logic for the rounding operation as presented

in Section 4.4.1.3. If MSB = 0, the guard bit, Gb in Fig. 4.4, is used as the rounding bit, and the

sticky signal is used as the sticky bit. When MSB=1, the Rb signal is used as the rounding bit and

the sticky bit is the result of the logic-OR operation between the signals Gb and sticky, OR(Gb,

Sticky). The output adder of Fig. 4.4, performs the computation of (4-7), utilizing the signal Inc

and the selected bits of mXmY. The result of the operation OR(Carry, MSB) selects the correct

Fig. 4.4 Architecture of the 23-bit floating-point multiplier.

10

bias

1818

6 36

10

34:1833:17
Rounding

15:0

17:16

Inc

17

17

mZ

55

5 5

5

SZ EZ

Mux1

Mux2

Sticky

MSB MSB
mXmY

1.mX 1.mYSX SY EYEX

Rb:Gb
bias-1

Carry

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 87

exponent value. The final rounded result, Z, of the 23-bit FP multiplier is the concatenation of the

signals {SZ, EZ, mZ} in Fig. 4.4.

4.4.3 Implementation and Verification of the 23-Bit FP Multiplier

The architecture of the 23-bit FP multiplier, presented in Section 4.4.2, is implemented by

a hardware description language (HDL) model. The multiplier model is done using portable and

technology independent Verilog code. This model describes a hierarchical structure based on

mutiplexers, adders, subtractors and one fixed-point multiplier. The 23-bit FP multiplier model is

verified using the test environment shown in Fig. 4.5. To determine the performance and the

hardware resources required for implementation of the propose multiplier, the verified design is

synthesized on 130 nm ASIC technology by using the Cadence® RTL-Compiler synthesis tool.

The following sections report the functional verification of the proposed design and its synthesis

results.

Fig. 4.5 Test environment for verifying the 23-bit floating-point multiplier.

Matlab®
Vector generator

and Checker

FLoating-point
random

test vectors

23-bit
floating-point

multiplier
UUT

Verilog
testbench

Xilinx ISE
simulator

Results

Comparison
results

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 88

4.4.3.1 Verification of the 23-bit FP Multiplier

The 23-bit FP multiplier has 46 inputs (23 for X and 23 for Y). To perform an exhaustive

verification of this multiplier, 246 test cases are required. To verify the proposed multiplier, a test-

case subset is selected. This subset corresponds to the expected operating range of the multipliers

inside the PNR module of the HF-2cRSR unit. Rough estimations show that the multiplier input

range is [−10, 10].

The functional verification of the 23-bit FP multiplier is performed by using a Verilog

testbench, which applies the test vectors to the unit under test, UUT, as seen in Fig. 4.5. Because

the input-output test vectors have a nonstandard FP format, these are generated by using Matlab

that helps to analyze and compare the multiplier simulation results. The generated test vectors are

sequences of uniformly distributed pseudo-random 23-bit FP numbers.

The simulations are performed using the Xilinx® ISE simulator. The multiplier’s products

and the input test vectors are exported to a file for their processing and verification using Matlab,

where the 23-bit results are compared with the corresponding double-precision calculated values.

Fig. 4.6 Functional verification of the 23-bit floating-point multiplier and comparison of

the output products with respect to the corresponding double-precision calculated

values. Reduced-range random inputs (−10 < X, Y < 10) are applied to the

multiplier.

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 89

A demonstrative simulation is presented in Fig. 4.6. It shows 200 random multiplication

products, represented by XY, which are compared with respect to the corresponding calculated

values using a 64-bit computer. It can be seen that the 23-bit FP multiplier outputs are close to the

corresponding double-precision values.

In order to know the error of the 23-bit FP multiplier with respect to the corresponding

products computed by a 64-bit computer, ZDP, the relative error is computed by using

 .DP
r

DP

Z Z
e

Z

−
= (4-13)

The relative error of the 23-bit FP multiplier with respect to the double-precision FP

computation is plotted in Fig. 4.7. It can be observed that for this demonstrative simulation the

relative error is
6 64 10 4 10re− −−     . Simulations of the 23-bit FP multiplier with more test-

case coverage are performed; a histogram of the relative errors of a simulation for one million test

cases is shown in Fig. 4.8, where the error is reported in units-in-the-last-place (ulp) [Muller-10].

It can be seen that the mean is close to zero, and it is a good approximation for the center of the

data, i.e., the errors are symmetrical. The variance value indicates that the relative errors for

different products are close to each other. In addition to the good statistical parameters, it can be

Fig. 4.7 Relative error of the 23-bit FP multiplier versus double-precision FP

computation.

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 90

seen that the maximum error is less than ½ ulp, i.e.,
63.812065 10re −  .

The IEEE 754-2008 standard establishes that IEEE-compliant multipliers must produce

results with maximum errors of ½ ulp. The relative error corresponding to ½ ulp for a binary FP

format with a precision of p bits is defined [Goldberg-91] by

 ()1 1
2 ulp 2 .

2

p p− + −  (4-14)

The precision p of the 23-bit FP multiplier is 18 bits, therefore, the upper bound evaluation

of (4-14) is 2−18, which is greater than the maximum relative error of the proposed design.

Therefore, the 23-bit FP multiplier meets the IEEE-754-2008 error specification.

4.4.3.2 Logic-Synthesis Results of the 23-bit FP Multiplier

In order to determine the hardware resources required to implement the 23-bit FP

multiplier, the logic synthesis of the multiplier is performed on ASIC technology. The result of the

synthesis is a structured netlist based on ARM® standard cells of the Globalfoundries 130 nm

CMOS 8RF-DM process. The logic synthesis is performed using the Cadence® RTL Compiler

tool.

Fig. 4.8 Relative error histogram of the 23-bit FP multiplier with respect to the

corresponding double-precision calculated values.

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 91

The results of the synthesis are shown in Table 4.8. The total silicon area is 0.060835 mm2.

49.77% of the total area corresponds to 2,055 standard cells; the remaining area corresponds to the

interconnection nets.

The timing optimization of the proposed design is performed to determine the maximum

operating frequency. The static timing analysis shows that the multiplier critical-timing path is

5,714 ps, which corresponds to a maximum clock frequency of 175.00 MHz. The total power

consumption at this clock frequency is 13.89 mW.

The design and logical synthesis of a 23-bit FP multiplier has been presented. The purpose

of the proposed multiplier is to be used in the HF-2cRSR IP core. The specifications of the 23-bit

FP multiplier are customized to reduce the hardware requirements and to achieve bit-accurate

results of the HF-2cRSR unit. In the next section, the FPGA implementation of the proposed IP

core is reported in order to be compared with commercial IP cores from Intel and Xilinx.

4.5. HF-2cRSR Implementation Results and Comparisons

4.5.1 FPGA Implementation

Each block of the HF-2cRSR architecture is modeled using Verilog hardware description

language, synthesized on an FPGA technology, and verified using the digital circuit simulator

ModelSim. The HF-2cRSR top-level design is a structured Verilog model, where the verified

modules of the proposed architecture are instantiated and interconnected as shown in Fig. 4.2 and

Fig. 4.3. The functionality of the synthesized top-level design is exhaustively verified using a

TABLE 4.8. LOGICAL SYNTHESIS OF THE 23-BIT FP MULTIPLIER ON 130 nm CMOS

TECHNOLOGY

Variable Value

Cell Number 2055

Cell Area 0.030280 mm2 (49.77 %)

Net Area 0.030555 mm2 (50.23 %)

Total Area 0.060835 mm2 (100 %)

Max. Frequency 175.00 MHz

Total Power 13.89 mW

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 92

Verilog test bench, which applies all the possible valid test-vectors (215) to the unit under test.

Since the test-vectors and circuit-simulation results have half-precision FP format, the input-result

pairs are exported to a text file as integer numbers to be post-processed in Matlab.

To evaluate the correct functionality and accuracy of the HF-2cRSR IP core, the circuit-

level simulation results are compared with the golden values, which are computed evaluating 1 x

for all the possible input values using double-precision FP arithmetic and converting the results to

half-precision FP bit-patterns using Matlab functions44. By means of this comparison, we check

that all the circuit simulation results (215) are exact with respect to the golden values.

A comparison of selected HF-2cRSR results with respect to the corresponding double-

precision calculated values, DPy , is shown in Fig. 4.9. As it can be seen, the plot differences are

small to be observed at a glance. In order to determine the HF-2cRSR relative error, r , with

respect to DPy , the following expression is used

44 MathWorks, IEEE 754r Half Precision Floating Point Converter. Jul. 19, 2018,

https://la.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-

converter?focused=5133569&tab=function.

Fig. 4.9 Comparison of the HF-2cRSR outputs with respect to double-precision values.

https://la.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-converter?focused=5133569&tab=function
https://la.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-converter?focused=5133569&tab=function

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 93

 .DP
r

DP

y y

y


−
= (4-15)

The relative errors for all results provided by the HF-2cRSR circuit with respect to the

corresponding DPy values are shown in Fig. 4.10. The relative errors of the selected results are

highlighted by the black line; the horizontal line represents the average relative error. The

maximum relative error is 4.8768532×10˗4, which is lower than ½ ulp of the half-precision format.

With the purpose of comparing the performance of the HF-2cRSR unit versus similar IP

cores of Xilinx and Intel, the purposed design is implemented on FPGAs of both companies. The

Xilinx and Intel RSR IP cores are available for evaluation in double-precision and single-precision

only, therefore, the single-precision version is implemented in this work. The selected FPGAs are

Xilinx Artix7 xc7a100t-3csg324 and Intel Stratix 5sgxmb6r3f43c4. The feature size of both

devices is 28 nm. The implementations are performed using ISE 14.7 Design Suit and Quartus

Prime 16.0 from Xilinx and Intel, respectively. Using the same tools, the single-precision FP IP

cores of Xilinx [Xilinx-12] and Intel [Altera-16] for the RSR operation are implemented on their

respective FPGAs. The implementation results are shown in Table 4.9 and Table 4.10. The timing

of the three post-placed and routed designs are verified by a static-timing analysis performed with

Fig. 4.10 HF-2cRSR relative errors with respect to double-precision FP values.

