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Resumen 

En los últimos años se han desarrollado sensores de muchos tipos y para una gran variedad de usos 

o aplicaciones. En esta tesis, se presenta un enfoque basado en datos para optimizar el diseño de 

sensores altamente sensible al peróxido de hidrógeno (H2O2) basados en arreglos de nanoalambres 

auto soportados de níquel (Ni NW), utilizando la metodología de superficie de respuesta (RSM). 

Los nanoalambres (NW) fueron desarrollados por la técnica de síntesis electroquímica asistida por 

membranas nanoporosas que fungen como moldes, utilizando como metal los iones de níquel para 

el crecimiento de los nanoalambres. RSM es aplicada utilizando datos experimentales obtenidos 

por voltamperometría cíclica (CV) optimizando el diseño de estos sensores nanoestructurados para 

detectar H2O2. El objetivo es mejorar el rendimiento del sensor variando la longitud de Ni NW al 

modificar las condiciones de trabajo, incluyendo la concentración de H2O2 y el potencial de 

medición aplicado. Se empleó con éxito RSM logrando identificar las condiciones teóricas óptimas 

para el sensor: con una longitud de NW de 2.64 μm, una concentración de 3.25 mM H2O2 y un 

potencial de detección de 0.02 V. Se fabricó un sensor con la longitud óptima de los nanoalambres 

obtenida por el modelo y se validó su rendimiento, comparándolo con sensores de diferentes 

longitudes de nanoalambres: un sensor plano de Ni; y otro sensor nanoestructurado Ni NW. El 

sensor optimizado logra una reducción del 50 % en el límite de detección (LOD) al H2O2 y un 

aumento del 18 % en sensibilidad al H2O2, respecto al sensor nanoestructurado. El sensor 

optimizado es al menos 35 veces más sensible para detectar H2O2 que sensores con geometrías 

planas, de uso estándar en aplicaciones comerciales. Estos resultados resaltan el potencial de RSM 

como una poderosa y rentable herramienta estadística para optimizar sensores nanoestructurados 

y acelerar el ciclo de diseño-construcción-prueba. El sensor de H2O2 optimizado se puede aplicar 

en la industria alimentaria, diagnóstico médico y monitoreo ambiental. Este sensor puede mejorar 

significativamente la detección de glucosa en muestras no invasivas como lágrimas y saliva al 

combinarlo con enzimas de glucosa oxidasa inmovilizadas, crucial en el continuo monitoreo de 

glucosa en pacientes con diabetes mellitus. RSM permite futuras extensiones para investigar otras 

variables de diseño y materiales de detección, así como optimizar los sensores para detectar 

diferentes sustancias, fomentando los avances en las tecnologías de sensores. 
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Summary 

In recent years, numerous types of sensors have been developed for a wide variety of uses or 

applications. In this thesis, a data-driven approach is presented to optimize the design of highly 

sensitive hydrogen peroxide (H2O2) sensors based on self-supported nickel nanowire (Ni NW) 

arrays using response surface methodology (RSM). The nanowires (NW) were developed through 

the technique of electrochemical synthesis assisted with nanoporous membranes as templates, and 

nickel ions were used as metal for the growing of the nanowires. RSM is applied using 

experimental data obtained through cyclic voltammetry (CV) optimizing of the design of these 

nanostructured sensors to detect H2O2.  The goal is to enhance the performance of the sensor 

through customizing the Ni NW length while optimizing the working conditions, including the 

H2O2 concentration and applied potential. RSM was successfully employed to identify the 

theoretical optimal conditions for the sensor: with a NW length of 2.64 μm, a concentration of 3.25 

mM H2O2, and a detection potential of 0.02 V. A sensor with the optimal NW length was fabricated 

and validated its performance by comparison to sensors with different NW lengths, such as a planar 

Ni sensor, and against another nanostructured sensor Ni NW. The optimized sensor achieves a 

50% reduction in limit of detection (LOD) to H2O2 and an 18% increase in sensitivity to H2O2, 

compared to the Ni NW sensor. Moreover, the optimized sensor is at least 35 times more sensitive 

for H2O2 detection than sensors with planar geometries, which are standard in commercial 

applications. The results highlight the potential of RSM as a powerful, cost-effective, and 

statistical tool for optimizing nanostructured sensors and accelerating the design-build-test cycle. 