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 94

the respective companies’ tools. The maximum operating frequencies, ClkF, are reported for a

slow process (85 °C, 850 mV). The reported throughput (Tp) is calculated dividing the ClkF by

the latency of the corresponding implemented IP cores.

4.5.2 Comparison of the HF-2cRSR with Xilinx and Intel IP Cores

For the three IP cores, two types of FPGA implementations are created: using the internal

DSP blocks and using only logic. The latter provides a fairer comparison between the commercial

IPs and the HF-2cRSR since the number and size of the utilized DSP blocks are very different in

the three IP cores. For the implementations using DSP blocks, the HF-2cRSR IP-core utilizes more

LUTs than Xilinx and Intel IP cores; this is because many hardware resources of the required

multipliers are placed in the DSP blocks. The proposed IP core utilizes fewer and smaller

multipliers than the compared implementations. When the implementations are performed without

DSP blocks, the HF-2cRSR utilizes 30% fewer LUTs than Intel IP and 50% more than Xilinx IP.

Regarding the throughput of the compared designs, the proposed IP core exhibit 66% more

throughput than Xilinx IP and 3.5 times more than Intel IP core. The main advantage of the HF-

2cRSR is its low latency, which contributes to better throughput at a low clock frequency, which

TABLE 4.9. IMPLEMENTATION RESULTS COMPARED WITH INTEL IP CORE

ClkF: clock frequency; C: cycles; Tp: throughput; MOPs: million operations per second

Variable
Intel with

DSP

This work with

DSP

Intel

without

DSP

This work

without

DSP

FP Format single half single half

FPGA (28 nm) Stratix V Stratix V Stratix V Stratix V

DSPs (27x27) 5 0 0 0

DSPs (18x18) 1 4 0 0

LUTs 449 658 2884 2028

ClkF (MHz) 122.7 40.76 121.67 33.26

Latency (C) 26 2 26 2

Tp (MOPs) 4.72 20.38 4.68 16.63

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 95

is an important factor in low-power embedded systems.

4.5.3 Standard-Cell Based Implementation

In order to test the portability of the HF-2cRSR HDL model, and for documenting the

required hardware resources for this IP core on ASIC technology, Table 4.11 reports the logic

synthesis results of the HF-2cRSR IP core on the 8RF-DM 130nm CMOS technology.

Comparing the implementation results of the two proposed IP cores: the 2C-RSR, and the

HF-2cRSR, it can be observed from Table 4.11, that the half-precision floating-point

implementation is adequate for applications with limited hardware resources and power

consumption. In this case, the HF-2cRSR utilizes 37% less silicon area, and 32% less power

consumption than the fixed-point implementation, 2C-RSR. This is at the costs of lower

throughput.

4.6. Conclusions

The design and FPGA implementation of a half-precision floating-point RSR IP core has

been presented. The design considerations of the modules that make up the HF-2cRSR architecture

were discussed. To exemplify the design and verification of FP arithmetic modules a customized

TABLE 4.10. IMPLEMENTATION RESULTS COMPARED WITH XILINX IP CORE

ClkF: clock frequency; C: cycles; Tp: throughput; MOPs: million operations per second

Variable
Intel with

DSP

This work with

DSP

Intel

without

DSP

This work

without

DSP

FP Format single half single half

FPGA (28 nm) Artix 7 Artix 7 Artix 7 Artix 7

DSPs (25x18) 9 4 0 0

LUTs 366 970 1988 3004

ClkF (MHz) 302.85 33.61 219.68 28.17

Latency (C) 26 2 26 2

Tp (MOPs) 11.65 16.81 8.45 14.08

4. IEEE-754 HALF-PRECISION FLOATING-POINT LOW-LATENCY RSR IP-CORE

 96

23-bit FP multiplier is documented, which is one of the fundamental modules of the HF-2cRSR

unit. The proposed IP core meets the IEEE 754-2008 accuracy defined for the half-precision RSR

operation, it is able to produce a new result in only two clock cycles and the results are accurate at

least ½ ulp. The comparisons with respect to Xilinx and Intel IP cores show the impact of half-

precision arithmetic on the multiplier size and the advantages of the proposed low-latency design.

The proposed implementation contributes to reduce the lack of half-precision floating-point

IP cores, which are suitable options for use in low-precision tolerant applications, such as deep-

learning and approximate computing, implemented on low-power embedded systems.

TABLE 4.11. IMPLEMENTATION RESULT COMPARISON OF THE TWO PROPOSED IP CORES

Variable HF-2cRSR 2C-RSR Gain

Feature size (nm) 130 130 -

Arithmetic 16-bit FP 16-bit FxP -

Latency (cycles) 2 2 -

Total Area (mm2) 0.145189725 0.2289 37%

Max. Frequency (MHz) 25.00 MHz 49.62 -50%

Throughput (MOP) 12.5 24.81 -50%

Total Power (mW) 4.77364 7.06 32%

97

General Conclusions

In this doctoral dissertation, the design and implementation on ASIC technology of two

arithmetic units to calculate the reciprocal of the square root (RSR) were presented. The purpose

of the implementation was to venture into the development of IP cores on VLSI technology for

low-power and low-computational cost embedded applications. The two proposed

implementations use an algorithm based on the Newton-Raphson method and on a piecewise-

polynomial approximation in a reduced range of the RSR function. The first implementation, 2C-

RSR, uses 16-bit fixed-point arithmetic in Q(16,11, u) format. The second one, HF-2cRSR, takes

advantage of the IEEE 754-2008 half-precision floating-point standard.

In order to carry out the proposed implementations, it was required to have at ITESO

integrated circuits laboratory CAD tools and some CMOS technology kit to develop digital ASIC

design and to know the design flow of digital integrated circuits using synthesis tools. In Chapter

1 of this doctoral dissertation, the design flow of digital ASICs was presented, some of the

Cadence® tools to support this task were described, and the tools that were installed at ITESO

integrated circuits laboratory were selected. This enabled laboratory users to perform digital-ASIC

designs.

In Chapter 2, the fundamental components for designing digital ASICs were described in

detail and a specific CMOS technology (8RF-DM, 130 nm) was selected to be able to send to

manufacture the proposed designs. In addition, the workflow and results of the main step of a

digital ASIC design front-end, called logic synthesis, was reported, which was implemented for

the first time at ITESO integrated circuits laboratory.

In Chapter 3, the design, verification, and physical implementation of a digital integrated

circuit that calculates the reciprocal of the square root of a 16-bit fixed-point number were

presented. It was proved that all the results of the proposed silicon IP are bit-accurate and have a

latency of only two clock cycles. The results of the experimental measurements of the

manufactured ASIC on 130 nm CMOS technology were reported. A comparison of the results of

the proposed 2C-RSR unit with previously published designs was done; it was shown that the

power consumption and latency of the proposed silicon IP are lower. It was then confirmed that

these characteristics are suitable for using the 2C-RSR chip in embedded system applications with

low-power consumption and low-computational cost.

GENERAL CONCLUSIONS

 98

To evaluate the computational cost and take advantage of the characteristics of the IEEE

754-2008 half-precision floating-point format, in Chapter 4 of this doctoral dissertation the design

and implementation of another IP core (HF-2cRSR) that calculates the reciprocal of the square

root was documented. The same algorithm was implemented as that one used in the first

implementation, however, in this case, 16-bit floating-point arithmetic was used. To illustrate the

development of the proposed IP core using this type of arithmetic, the design of a 23-bit floating-

point multiplier, tailored to be used in the HF-2cRSR unit, was presented in detail. This second

implementation satisfies the accuracy specification defined by the IEEE 754-2008 standard. The

HF-2cRSR IP was compared with commercial IP cores from Intel and Xilinx that were

implemented on FPGAs. The results of the performed comparisons showed the advantages of the

proposed implementation low latency and the positive impact of using half-precision floating-point

arithmetic on the required hardware resources and on the word size of the multiplier circuits.

The following research lines are suggested for those interested in giving continuity to this

research project or in developing other derived research lines.

The implemented algorithm in the two proposed IP cores uses a 14-segment piecewise-

polynomial approximation in a reduced range of the RSR function. In such algorithm, the selection

of the number of segments and their location were performed experimentally to achieve the

required accuracy. It is suggested, in order to develop a new version of the proposed IP core or for

implementing any other IP core, to use function-segmentation methodologies [Trejo-Arellano-17],

[Lee-09], for optimizing the number of segments and their location. This could help to obtain a

better approximation to the function and a reduction of the required hardware resources to

implement it due to the segment number optimization. Furthermore, new methods could be

experimented for calculating the seed that the Newton-Raphson method requires, for example,

hardware implementations of the magic-number based algorithm [Lomont-03] could be explored,

using low-precision floating-point arithmetic with tailored-word size for a specific application.

The IP cores implemented in this project met with the maximum accuracy specification for

16-bit binary arithmetic, which increased the use of hardware resources. However, there are low-

precision tolerant applications in the areas of deep learning, fuzzy logic, and encryption algorithms

for IoT, among others. It is recommended to identify some specific application in the previously

mentioned fields and developing tailored IP cores with the required precision and power

consumption by the application. The developed half-precision floating-point modules in this

GENERAL CONCLUSIONS

 99

research project (multiplier, adder, squaring, and RSR) can be modified and completed to create a

library of tailored arithmetic IP cores, which can be reused to implement the previously identified

low-precision tolerant applications.

It is suggested to explore low-power design techniques such as clock and power-supply

gating. This can be added to the implemented workflow at ITESO integrated circuits laboratory

with the purpose of applying these techniques to IP cores to be developed.