Accurate detection of H2O2 enables effective monitoring, control, and optimization, leading to 

improved safety, quality assurance, environmental protection, and overall efficiency in these 

sectors. The optimized H2O2 nanostructured sensor can be applied in various fields, including 

medical diagnostics and environmental monitoring. This sensor can significantly enhance glucose 

detection in non-invasive samples such as tears and saliva when combined with immobilized 

glucose oxidase enzymes, which is crucial for continuous glucose monitoring in diabetes mellitus 

patients. The methodology presented in this thesis allows further extensions to investigate other 

design variables and sensing materials, as well as to optimize sensors for detecting different 

substances, fostering advancements in sensor technologies. 
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1 

Introduction 

Nanostructured sensors have quickly become a cutting-edge and cost-effective technology 

for detecting low concentrations of substances in samples, particularly for clinical applications, 

industrial processes, and environmental monitoring   [López-Cárdenas-21b], [López-Cárdenas-

23b], [Wang-17], [Ghanei-Motlagh-19], and [Zhang-23].   

 Nanostructured sensors offer enhanced qualities of sensitivity, selectivity, and 

miniaturization, due to their unique properties and enhanced performance characteristics, making 

them excellent for detecting a wide variety of target substances with enormous precision. However, 

the design and optimization of nanostructured sensors involves significant challenges in exploring 

the parameter space and capturing complex parameter interactions. Several variables significantly 

affect the sensitivity of these sensors, which requires identification of the optimal combination of 

variables and their levels to improve sensitivity [Zhang-23], [Karimi-Maleh-23]. In this thesis, an 

approach based on response surface methodology (RSM) is proposed to aim these challenges and 

optimize the design of nanostructured sensors. RSM offers a statistical framework for efficient 

optimization of design parameters and allows consideration of multiple factors, complex 

interactions and maximizes sensor performance. 

The objective of this thesis was oriented to explore and develop a data-driven approach for 

the optimal design of nanostructured sensors of high-specificity self-supported nickel nanowire 

arrays to detect hydrogen peroxide through applying a systematic and statistical methodology for 

the optimization of parameters based on the response surface methodology (RSM), managing to 

improve the sensitivity, selectivity, and general performance of these sensors. Besides, using RSM, 

it is possible to efficiently optimize the design of nanostructured sensors, reducing the number of 

sensors used in the study, lowering costs, decreasing the development times of the entire design, 

optimization, synthesis, and validation process in contrast to the limitations of traditional trial and 

error methods, as well as complicated multi-physics simulations, with high cost and computational 

processing time. 

The existing problems in the development and optimization of nanostructured sensors 

imply challenges in the exploration of parameter space and the capture of complex parameter 

interactions. In contrast to simulations and traditional trial and error methods that are time 
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consuming and may not guarantee optimal results. Therefore, there is a need to develop a 

systematic approach based on experimental data to optimize the design of nanostructured sensors, 

considering multiple factors and their interactions. 

The motivation behind this thesis arises from the desire to advance in the field of 

nanostructured sensors and overcome the limitations of traditional processes and simulations. 

Traditional trial and error methods can consume a lot of time and resources, with no guarantee of 

robust or successful results, while simulations can miss critical parameter interactions, as well as 

yield results that are unfeasible for real synthesis of such sensors. When applying RSM the 

motivation lies in the feasibility to improve the performance of these nanostructured sensors, 

which leads to higher sensitivity, selectivity, and reliability. The proposed approach offers a 

promising path for the design and development of efficient and reliable nanostructured sensors 

with enhanced performance characteristics. 

The justification for this thesis lies in the need for a systematic and efficient approach to 

optimize the design of nanostructured sensors. Traditional methods, which involve changing one 

variable or factor at a time while holding all others constant to assess their impact on sensor 

response [Cheraghi-21], [Buledi-22], do not address potential interactions between variables that 

can affect sensor performance. Furthermore, this approach requires a lot of time and numerous 

experiments to identify the critical factors and their optimal levels [Montgomery-17]. 

Consequently, an alternative method is required that can simultaneously explain the interactions 

between multiple factors and optimize the sensor response. Multiphysics and multiscale 

simulations are other approaches to optimize sensor performance. These techniques describe 

coupled physical processes using partial differential equations (PDE) that interact simultaneously 

across several domains to produce the studied phenomena [Musa-12], such as the electrochemical 

theory of Dickinson et al. [Dickinson-14]. Finite element methods are typically used to generate 

numerical solutions for static geometries stable because closed-form solutions for these PDEs are 

generally not available [Musa-12], [Dickinson-14]. However, the computational complexity of this 

approach increases as the number of interactions increases, and the analysis becomes more 

detailed, making it computationally unfeasible and requiring substantial computational resources 

[Musa-12]. Moreover, the application of this approach to optimize the behavior of nanostructured 

sensors may be limited by the availability of efficient computational resources and the ability of 

software to generate high-precision solutions [Myers-16]. Therefore, exploring alternative 
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methods to improve the performance of nanostructured sensors is of paramount importance. 