Another possibility is to develop macromodels based on low-precision floating-point

arithmetic functions, using Matlab language or another programming language, to perform

analysis of the required precision in algorithms, functions, and modules to be implemented. The

macromodels will help quantify the approximation error and determine the optimal-word size for

the algorithms or functions to be implemented.

Finally, if an RSR unit with higher working frequency than the implemented IP cores is

required, the proposed architecture could be modified to create a pipelined architecture to reduce

the critical datapath of the current architecture, which is defined by the multipliers and adders.

101

Conclusiones Generales

En esta tesis doctoral se presentó el diseño e implementación en tecnología de circuito

integrado de aplicación específica (ASIC) de dos unidades aritméticas para calcular el recíproco

de la raíz cuadrada (RSR). El propósito de las implementaciones fue incursionar en el desarrollo

de núcleos de propiedad intelectual en tecnología VLSI para aplicaciones en sistemas embebidos

de baja potencia y bajo costo computacional. Las dos implementaciones propuestas utilizan un

algoritmo basado en el método de Newton-Raphson y en una aproximación polinomial por partes

en un rango reducido de la función RSR. La primera implementación propuesta, 2C-RSR, utiliza

aritmética de punto fijo en un formato de 16 bits, Q(16,11,u). La segunda implementación, HF-

2cRSR, aprovecha el estándar IEEE 754-2008 de media precisión de punto flotante.

Para poder realizar las implementaciones propuestas, se requería contar en el laboratorio

de circuitos integrados del ITESO con herramientas de diseño asistido por computadora (CAD) y

alguna biblioteca de tecnología CMOS para desarrollar el diseño de ASICs digitales y conocer el

flujo de diseño de circuitos integrados digitales utilizando herramientas de síntesis. En el Capítulo

1 de esta tesis doctoral se presentó el flujo de diseño de ASICs digitales, se describieron algunas

de las herramientas de Cadence® para soportar dicha tarea, y se seleccionaron las herramientas

CAD que se instalaron en el laboratorio de circuitos integrados del ITESO; lo anterior habilitó el

laboratorio para que los usuarios puedan realizar diseño digital de ASICs.

 En el Capítulo 2 se describieron de forma detallada los componentes fundamentales para

realizar diseño de ASICs digitales, se seleccionó una tecnología CMOS específica (8RF-DM, 130

nm) para poder fabricar los diseños propuestos. Además, se reportaron el flujo de trabajo y los

resultados de la primera fase del flujo de diseño de un ASIC digital, denominada síntesis lógica,

la cual fue realizada por primera vez en el laboratorio de circuitos integrados del ITESO.

 En el Capítulo 3 se presentó el diseño, verificación, e implementación física de un circuito

integrado digital que calcula el recíproco de la raíz cuadrada de un numero de 16 bits en punto fijo.

Se comprobó que los 16 bits de todos los resultados de la IP de silicio propuesta son exactos y

tienen una latencia de solamente dos ciclos de reloj. Se reportaron los resultados de las mediciones

experimentales del ASIC manufacturado en tecnología CMOS de 130 nm. Se realizó una

comparación de los resultados del circuito integrado 2C-RSR con diseños publicados previamente

CONCLUSIONES GENERALES

 102

y se demostró que las características de consumo de potencia y latencia del núcleo IP propuesto

son menores. Por lo tanto, se confirmó que dichas características son adecuadas para utilizar la IP

2C-RSR en aplicaciones de sistemas embebidos de bajo consumo de potencia y bajo costo

computacional.

Para evaluar el costo computacional y aprovechar las características del formato de punto

flotante y media precisión que ofrece el estándar 754-2008 del IEEE, en el Capítulo 4 de esta tesis

doctoral se documentó el diseño e implementación de otro núcleo IP (HF-2cRSR) que calcula el

recíproco de la raíz cuadrada. Se implementó el mismo algoritmo que el utilizado en la primera

implementación, sin embargo, en este caso se usó aritmética de punto flotante de 16 bits. Para

ejemplificar el desarrollo de la IP propuesta utilizando esté tipo de aritmética, se presentó en forma

detallada el diseño de un multiplicador de punto flotante de 23-bits, realizado a la medida para ser

utilizado en la unidad HF-2cRSR. Esta segunda implementación cumple con la especificación de

exactitud definida por el estándar 754-2008 del IEEE. Se realizó la comparación la IP HF-2cRSR

con núcleos IP comerciales de Intel y Xilinx que fueron implementados en FPGAs. Los resultados

de las comparaciones realizadas mostraron las ventajas de la baja latencia de la implementación

propuesta y el impacto positivo de utilizar aritmética de punto flotante de media precisión en los

recursos de hardware requeridos y en el tamaño de palabra de los circuitos multiplicadores.

Enseguida se sugieren algunas líneas de investigación para darle continuidad a este

proyecto de investigación, o para emprender otros que se pueden derivar de éste.

El algoritmo implementado en los dos núcleos IP propuestos, utiliza una aproximación

polinomial por partes de 14 segmentos en un rango reducido de la función RSR. En el algoritmo

implementado, la selección del número de segmentos y su localización se realizó de forma

experimental hasta lograr la exactitud requerida. Se propone, para desarrollar una nueva versión

los núcleos IP propuestos o para implementar otra función, utilizar metodologías de segmentación

de funciones [Trejo-Arellano-17], [Lee-09], para optimizar el número de segmentos y su

localización, lo cual puede contribuir a obtener una mejor aproximación a la función y una

reducción de recursos de hardware requeridos para implementarla. Esto es debido a la

optimización del número de segmentos. También se podría experimentar con nuevos métodos para

el cálculo de la semilla que requiere el método de Newton-Raphson, por ejemplo, se podrían

explorar realizaciones en hardware del algoritmo basado en el número mágico [Lomont-03],

usando aritmética de punto flotante de baja precisión, con tamaño de palabra a la medida de alguna

CONCLUSIONES GENERALES

 103

aplicación específica.

Los núcleos IP implementados en este proyecto cumplen con la máxima especificación de

exactitud que se puede lograr con aritmética binaria de 16 bits, lo cual incrementa el uso de

recursos de hardware. Sin embargo, existen aplicaciones tolerantes a baja precisión en las áreas de

aprendizaje profundo, lógica difusa, y algoritmos de encriptación para IoT, entre otras. Se

recomienda identificar alguna aplicación específica en dichos campos y desarrollar los núcleos IP

a la medida, con la precisión y consumo de potencia requerida por la aplicación. Los núcleos de

punto flotante de media precisión desarrollados en este proyecto de investigación (multiplicador,

sumador, elevación al cuadrado, y RSR) pueden ser reutilizados, modificados, y completados para

crear una biblioteca de núcleos IP aritméticos, los cuales se puedan reusar para implementar las

aplicaciones tolerantes a baja precisión previamente identificadas.

También se sugiere explorar técnicas de diseño para bajo consumo de potencia, por

ejemplo, apagado de señal de reloj y fuente de alimentación, las cuales se puede agregar al flujo

de trabajo implementado en el laboratorio de circuitos integrados del ITESO. Lo anterior con el

propósito de aplicar dichas técnicas a los núcleos IP a desarrollar.

Otra línea de posible trabajo futuro consiste en desarrollar macromodelos basados en

funciones aritméticas de punto flotante y baja precisión, en lenguaje de Matlab o en otro lenguaje

de programación, que sirvan para hacer análisis de la precisión requerida en los algoritmos,

funciones y módulos que se pretendan implementar. Los macromodelos ayudarían a cuantificar el

error de aproximación y a dimensionar el tamaño de palabra óptimo para el algoritmo o función a

implementar.

Finalmente, si se requiere una unidad RSR con una frecuencia de trabajo más alta que los

núcleos IP implementados, la arquitectura propuesta podría modificarse para crear una arquitectura

segmentada para reducir la ruta de datos crítica de la arquitectura actual, que está definida por los

multiplicadores y sumadores.

105

Appendix

107

A. LIST OF INTERNAL RESEARCH REPORTS

1) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Digital integrated circuit design flow

using Cadence tools at ITESO,” Internal Report PhDEngScITESO-13-04-R, ITESO,

Tlaquepaque, Mexico, Dec. 2013.

2) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Fundamental components for

implementing digital VLSI frontend design at ITESO,” Internal Report PhDEngScITESO-14-

04-R, ITESO, Tlaquepaque, Mexico, Aug. 2014.

3) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Logical synthesis of a basic sequential

circuit using RTL Compiler,” Internal Report PhDEngScITESO-14-10-R, ITESO,

Tlaquepaque, Mexico, Dec. 2014.

4) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, and L. Pizano-Escalante, “Proposal for

MOSIS to fabricate a fast bit-accurate reciprocal square root circuit prototype under its

educational research program,” Internal Report PhDEngScITESO-14-21-R, ITESO,

Tlaquepaque, Mexico, Dec. 2014.

5) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Logical effort method for estimating

path delay of synthesized logic circuits using global foundries 8RF-DM 130nm technology,”

Internal Report PhDEngScITESO-15-22-R, ITESO, Tlaquepaque, Mexico, Dec. 2015.

6) C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Test-vector generator for testing a 16-

bit reciprocal square root integrated circuit,” Internal Report PhDEngScITESO-16-33-R,

ITESO, Tlaquepaque, Mexico, Dec. 2016.

7) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, and L. Pizano-Escalante, “A two-cycle bit-

accurate fixed-point reciprocal square root algorithm,” Internal Report PhDEngScITESO-17-

42-R, ITESO, Tlaquepaque, Mexico, Dec. 2017.

8) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, and L. Pizano-Escalante, “VLSI architecture

of a two-cycle bit-accurate fixed-point reciprocal square root unit,” Internal Report

PhDEngScITESO-17-47-R, ITESO, Tlaquepaque, Mexico, Dec. 2017.

9) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, L. Pizano-Escalante, J. Vazquez-Castillo,

and M. Salim-Maza, “On-chip implementation of a low-latency bit-accurate reciprocal square

root unit,” Internal Report PhDEngScITESO-18-10-R, ITESO, Tlaquepaque, Mexico, May

2018.

 108

10) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, O. A. Guzmán-Ramos, and L. Pizano-

Escalante, “23-bit floating-point multiplier for a half-precision RSR unit,” Internal Research

Report PhDEngScITESO-18-14-R, ITESO, Tlaquepaque, Mexico, May 2018.

11) C. R. Aguilera-Galicia, O. H. Longoria-Gándara, O. A. Guzmán-Ramos, and L. Pizano-

Escalante, “IEEE-754 half-precision floating-point low-latency reciprocal square root IP-

Core,” Internal Research Report PhDEngScITESO-18-25-R, ITESO, Tlaquepaque, Mexico,

Sep. 2018.

 109

B. LIST OF PUBLICATIONS

B.1. Conference Papers

1) C. R. Aguilera-Galicia, O. Longoria-Gandara, O. A. Guzmán-Ramos, and L. Pizano-Escalante,

“IEEE-754 half-precision floating-point low-latency reciprocal square root IP-core,” in IEEE

Latin-American Conf. on Communications (LATINCOM-2018), Guadalajara, Mexico, Nov.

2018, vol. 1, pp. 1-6. (ISSN: 2330-989X; p-ISBN: 978-1-5386-6755-2; e-ISBN: 978-1-5386-

6754-5; DOI: 10.1109/LATINCOM.2018.8613254).

2) C. R. Aguilera-Galicia, O. Longoria-Gandara, and L. Pizano-Escalante, “Half-precision

floating-point multiplier IP core based on 130 nm CMOS ASIC technology,” in IEEE Latin-

American Conf. on Communications (LATINCOM-2018), Guadalajara, Mexico, Nov. 2018,

vol. 1, pp. 1-5. (ISSN: 2330-989X; p-ISBN: 978-1-5386-6755-2; e-ISBN: 978-1-5386-6754-

5; DOI: 10.1109/LATINCOM.2018.8613231).

B.2. Journal Paper

1) C. R. Aguilera-Galicia, O. Longoria-Gandara, L. Pizano-Escalante, J. Vázquez-Castillo, and

M. Salim-Maza, “On-chip implementation of a low-latency bit-accurate reciprocal square root

unit,” Integration - the VLSI Journal, vol. 63, pp. 9-17, Sep. 2018. (ISSN: 0167-9260;

published online: 26 May 2018; DOI: 10.1016/j.vlsi.2018.04.016).

 110

C. GLOSSARY

Word or

Acronym
Meaning

ADE Analog Design Environment

AMS Analog Mixed Signal

ATPG Automatic Test Pattern Generation

CCOpt Clock Concurrent Optimization

CDB Storage format for Cadence 5: Cadence Data Base

CDCs Clock Domain Crossings

CPF Common Power Format

CPF Common Power Format

DFM Design for Manufacturing

DFY Design for Yield

DRC Design Rule Checking

DVFS Dynamic Voltage and Frequency Scaling

ECO Engineering Change Order

EDI Encounter Digital Implementation

GDSII Is a data base file format for data exchange of IC layout

GFM Global Focus Mapping

ICFB Integrated Circuit Front to Back

LOCV Location base On Chip Variation

LPS
Low Power Synthesis Option (Cadence tool for addressing low power

design issues early in the design cycle)

MDP Module Data Path

MMMC Multi-Mode Multi Corner

MSMV Multi Supply Multi Voltage

MSV Multiple Supply Voltage

MTCMOS power gating low power techniques

NEQ Non-equivalence

OA Storage format for Cadence 6: Open Access

OSCI Open System C Initiative

OVM Open Verification Methodology

PPA Power Performance and Area

 111

PSO Power Shut Off

QoR Quality of Results

QoS Quality of Silicon

RDL Re-Distribution Layer

SDC Synopsys Design Compiler

SDR Segment Representative Design

SKILL Cadence Scripting environment/language

SMART
Signal Integrity, Manufacturing Aware Routability and Timing

Optimization

Spectre Cadence’s SPICE

SPP Tool to convert spice to Spectre

SSTA Statistical Static Timing Analysis

TCF
Toggle Count Format: A special input file to low power synthesis in

Cadence tool

TNS Total Negative slack

UVM Universal Verification Methodology

VIP Verification IP

 112

D. RTL COMPILER LOGIC-SYNTHESIS SCRIPT

Template Script for RTL->Gate-Level Flow (generated from RC v12.10-s012_1)
Cuauhtemoc Aguilera
ITESO

if {[file exists /proc/cpuinfo]} {
 sh grep "model name" /proc/cpuinfo
 sh grep "cpu MHz" /proc/cpuinfo
}

puts "Hostname : [info hostname]"

A Presetting Global Variables and Attributes

In this template DESIGN is the name of the top level module

set DESIGN bwco

This design use the Virginia Tech 180nm standard-cell library. Next line defines a frienly name
set my_stdcell_library vtvt_tsmc180.lib

Next line defines a frienly name for the Viriginia Tech LEF library
set my_lef_library {/home/usuario/Cuauh/BibliotecasSCells/convert/cdb/vtvt_tsmc180_lef/vtvt_tsmc180.lef}

set SYN_EFF medium

###set MAP_EFF medium
set MAP_EFF high
set DATE [clock format [clock seconds] -format "%b%d-%T"]
set _OUTPUTS_PATH outputs_${DATE}
set _REPORTS_PATH reports_${DATE}
set _LOG_PATH logs_${DATE}
##set ET_WORKDIR <ET work directory>

B Specifying Explicit Serch Path Attributes

set_attribute lib_search_path {/home/usuario/Cuauh/BibliotecasSCells/convert/cdb/Synopsys_Libraries/libs} /

set_attribute script_search_path {.} /

set_attribute hdl_search_path {/home/usuario/Cuauh/Cadence/my_designs/bwco} /

##Uncomment and specify machine names to enable super-threading.
##set_attribute super_thread_servers {<machine names>} /

##Default undriven/unconnected setting is 'none'.
##set_attribute hdl_unconnected_input_port_value 0 | 1 | x | none /
##set_attribute hdl_undriven_output_port_value 0 | 1 | x | none /

 113

##set_attribute hdl_undriven_signal_value 0 | 1 | x | none /
##set_attribute wireload_mode <value> /

next attribute controls the amount of information RTL produce
when executing commands. The higher the value, the more verbose the output (0-9)
set_attribute information_level 9 /

C Setting the Target Technology Library (Library setup)

set_attribute library $my_stdcell_library /

D Setting the Synthesis Mode

PLE (PHYSICAL LAYOUT ESTIMATOR)

set_attribute lef_library $my_lef_library /

set_attribute cap_table_file <file> /

##generates <signal>_reg[<bit_width>] format
#set_attribute hdl_array_naming_style %s\[%d\] /

Turn on TNS, affects global and incr opto
Forces optimization for all the endpoints (Total Negative Slack)

set_attribute tns_opto true /

E Loading the Design (HDL files)

set_attribute hdl_language v2001

read_hdl -v2001 {contador_m16.v contador_comparador.v bwco.v }

F Performing Elaboration

elaborate $DESIGN

puts "Runtime & Memory after 'read_hdl'"
timestat Elaboration

Reports all the information for the design (undriven, multidriven, ports and pins, etc.)
with a summary at the end

puts "Saving check_design_${DESIGN}_all.txt"

 114

check_design -all > check_design_${DESIGN}_all.txt

G Applying Constraints

read_sdc <file_name>

read_sdc {/home/usuario/Cuauh/Cadence/my_designs/bwco/ucf_bwco_sdc.sdc}

puts "The number of exceptions is [llength [find /designs/$DESIGN -exception *]]"

Check syntax
set_attribute force_wireload <wireload name> "/designs/$DESIGN"
Forces RTL Compiler to use the specified wire-load model
auto_select automatically selects wire-load models according to the
wire-load selection table or default wire-load model in the technology library.

#set_attribute force_wireload [find /designs/$DESIGN]

set_attribute force_wireload [find [find / -library $my_stdcell_library] \
-wireload "10x10"] [find / -design $DESIGN]

Creating reports folders

if {![file exists ${_LOG_PATH}]} {
 file mkdir ${_LOG_PATH}
 puts "Creating directory ${_LOG_PATH}"
}
if {![file exists ${_OUTPUTS_PATH}]} {
 file mkdir ${_OUTPUTS_PATH}
 puts "Creating directory ${_OUTPUTS_PATH}"
}

if {![file exists ${_REPORTS_PATH}]} {
 file mkdir ${_REPORTS_PATH}
 puts "Creating directory ${_REPORTS_PATH}"
}

report timing -ling:
Reports, in an abbreviated output, possible timing problems in
the design. These problems can be caused by generated
clocks, paths constrained with different clocks, ports that have
no external delays, primary inputs that have no external driver
or input transition set, primary outputs without external load,
timing exceptions that cannot be satisfied, constraints that may
have no impact on the design, and so on.

puts "####################"
puts "Timing -lint Report"
puts "####################"

report timing -lint

 115

H Applying Optimization Constraints
Define cost groups (clock-clock, clock-output, input-clock, input-output)

Uncomment to remove already existing costgroups before creating new ones.
rm [find /designs/* -cost_group *]

puts "Defining Cost Groups"

if {[llength [all::all_seqs]] > 0} {
 define_cost_group -name I2C -design $DESIGN
 define_cost_group -name C2O -design $DESIGN
 define_cost_group -name C2C -design $DESIGN
 path_group -from [all::all_seqs] -to [all::all_seqs] -group C2C -name C2C
 path_group -from [all::all_seqs] -to [all::all_outs] -group C2O -name C2O
 path_group -from [all::all_inps] -to [all::all_seqs] -group I2C -name I2C
}

define_cost_group -name I2O -design $DESIGN
path_group -from [all::all_inps] -to [all::all_outs] -group I2O -name I2O
foreach cg [find / -cost_group *] {
 report timing -cost_group [list $cg] >> $_REPORTS_PATH/${DESIGN}_pretim.rpt
}

To turn off sequential merging on the design
uncomment & use the following attributes:

##set_attribute optimize_merge_flops false /
##set_attribute optimize_merge_latches false /
For a particular instance use attribute 'optimize_merge_seqs' to turn off sequential merging.