Response Surface Methodology (RSM) has gained significant recognition in industry and 

academia for its effectiveness in identifying the optimal combination of variable levels while 

accounting for potential interactions between factors [Chan-19], [Box-87], [Box-92], [Viveros-

Wacher-16]. RSM provides a statistical methodology that allows exploration of the parameter 

space, identification of influencing factors, and optimization of sensor design. 

This thesis presents an application of RSM to design nanostructured sensors using an 

approach based on experimental data of self-supporting nanowire (Ni NW) arrays. Hydrogen 

peroxide (H2O2) was selected as the target molecule due to its wide applications in the clinical, 

pharmaceutical, and food industries [López-Cárdenas-21d], [Chen-12], [Cui-08], [Zong-17], 

[Satish-14], [Olarte-13]. In the clinical context, H2O2 is particularly vital as a surrogate molecule 

for sensing glucose levels, as it is a by-product of glucose catalysis by the enzyme glucose oxidase 

[Zong-17]. 

For the comprehension of linear models, the statistics p or p-value and r square (R2) are 

defined as: the statistical values of p or p-value and r squared, which are used for the interpretation 

of linear models. The statistic p or p-value is the probability of obtaining a similar value by random. 

If p < 0.05 only means that, by convention, the null hypothesis (H0) is unlikely to be true, so we 

reject it, although always with a small probability of being wrong. On the other hand, if p > 0.05 

it is not guaranteed that H0 is true since there may be a real effect and the study does not have 

enough power to detect it. 

R square (R2) indicates the variation in the data explained by the relationship between an 

independent variable and a dependent variable. The R2 value varies from 0 to 1 and is expressed 

as a percentage. 

Initially, a linear model fitted to the Ni growth data relating the length of the NW array to 

the electrodeposition time was established. An electrochemical growth rate was achieved like 0.97 

μm/min (p < 0.01, 95% confidence interval (CI) [0.89, 1.06]) with an R2 of 0.99, indicating a 

robust linear correlation between the two variables [López-Cardenas-22a], [López-Cardenas-23b]. 

This linear model served as a crucial foundation for understanding the influence of the 

electrodeposition time on NW growth, which was indispensable for optimizing the response of 

nanostructured sensors. Moreover, thorough statistical analyses were carried out to confirm the 

accuracy and validity of these findings for ensuring the reproducibility of the results. The high R2 
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value obtained in this thesis demonstrated strong correlation between the electrodeposition time 

and NW length, which was critical for the accurate modeling and optimization of nanostructured 

sensors. 

Subsequently, the general RSM problem is formulated and applied to optimize the response 

of a self-supported Ni NW matrix sensor based on a design variable and two variable levels as test 

condition. This approach was adopted because the response of the sensor is based on the design 

variable and the levels of the variables on which the measurements are made; therefore, both must 

vary simultaneously during the optimization process [Montgomery-17]. 

  The length of the nanowires (Ni NW) was selected as the design variable, while the H2O2 

concentration and the applied potential were treated as measurement variables, whose values were 

varied. Cyclic voltammetry (CV) was used for the characterization of the sensors [López-

Cárdenas-21b]. A sensor that meets the theoretical requirements of optimal RSM design was also 

fabricated, and its response was compared with planar Ni and non-optimal nanostructured sensors. 

From the model, the optimal response region was experimentally identified: an optimal H2O2 

concentration of 3.25 mM with a range of [0.34, 4.74] mM, an optimal length of 2.64 μm with a 

range of [0.68, 3.62] μm, and an optimal potential of 0.02 V with a range of [-0.0867, 0.0867] V. 

Finally, the optimal Ni NW sensor made with a length of 2.62 μm with a 95% CI of [2.48, 2.76] 

μm and showed a sensitivity to H2O2 of 3.55 mA/ (mM cm2) with a limit of detection (LOD) of 

0.78 mM H2O2 and a limit of quantification (LOQ) of 2.6 mM H2O2. These values indicated a 

significant improvement compared to a planar sensor (planar Ni with a length of 0 μm) with a 

sensitivity of 0.1 mA/(mM cm2), a LOD of 0.95 mM H2O2, and a LOQ of 3.17 mM H2O2, as well 

as a non-optimal Ni NW sensor (with a length of 0.68 μm) with an H2O2 sensitivity of 1.55 

mA/(mM cm2), a LOD of 0.81 mM H2O2, and a LOQ of 2.71 mM H2O2. [López-Cárdenas-23b]. 

Through implementing RSM in the design of a Ni NW sensor for H2O2 detection, our goal 

is to highlight the advantages of employing data-driven strategies to optimize sensor performance, 

thus providing a valuable contribution to the field of nanostructured sensor design and enabling its 

practical use in a wide range of applications, benefiting the society. 