###
#######
I Performing Synthesis
Synthesizing to generic
###
#######

synthesize -to_generic -eff $SYN_EFF
puts "Runtime & Memory after 'synthesize -to_generic'"
timestat GENERIC
report datapath > $_REPORTS_PATH/${DESIGN}_datapath_generic.rpt
generate_reports -outdir $_REPORTS_PATH -tag generic
summary_table -outdir $_REPORTS_PATH

###
#######
I Performing Synthesis
Synthesizing to gates
###
#######

 116

synthesize -to_mapped -eff $MAP_EFF -no_incr
puts "Runtime & Memory after 'synthesize -to_map -no_incr'"
timestat MAPPED
report datapath > $_REPORTS_PATH/${DESIGN}_datapath_map.rpt

foreach cg [find / -cost_group *] {
 report timing -cost_group [list $cg] > $_REPORTS_PATH/${DESIGN}_[basename $cg]_post_map.rpt
}
generate_reports -outdir $_REPORTS_PATH -tag map
summary_table -outdir $_REPORTS_PATH

##Intermediate netlist for LEC verification..
write_hdl -lec > ${_OUTPUTS_PATH}/${DESIGN}_intermediate.v
write_do_lec -revised_design ${_OUTPUTS_PATH}/${DESIGN}_intermediate.v -logfile
${_LOG_PATH}/rtl2intermediate.lec.log > ${_OUTPUTS_PATH}/rtl2intermediate.lec.do

ungroup -threshold <value>
###
#########
I Performing Synthesis
Incremental Synthesis
###
##########

Uncomment to remove assigns & insert tiehilo cells during Incremental synthesis:

Removes assigns statements and replaces with buffer/inverter
##set_attribute remove_assigns true /

Controls the aspects of the replacement of assign statements in the design with buffers or
inverters, which is controlled by the remove_assigns root attribute

##set_remove_assign_options -buffer_or_inverter <libcell> -design <design|subdesign>

Determines whether a constant assignment should be replaced with a tie cell in the netlist
##set_attribute use_tiehilo_for_const <none|duplicate|unique> /

synthesize -to_mapped -eff $MAP_EFF -incr
generate_reports -outdir $_REPORTS_PATH -tag incremental
summary_table -outdir $_REPORTS_PATH

puts "Runtime & Memory after incremental synthesis"
timestat INCREMENTAL

foreach cg [find / -cost_group -null_ok *] {
 report timing -cost_group [list $cg] > $_REPORTS_PATH/${DESIGN}_[basename $cg]_post_incr.rpt
}

Spatial mode optimization

 117

Uncomment to enable spatial mode optimization
##synthesize -to_mapped -spatial

###
#########
write Encounter file set (verilog, SDC, config, etc.)
###
#########
##write_encounter design -basename <path & base filename> -lef <lef_file(s)>

Reports the critical path slack, total negative slack (TNS), number of gates on the critical path,
and number of violating paths for each cost group. It also gives the instance count, total area
(net and cell area), cell area, runtime, and host name information

J Reporting Synthesis Results

report qor > $_REPORTS_PATH/${DESIGN}_qor.rpt
report area > $_REPORTS_PATH/${DESIGN}_area.rpt
report datapath > $_REPORTS_PATH/${DESIGN}_datapath_incr.rpt
report messages > $_REPORTS_PATH/${DESIGN}_messages.rpt
report gates > $_REPORTS_PATH/${DESIGN}_gates.rpt

Generates all the files needed to reload the session in RTL Compiler (for example, .g, .v.and .tcl files)
If you want to generate all the files that are need to loaded in both a RTL
Compiler and Encounter session, use the -encounter option
write_design -basename ${_OUTPUTS_PATH}/${DESIGN}_m -encounter $DESIGN

Generates one of the following design implementations in Verilog format:
a) A structural netlist using generic logic
b) A structural netlist using mapped logic
write_hdl > ${_OUTPUTS_PATH}/${DESIGN}_m.v

K Writing Out Files for Place and Route Tool

Generates a script that contains the timing for all modes and
the design rule constraints of the design
write_script > ${_OUTPUTS_PATH}/${DESIGN}_m.script

Writes out the current design constraints in Synopsys Design Constraint (SDC) format
write_sdc > ${_OUTPUTS_PATH}/${DESIGN}_m.sdc

#################################
write_do_lec
#################################
Translates RTL Compiler settings to Encounter Conformal Logical Equivalence Checking commands
write_do_lec -golden_design ${_OUTPUTS_PATH}/${DESIGN}_intermediate.v -revised_design
${_OUTPUTS_PATH}/${DESIGN}_m.v -logfile ${_LOG_PATH}/intermediate2final.lec.log >
${_OUTPUTS_PATH}/intermediate2final.lec.do

##Uncomment if the RTL is to be compared with the final netlist..

 118

write_do_lec -revised_design ${_OUTPUTS_PATH}/${DESIGN}_m.v -logfile ${_LOG_PATH}/rtl2final.lec.log >
${_OUTPUTS_PATH}/rtl2final.lec.do

puts "Final Runtime & Memory."
timestat FINAL
puts "============================"
puts "Synthesis Finished"
puts "============================"

Copy the rc log to the specifyed path
file copy [get_attr stdout_log /] ${_LOG_PATH}/.

#################################
L Exiting RTL Compiler
#################################

quit
exit

119

Bibliography

[Aguilera-Galicia-16] C. R. Aguilera-Galicia and O. H. Longoria-Gándara, “Test-vector generator for testing a 16-

bit reciprocal square root integrated circuit,” Internal Report PhDEngScITESO-16-33-R,

ITESO, Tlaquepaque, Mexico, Dec. 2016.

[Aguilera-Galicia-18] C. R. Aguilera-Galicia, O. Longoria-Gandara, L. Pizano-Escalante, J. Vázquez-Castillo, and

M. Salim-Maza, “On-chip implementation of a low-latency bit-accurate reciprocal square

root unit,” Integration, the VLSI Journal, vol. 63, pp. 9–17, Sep. 2018.

[Altera-16] Altera. (2016). Floating-Point IP Cores User Guide [Online]. Available:

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/ug/ug_altfp_mfug.pdf.

[Blaauw-14] D. Blaauw, D. Sylvester, P. Dutta, Y. Lee, I. Lee, S. Bang, P. Pannuto, Y. Kim, G. Kim, Y.-

S. Kuo, D. Yoon, W. Jung, Z. Foo, Y.-P. Chen, S. Oh, S. Jeong, and M. Choi, “IoT design

space challenges: circuits and systems,” in Symp. on VLSI Technology: Digest of Technical

Papers, Honolulu, HI, USA, Jun. 2014.

[Brunvand-10] E. Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD Tools. Boston,

MA: Addison-Wesley, 2010.

[Brunvand-13] E. Brunvand. (2013). Converting your Existing Libraries from CDB to OA [Online].

Available: https://www.cs.utah.edu/cadence/data/cdb2oa.pdf.

[Butts-11] J. A. Butts, P. T. P. Tang, R. O. Dror, and D. E. Shaw, “Radix-8 digit-by-rounding: achieving

high-performance reciprocals, square roots, and reciprocal square roots,” in IEEE Symp.

Computer Arithmetic, Tubingen, Germany, Jul. 2011, pp. 149–158.

[Cadence-12a] Cadence. (2012). RTL Compiler (RC) Cook Book [Online]. Available:

http://community.cadence.com/cadence_blogs_8/b/ld/archive/2013/11/12/rtl-compiler-

beginner-s-guides-available-on-cadence-online-support.

[Cadence-12b] Cadence. (2012). RTL Compiler-Rapid Adoption Kit [Online]. Available:

http://support.cadence.com/.

[Cadence-14a] Cadence. (2014). Encounter RTL Compiler Synthesis Flow [Online]. Available:

http://support.cadence.com/.

[Cadence-14b] Cadence. (2014). Setting Constraints and Performing Timing Analysis Using Encounter RTL

Compiler [Online]. Available: http://support.cadence.com/.

[Cadence-15a] Cadence. (2015). Command Reference for Encounter RTL Compiler [Online]. Available:

http://support.cadence.com/.

[Cadence-15b] Cadence. (2015). Attribute Reference for Encounter RTL Compiler [Online]. Available:

http://support.cadence.com/.

[Castorena-13] E. Castorena, C. R. Aguilera-Galicia, and E. Martínez-Guerrero, “Tutorial de Encounter

Digital Implementation System (EDI),” ITESO, Tlaquepaque, Mexico, Dec. 2013.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_altfp_mfug.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_altfp_mfug.pdf
https://www.cs.utah.edu/cadence/data/cdb2oa.pdf
http://community.cadence.com/cadence_blogs_8/b/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support
http://community.cadence.com/cadence_blogs_8/b/ld/archive/2013/11/12/rtl-compiler-beginner-s-guides-available-on-cadence-online-support
http://support.cadence.com/
http://support.cadence.com/
http://support.cadence.com/
http://support.cadence.com/
http://support.cadence.com/

BIBLIOGRAPHY

 120

[Chen-13] Y.-L. Chen, C.-Z. Zhan, T.-J. Jheng, and A.-Y. Wu, “Reconfigurable adaptive singular value

decomposition engine design for high-throughput MIMO-OFDM systems,” IEEE Trans.

VLSI Syst., vol. 21, no. 4, pp. 747–760, Apr. 2013.

[Cooney-10] M. Cooney. (2010). Cadence Design Flows [Online]. Available:

http://www.phys.hawaii.edu/~varner/PHYS476_Spr10/Lectures/CadenceTools.pdf.

[Dharwadkar-10] A. Dharwadkar and A. Ashrafi. (2010). Cadence Tutorial [Online]. Available:

http://jason.sdsu.edu/~ashrafi/PDF/CADENCE_Tutorial.pdf.

[Engel-10] G. Engel. (2010). RTL Logic Synthesis Tutorial [Online]. Available:

http://www.siue.edu/~gengel/ece484LabMaterial/RTLsynthesisTut.pdf.

[Ercegovac-00] M. D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand, “Reciprocation, square root,

inverse square root, and some elementary functions using small multipliers,” IEEE Trans.

Comput., vol. 49, no. 7, pp. 628–637, Jul. 2000.

[Ercegovac-04] M. D. Ercegovac and T. Lang, Digital Arithmetic. San Francisco, CA: Morgan Kaufmann

Publishers/Elsevier, 2004.

[Ercegovac-05] M. D. Ercegovac, J.-M. Muller, and A. Tisserand, “Simple seed architectures for reciprocal

and square root reciprocal,” in IEEE Asilomar Conf. Sign. Syst. Comput., Pacific Grove CA,

Oct. 2005, pp. 1167–1171.

[Farmer-11] T. Farmer and W. Gibbs. (2011). Cadence Tutorial: Using Cadence Encounter Digital

Implementation System – Automatic Layout Place & Route Tool [Online]. Available:

http://www.seas.gwu.edu/~vlsi/ece128/SPRING/labs_tutorials/lab7_cadence_encounter_pl

ace-route.pdf.

[Foley-17] D. Foley and J. Danskin, “Ultra-performance Pascal GPU and NVLink interconnect,” IEEE

Micro, vol. 37, no. 2, pp. 7–17, May 2017.

[Franzon-99] P. Franzon, S. Perelstein, and A. Hurst. (1999). Tutorial 1 Introduction to ASIC Design

Methodology [Online]. Available: http://www.ece.ncsu.edu/asic/tutorials/tutor1/tutor1.pdf.

[Goldberg-91] D. Goldberg, “What every computer scientist should know about floating-point arithmetic,”

ACM Computing Surveys, vol. 23, no. 1, pp. 5–48, Mar. 1991.

[Gurkaynak-06] F. K. Gurkaynak. (2006). ASIC Design Flow, How to Design Your Own Chip [Online].

Available: http://www-micrel.deis.unibo.it/MPHS/slidecorso0607/class_vlsi.pdf.

[Ho-17] N.-M. Ho and W.-F. Wong, “Exploiting half precision arithmetic in Nvidia GPUs,” in IEEE

High Performance Extreme Computing Conf., Waltham, MA, USA, Sep. 2017, pp. 1–6.

[IEEE-08] IEEE. (2008). 754-2008 Standard for Floating-Point Arithmetic [Online]. Available:

http://ieeexplore.ieee.org/document/4610935/.

[Joldes-16] M. Joldes, O. Marty, J. M. Muller, and V. Popescu, “Arithmetic algorithms for extended

precision using floating-point expansions,” IEEE Trans. Comput., vol. 65, no. 4, pp. 1197–

1210, Apr. 2016.

[Khirallah-03] C. Khirallah, P. Coulton, Y. Arora, and J. Ruan, “Fixed and floating-point implementation of

DS-CDMA system using complete complementary codes under both frequency selective and

flat fading channel conditions,” in IEE Colloquium DSP Enabled Radio, Scotland, UK, Sep.

2003, pp. 1–9.

http://www.phys.hawaii.edu/~varner/PHYS476_Spr10/Lectures/CadenceTools.pdf
http://jason.sdsu.edu/~ashrafi/PDF/CADENCE_Tutorial.pdf
http://www.siue.edu/~gengel/ece484LabMaterial/RTLsynthesisTut.pdf
http://www.seas.gwu.edu/~vlsi/ece128/SPRING/labs_tutorials/lab7_cadence_encounter_place-route.pdf
http://www.seas.gwu.edu/~vlsi/ece128/SPRING/labs_tutorials/lab7_cadence_encounter_place-route.pdf
http://www.ece.ncsu.edu/asic/tutorials/tutor1/tutor1.pdf
http://www-micrel.deis.unibo.it/MPHS/slidecorso0607/class_vlsi.pdf
http://ieeexplore.ieee.org/document/4610935/

BIBLIOGRAPHY

 121

[Kim-11] J. Kim, H. Choi, S. Yoon, T. Bang, J. Park, C. Jung, and J. Cong, “An 8M polygons/s 3-D

graphics SoC with full hardware geometric and rendering engine for mobile applications,”

IEEE Trans. on Very Large Scale Integration Systems, vol. 19, no. 8, pp. 1490–1495, Aug.

2011.

[Kwon-08] T.-J. Kwon and D. Jeff, “Floating-point division and square root implementation using a

Taylor-series expansion algorithm,” in IEEE Int. Conf. Electron. Circuits Syst., St. Julien’s,

Malta, Sep. 2008, pp. 702–705.

[Lang-03] T. Lang and E. Antelo, “Radix-4 reciprocal square-root and its combination with division

and square root,” IEEE Trans. Comput., vol. 52, no. 9, pp. 1100–1114, Sep. 2003.

[Lee-09] D.-U. Lee, R. C. C. Cheung, W. Luk, and J. D. Villasenor, “Hierarchical segmentation for

hardware function evaluation,” IEEE Trans. on VLSI Systems, vol. 17, no. 1, pp. 103–116,

Jan. 2009.

[Liu-17a] C. Liu, C. Tang, Z. Xing, L. Yuan, and Y. Zhang, “Hardware architecture based on parallel

tiled QRD algorithm for future MIMO systems,” IEEE Trans. VLSI Syst., vol. 25, no. 5, pp.

1714–1724, Jan. 2017.

[Liu-17b] C. Liu, Z. Xing, L. Yuan, C. Tang, and Y. Zhang, “A novel architecture to eliminate

bottlenecks in a parallel tiled QRD algorithm for future MIMO systems,” IEEE Trans.

Circuits Syst. II, vol. 64, no. 1, pp. 26–30, Jan. 2017.

[Lomont-03] C. Lomont. (2003). Fast Inverse Square Root [Online]. Available:

http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf.

[Luethi-08] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, and W. Fichtner, “Gram-

Schmidt-based QR decomposition for MIMO detection: VLSI implementation and

comparison,” in IEEE Asia Pacific Conf. Circuits Syst., Macao, China, Nov. 2008, pp. 830–

833.

[Mahapatra-12] C. Mahapatra, S. Mahboob, V. C. M. Leung, and T. Stouraitis, “Fast inverse square root

based matrix inverse for MIMO-LTE systems,” in IEEE Int. Conf. Ctrl. Eng. Comm.

Technol., Shenyang, Liaoning, China, Dec. 2012, pp. 321–324.

[Markovic-06] D. Markovic, B. Nikolic, and R. W. Brodersen, “Power and area efficient VLSI architectures

for communication signal processing,” in IEEE Int. Conf. on Communications, Jun. 2006,

vol. 7, pp. 3223–3228.

[Markovic-07] D. Markovic, B. Nikolic, and R. W. Brodersen, “Power and area minimization for

multidimensional signal processing,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp.

922–934, Apr. 2007.

[Martin-Del-Campo-12] F. Martin-Del-Campo, A. Morales-Reyes, R. Perez-Andrade, R. Cumplido, A.-G. Orozco-

Lugo, and C. Feregrino, “A multi-cycle fixed point square root module for FPGAs,” IEICE

Electron. Express, vol. 9, no. 11, pp. 971–977, Jun. 2012.

[Menard-05] D. Menard, D. Chillet, and O. Sentieys, “Floating-to-fixed-point conversion for digital signal

processors,” EURASIP J. Applied Sign. Process., vol. 2006, no. 96421, pp. 1–19, Jul. 2005.

[Mittal-16] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing Surveys,

vol. 48, no. 4, pp. 62:1–33, May 2016.

http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

BIBLIOGRAPHY

 122

[Muller-05] J.-M. Muller, Elementary Functions: Algorithms and Implementation, 2nd ed. Boston, MA:

Birkhäuser, 2005.

[Muller-10] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lef`evre, G. Melquiond, N.

Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point Arithmetic. New York, NY:

Birkhäuser Boston, 2010.

[Parra-Michel-18] R. Parra-Michel (CINVESTAV), J. Luis Pizano-Escalante (ITESO), J. Vázquez-Castillo

(UQRO), and O. H. Longoria-Gándara (ITESO), “Cálculo Rápido del Recíproco de la Raíz

Cuadrada en Punto Fijo,” Mexican Patent Application MX/a/2015/007203 (IMPI), June 8,

2015. TÍTULO DE PATENTE No. 354623, March 8, 2018.

[Patel-08a] C. Patel. (2008). Advanced VLSI Design-Abstract Generation [Online]. Available:

http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect03_abstract.pdf.

[Patel-08b] C. Patel (2008). Advanced VLSI Design-Standard Cell Library/Library Exchange Format

(LEF) [Online]. Available:

http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect04_LEF.pdf.

[Patel-08c] C. Patel. (2008). Advanced VLSI Design-Liberty Timing File (LIB) [Online]. Available:

http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect05_LIB.pdf.

[Patel-08d] C. Patel. (2008). Advanced VLSI Design-Standard Cell Design [Online]. Available:

http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect02_std_cells.pdf.

[Peercy-00] M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar, “Interactive multi-pass programmable

shading,” in ACM. Int. Conf. Computer Graphics Interactive Techniques, LA, Jul. 2000, pp.

425–432.

[Piñeiro-02] J.-A. Piñeiro and J. D. Bruguera, “High-speed double-precision computation of reciprocal,

division, square root, and inverse square root,” IEEE Trans. Comput., vol. 51, no. 12, pp.

1377–1388, Dec. 2002.

[Pizano-Escalante-15] L. Pizano-Escalante, R. Parra-Michel, J. Vazquez-Castillo, and O. Longoria-Gandara, “Fast

bit-accurate reciprocal square root,” Elsevier Microprocessors and Microsystems, vol. 39,

no. 2, pp. 74–82, Mar. 2015.

[Ren-93] H. Ren, L. B. Hoang, H.-C. Chen, and B. W. Y. Wei, “Design of a 16-bit CMOS

divider/square-root circuit,” in IEEE Asilomar Conf. Sign. Syst. Comput., Pacific Grove CA,

Nov. 1993, pp. 807–811.

[Rounioja-03] K. Rounioja and J. A. Parviainen, “Arithmetic processing unit for reciprocal operations,” in

Int. Symp. on System-on-Chip, Tampere, Finland, Nov. 2003, pp. 109–112.

[Sajid-12] I. Sajid, M. M. Ahmed, and S. G. Ziavras, “Novel pipelined architecture for efficient

evaluation of the square root using a modified non-restoring algorithm,” J. Sign. Process.

Syst., vol. 67, no. 2, pp. 157–166, May 2012.

[Salmela-06] P. Salmela, A. Happonen, T. Järvinen, A. Burian, and J. Takala, “DSP implementation of

Cholesky decomposition,” in IEEE Symp. Trends in Comm., Bratislava, Slovakia, Jun. 2006,

pp. 6–9.

[Salmela-11] P. Salmela, B. Adrian, T. Järvinen, H. Aki, and J. Takala, “Low-complexity inverse square

root approximation for baseband matrix operations,” Hindawi ISRN Signal Processing, vol.

2011, no. 615934, pp. 1–8, Jan. 2011.

http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect03_abstract.pdf
http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect04_LEF.pdf
http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect05_LIB.pdf
http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect02_std_cells.pdf

BIBLIOGRAPHY

 123

[Schaffer-98] T. Schaffer, A. Stanaski, A. Glaser, and P. Franzon, “The NCSU design kit for IC fabrication

through MOSIS,” in Int. Cadence User Group Conf., Austin, TX, Sep. 1998, pp. 1–9.

[Schulte-99] M. J. Schulte and K. E. Wires, “High-speed inverse square roots,” in IEEE Symp. Computer

Arithmetic, Adelaide, Australia, Apr. 1999, pp. 124–131.

[Seth-11] A. Seth and W.-S. Gan, “Fixed-point square roots using L-b truncation [DSP tips and tricks],”

IEEE Signal Process. Mag., vol. 28, no. 6, pp. 149–1453, Nov. 2011.

[Shan-08] Z. Shan. (2008). Tutorial PnR: Placement and Routing for a Schematic [Online]. Available:

http://www.egr.msu.edu/classes/ece410/mason/files/Tutorial%20PnR-sp08.pdf.

[Singh-07] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI architecture for matrix inversion using

modified Gram-Schmidt based QR decomposition,” in IEEE Int. Conf. VLSI Design-Int.

Conf. Embedded Systems, Bangalore, India, Jan. 2007, pp. 836–841.

[Sohn-06] J.-H. Sohn, J.-H. Woo, M.-W. Lee, H.-J. Kim, R. Woo, and H.-J. Yoo, “A 155-mW 50-M

vertices/s graphics processor with fixed-point programmable vertex shader for mobile

applications,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1081–1091, May 2006.

[Srinivas-95] H. R. Srinivas and K. K. Parhi, “A floating point radix 2 shared division/square root chip,”

in IEEE Int. Conf. Computer Design: VLSI in Computers and Processors, Austin, TX, Oct.

1995, pp. 472–478.

[Sulistyo-10] J. Sulistyo. (2010). Development of CMOS Standard Cell Library [Online]. Available:

http://www.ece.unm.edu/~jimp/vlsi_synthesis/contrib/vt_std_cells.pdf.

[Sung-95] W. Sung and K. Kum, “Simulation-based word-length optimization method for fixed-point

digital signal processing systems,” IEEE Trans. Signal Process., vol. 43, no. 12, pp. 3087–

3090, Dec. 1995.

[Suresh-13] S. Suresh, S. F. Beldianu, and S. G. Ziavras, “FPGA and ASIC square root design for high

performance and power efficiency,” in IEEE Int. Conf. Application-Specific Syst.

Architectures Processors, Washington, DC, Jun. 2013, pp. 269–272.

[Takagi-01] N. Takagi, “A hardware algorithm for computing reciprocal square root,” in IEEE Symp.

Computer Arithmetic, Vail, CO, USA, Jun. 2001, pp. 94–100.

[Theocharides-05] T. Theocharides. (2005). ASIC Design Flow P&R Tutorial [Online]. Available:

http://www.cse.psu.edu/~cg577/LECTURES/L4-2005.pdf.

[Trejo-Arellano-17] J. M. Trejo-Arellano, Adaptive Function Segmentation Methodology for Resources

Optimization of Hardware-Based Function Evaluators, Master’s Thesis, Dept. of

Electronics, Systems and Informatics, ITESO, Tlaquepaque, Mexico, 2017.

[Venkatesh-17] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating deep convolutional networks using

low-precision and sparsity,” in IEEE Int. Conf. Acoustics, Speech and Signal Processing,

New Orleans, LA, Mar. 2017, pp. 2861–2865.

[Wang-09] L. T. Wang, Y. W. Chang, and K. T. Cheng, Electronic Design Automation: Synthesis,

Verification, and Test. Burlington, MA: Morgan Kaufmann Publishers/Elsevier, 2009.

[Wang-10] D. Wang, M. D. Ercegovac, and N. Zheng, “Design of high-throughput fixed-point complex

reciprocal/square-root unit,” IEEE Trans. Circuits Syst. II, vol. 57, no. 8, pp. 627–631, Aug.

2010.

http://www.egr.msu.edu/classes/ece410/mason/files/Tutorial%20PnR-sp08.pdf
http://www.ece.unm.edu/~jimp/vlsi_synthesis/contrib/vt_std_cells.pdf
http://www.cse.psu.edu/~cg577/LECTURES/L4-2005.pdf

BIBLIOGRAPHY

 124

[Weste-11] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective,

4th ed. Boston, MA: Addison Wesley, 2011.

[Williams-16] J. H. Williams, Quantifying Measurement: The Tyranny of Numbers. San Rafael, CA:

Morgan & Claypool, 2016.

[Wires-06] K. E. Wires and M. J. Schulte, “Reciprocal and reciprocal square root units with operand

modification and multiplication,” J. VLSI Sign. Process. Syst. Sign. Image Video Technol.,

vol. 42, no. 3, pp. 257–272, Mar. 2006.

[Wong-94] W. F. Wong and E. Goto, “Fast hardware-based algorithms for elementary function

computations using rectangular multipliers,” IEEE Trans. Comput., vol. 43, no. 3, pp. 278–

294, Mar. 1994.

[Woo-09] J.-H. Woo, J.-H. Sohn, H. Kim, and H.-J. Yoo, “A low-power multimedia SoC with fully

programmable 3D graphics for mobile devices,” IEEE Comput. Grap. Appl., vol. 29, no. 5,

pp. 82–90, Sep. 2009.

[Xilinx-12] Xilinx. (2012). LogiCORE IP Floating-Point Operator [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v6_1/pg0

60-floating-point.pdf.

[Yin-16] P. Yin, C. Wang, W. Liu, and F. Lombardi, “Design and performance evaluation of

approximate floating-point multipliers,” in IEEE Comp. Society Annual Symp. on VLSI,

Pittsburgh, PA, USA, Jul. 2016, pp. 296–301.

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v6_1/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v6_1/pg060-floating-point.pdf

125

Author Index

Aguilera-Galicia .. 63, 74, 107, 108, 109, 119

Altera ... 74, 93, 119

Blaauw ... 1, 119

Brunvand ... 31, 32, 119

Butts .. 50, 74, 119

Cadence ... 21, 32, 33, 35, 37, 38, 40, 41, 42, 43, 119

Castorena ... 9, 119

Chen .. 49, 120

Cooney .. 14, 120

Dharwadkar ... 6, 10, 13, 14, 17, 120

Engel .. 10, 14, 120

Ercegovac .. 2, 50, 53, 54, 55, 120

Farmer ... 9, 10, 120

Foley .. 73, 120

Franzon .. 6, 8, 10, 120, 122

Goldberg .. 90, 120

Gurkaynak ... 11, 120

Ho .. 1, 120

IEEE .. 51, 73, 75, 83, 120

Joldes ... 54, 120

Khirallah .. 50, 120

Kim .. 49, 50, 121, 123

Kwon ... 2, 50, 69, 70, 71, 121

Lang ... 50, 73, 121

Lee ... 98, 102, 121

Liu ... 49, 50, 51, 74, 121

Lomont .. 98, 102, 121

Luethi .. 49, 51, 121

Mahapatra .. 49, 121

AUTHOR INDEX

 126

Markovic ... 49, 50, 121

Martin-Del-Campo .. 51, 121

Menard .. 59, 121

Mittal ... 2, 121

Muller .. 59, 76, 79, 83, 89, 120, 122

Parra-Michel .. 51

Patel ... 29, 30, 122

Peercy .. 73, 122

Piñeiro ... 2, 50, 74, 122

Pizano-Escalante ... 2, 51, 53, 107, 108, 109, 119, 122

Ren .. 50, 122

Rounioja .. 51, 122

Sajid ... 51, 122

Salmela .. 49, 50, 51, 122

Schaffer ... 27, 122

Schulte ... 50, 123, 124

Seth .. 51, 123

Shan ... 9, 10, 123

Singh .. 49, 51, 123

Sohn ... 51, 123, 124

Srinivas .. 50, 123

Sulistyo .. 30, 123

Sung ... 59, 123

Suresh .. 2, 50, 69, 70, 71, 72, 74, 123

Takagi .. 50, 123

Theocharides ... 10, 123

Trejo-Arellano ... 98, 102, 123

Venkatesh .. 1, 73, 123

Wang ... 32, 50, 51, 74, 123

Weste ... 69, 123

Williams .. 51, 124

Wires ... 2, 50, 69, 70, 71, 72, 123, 124

Wong ... 50, 120, 124

AUTHOR INDEX

 127

Woo ... 49, 50, 123, 124

Xilinx ... 74, 93, 124

Yin ... 73, 124

SUBJECT INDEX

 129

Subject Index

2

2C-RSR, ix, 2, 51, 53, 54, 55, 56, 62, 63, 66, 67,

68, 69, 70, 71, 72, 73, 95, 97, 101

3

3D-image, 2, 49

A

accuracy, 1, 55, 59, 67, 73, 74, 76, 79, 83, 92,

96, 98

algorithm, ix, 2, 4, 50, 51, 53, 54, 55, 73, 76, 97,

98, 107, 121, 122, 123

Analysis and Reports, 20

approximate computing, 1, 96, 121

architecture, 4, 7, 50, 54, 55, 56, 57, 58, 59, 61,

62, 66, 71, 76, 78, 79, 84, 85, 87, 91, 95, 107,

121, 122, 123

ARM, 2

ASIC, i, ii, iii, iv, ix, 2, 3, 4, 5, 6, 8, 10, 11, 13,

14, 15, 17, 21, 49, 51, 62, 69, 82, 87, 90, 95,

97, 101, 109, 120, 123

attributes, 18, 19, 32, 40, 41, 42, 48, 115

B

back-end, 3, 6, 13, 36, 38, 43, 48

barrel shifter, 55, 58, 62

bit-accurate, 2, 49, 51, 52, 53, 55, 62, 63, 67, 71,

82, 91, 97, 107, 119, 122

black-box, 33

C

CAD tools, xi, 3, 6, 10, 11, 28, 97

Cadence tool, 4, 11, 13, 31, 48, 110, 111

carry, 6, 19, 33, 97

Ch

channel estimation, 2, 49

chip, 1, 2, 4, 5, 9, 49, 63, 66, 67, 68, 69, 70, 71,

72, 97, 107, 109, 119, 123

Cholesky decomposition, 2, 122

C

clock cycles, 70

clock frequency, 66, 70, 71, 72, 74, 91, 94

CMOS, vii, ix, 2, 3, 5, 26, 27, 30, 49, 63, 69, 71,

72, 82, 90, 95, 97, 101, 109, 122, 123

commands, 18, 19, 23, 32, 33, 35, 37, 38, 41, 42,

48, 56, 113, 117

Constraints file, 36

control unit, 55, 81

Cortex-M4, 2, 49, 71

D

data-path, 19, 81

deep learning, 1, 73, 98

denormalized, 75, 76, 80, 82

de-scaling operation, 55

design flow, 3, 5, 6, 8, 10, 11, 13, 14, 15, 21, 23,

27, 29, 31, 48, 97, 107

DSP, 1, 2, 4, 49, 59, 94, 120, 122, 123

dynamic range, 3, 74

E

Elaboration, 19, 39, 113

embedded applications, 2, 3, 74, 97

encoder, 55, 58, 60

Encounter Digital Implementation, 11, 13, 15,

42, 63, 110, 119, 120

error, 3, 51, 53, 54, 55, 58, 59, 67, 72, 79, 80,

83, 89, 90, 93, 99, 103

F

fabrication process, 27

feature size, 24, 69, 93

fixed-point, ix, 2, 49, 71, 74, 83, 86, 87, 95, 97,

107, 121, 123

floating-point arithmetic, 3, 73, 76, 98, 99, 120

floating-point multiplier, 81, 98, 108, 109

FPGA, ix, 3, 4, 63, 73, 74, 91, 94, 95, 123

frequency divider, 23, 33, 34, 39, 43, 44, 48

SUBJECT INDEX

 130

front-end, 3, 6, 13, 23, 48, 97

G

gate-level netlist, 8, 19, 20, 36, 39, 41, 42, 43, 48

global variables, 37

Gram-Schmidt, 2, 121, 123

H

half-precision floating-point, ix, 1, 3, 4, 73, 95,

96, 97, 98, 108, 109

HDL, xiv, 8, 17, 19, 32, 35, 39, 87, 95, 113

HF-2cRSR, vii, ix, xv, xvi, 3, 73, 74, 76, 79, 81,

82, 83, 84, 88, 91, 92, 93, 94, 95, 97, 98, 101,

102

histogram, 89

I

I/O delay, 30

IEEE 754-2008, ix, 3, 51, 73, 76, 83, 85, 90, 96,

97, 98, 101

implementation results, 3, 93, 95

incremental synthesis, 20, 44, 116

input range, 80, 82, 88

inputs, 17, 21, 23, 33, 34, 35, 40, 42, 43, 77, 86,

88, 114

integrated circuit, ix, xi, 3, 4, 5, 9, 11, 21, 23, 24,

27, 28, 30, 31, 33, 48, 68, 71, 97, 107, 119

Intel, ix, xi, 2, 3, 4, 73, 74, 91, 93, 94, 96, 98,

102

intellectual properties, ix, 1

intervals, 54, 58, 59, 80

IoT, vii, ix, 1, 103, 119

IP core, ix, 2, 3, 4, 74, 75, 91, 92, 94, 95, 98,

109

L

latency, ix, 2, 3, 40, 41, 49, 50, 51, 70, 71, 72,

74, 94, 96, 97, 98, 107, 108, 109, 119

Layout, 29, 120

LEF file, 29, 31, 38

LEF library, 112

Liberty format library, 35

logic synthesis, ix, 3, 4, 5, 6, 8, 17, 18, 21, 23,

28, 31, 32, 35, 36, 43, 44, 48, 69, 82, 90, 95,

97

LUTs, 50, 94

M

manufacture, 3, 5, 26, 97

matrix inversion, 2, 49, 123

maximum error, 90

measurement, 4, 66

microphotograph, 63

MOSIS, ix, 2, 4, 23, 24, 25, 26, 27, 28, 30, 48,

63, 107, 122

multiplexor, 19

multiplication, 70, 84, 85, 86, 89, 124

N

neural networks, 73

Newton-Raphson, ix, 2, 50, 53, 55, 71, 77, 78,

97, 98, 101, 102

normalized, 74, 75, 76, 79, 80, 82, 83, 85, 86

North Carolina, 23, 27

O

OFDM, 2, 120

optimization, 18, 19, 20, 32, 39, 41, 91, 98, 113,

116, 117, 123

output range, 82

Output Selector, 81

outputs, 33, 35, 36, 42, 43, 56, 60, 62, 63, 89,

112, 114

overflow, 33, 34, 55, 56, 58, 63, 86

P

PDK, 3, 4, 23, 24, 48

physical design, 4, 6, 13, 28, 63

physical synthesis, 63

piecewise approximation, 54

place-and-route, 28, 29, 31, 36, 42, 43, 48

polynomial approximation, ix, 2, 50, 51, 53, 54,

58, 59, 71, 76, 78, 97, 98

power consumption, ix, 1, 2, 29, 32, 35, 44, 48,

49, 50, 68, 69, 70, 71, 72, 73, 74, 82, 91, 95,

97, 98

process design kit, 3, 23, 27

Q

QR decompositions, 2

R

reciprocal of the square root, ix, 2, 97, 98

SUBJECT INDEX

 131

reduced range, 53, 54, 58, 71, 76, 82, 97, 98

reference designs, 71

relative error, 3, 89, 90, 92, 93

rendering, ix, 2, 49, 121

response, 66, 67

rounding mode, 82, 83

rounding operation, 55, 86

RTL Compiler, 4, 8, 11, 13, 15, 17, 18, 19, 20,

21, 23, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 48, 63, 90, 107, 112, 114, 117, 118,

119

RTL model, 3, 7, 8, 36, 63

S

scaling operation, 55, 58, 76, 80

schematic diagram, 43

search path, 37, 38

seed, ix, 2, 53, 54, 55, 59, 60, 71, 76, 78, 79, 98,

120

sequential digital circuit, 23, 32

simulation, 13, 15, 27, 28, 31, 34, 69, 72, 88, 89,

92

SOC, ix, 1, 11, 13, 30

specification, 3, 6, 82, 84, 85, 90, 98

square root, 50

standard-cell library, xi, 8, 17, 23, 24, 26, 27, 29,

30, 31, 32, 48, 63, 112

static timing analysis, 91

subintervals, 54, 58, 59, 60, 78

SVD, 2

Synthesis script, 35

T

TCL, 23, 32, 35, 37, 38, 39

test, 6, 17, 31, 32, 63, 66, 87, 88, 89, 92, 95

test bench, 63, 92

test environment, 87

throughput, ix, 2, 3, 69, 70, 71, 74, 94, 95, 120,

123

Timing abstract file, 29

timing diagram, 66

U

ulp, 3, 53, 66, 67, 72, 79, 80, 83, 89, 90, 93, 96

unit in the last place, 53, 79

V

verification, 3, 6, 9, 11, 13, 15, 17, 82, 87, 88,

95, 97, 116

Verilog, 3, 13, 17, 19, 27, 35, 36, 39, 43, 62, 79,

87, 88, 91, 117

Virginia Tech, xi, 4, 14, 23, 27, 30, 43, 48, 112

W

word size, 79, 82, 83, 98, 99

workflow, 3, 4, 17, 18, 21, 31, 33, 35, 36, 97, 99

working frequency, 3, 17, 68, 69

X

Xilinx, ix, 3, 4, 63, 74, 88, 91, 93, 94, 96, 98,

102, 124