Furthermore, this thesis describes in different chapters the application of a methodology 

for designing and developing low-cost, high-sensitivity nanostructured sensors to detect hydrogen 

peroxide H2O2 at different concentrations using well-known statistical tools. 

 A Brief Primer on Sensors  Chapter 1, talks about sensors and some types of sensors, such 
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as electrochemical sensors, and biosensors, mentions some varieties of nanostructures, alludes to 

the development of nanowires by electrochemical synthesis, talks about nickel and some of its 

properties, finally, briefly mentions some of the statistical techniques and methodologies used for 

data analysis and optimization.  

In Chapter 2, the methodology is presented subdivided into two areas, but in three 

subsections: statistical methodologies and electrochemical methodologies, subdivided into 

electrochemical synthesis and electrochemical characterization. The first subsection describes the 

formal statistical methodologies for the design and optimization of sensors. The second subsection 

describes the methodology of the electrochemical synthesis of nanostructures, and in the third 

subsection, the electrochemical characterization using cyclic voltammetry is described. During the 

development of research and experimentation of this thesis, some methodologies were 

implemented simultaneously, mixing the experimental part with the statistical analysis. In 

Methodology section too, the fabrication of nanostructured sensors by the process of nano 

structuration with nanowires by electrodeposition of nickel ions on membranes is described. Three 

variables as proof of concept were focused: nanowires length, measuring potential, and hydrogen 

peroxide concentration. Likewise, how the measurements were carried out with some 

nanostructured sensor prototypes using cyclic voltammetry (CV) is specified. The set of statistical 

tools of the DoE is explained, where systematically search in the experimental space combining 

the values of the design variables. Furthermore, the general RSM process that leads to the optimal 

combination of design variables is detailed.  

In Data Analysis section, the data processing and statistical analyzes performed are 

described.  

Moreover, in Results and Discussion section, the main outcomes obtained from the analysis 

of the design of experiments, as well as from the optimization using RSM are described, and in 

the Discussion, the scope of this study is delimited, indicating future directions. 

Likely, in General Conclusions, the results are interpreted and compared with the results 

of the literature.  

By combining in this thesis, the principles of nanostructured sensors, electrochemical 

synthesis, electrochemical characterization, statistical modeling, and data analysis, it was possible 

to optimize the sensitivity to hydrogen peroxide of nickel nanowire sensors. The outcomes will 

contribute to advancing sensor technologies, enabling improved detection capabilities, and 
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potentially impacting fields requiring accurate hydrogen peroxide measurements. In the same way, 

in the medical-clinical area, the detection and monitoring of glucose are due to the significant 

interrelationship of these two molecules, glucose and hydrogen peroxide. 
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1. A Brief Primer on Sensors 

A sensor is a device or component that detects and responds to a stimulus or change in its 

physical environment. Its main function is to convert the physical or chemical magnitude it is 

designed to measure into some suitable physical response (mechanical, electrical, etc.), that can be 

processed and used by other systems. 

Sensors are used in a wide variety of applications across different industries, ranging from 

automotive and aerospace to medicine, robotics, security, and many other fields. Some common 

examples of sensors include temperature sensors, pressure sensors, light sensors, motion sensors, 

proximity sensors, humidity sensors, and electrochemical sensors. 

In general, sensors consist of a sensitive element that interacts with the stimulus being 

measured, and a circuit or processing system that converts the signal generated by the sensitive 

element into a usable output. This output can be an analog or digital signal, depending on the type 

of sensor and the specific application. 

1.1 Electrochemical Sensors 

Electrochemical sensors are a specific type of sensor that utilize electrochemical principles 

to detect and measure the concentration of certain chemical compounds or gases. They are 

commonly used in applications such as environmental monitoring, industrial processes, healthcare, 

and gas detection. 

Electrochemical sensors typically consist of four main components: a sensing electrode 

(working electrode (WE)), a reference electrode (RE), a counter electrode (CE) and an electrolyte. 

The sensing electrode is specifically designed to interact with the target analyte (Ni self -supported 

nanowires array sensor), while the reference electrode provides a stable reference potential, a 

counter electrode. The electrolyte serves as a medium for ion transport between the electrodes. 

And Target analyte or substance for sensing like hydrogen peroxide (H2O2), was used. Because 

H2O2 is a byproduct of several biochemical processes, like glucose catalysis by glucose oxidase, 
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it has been widely used as a target molecule to develop new monitoring methods. 

The operation of an electrochemical sensor involves the chemical reaction between the 

target analyte and the sensing electrode, resulting in a measurable electrical signal. This signal can 

be either a current or a potential, which is proportional to the concentration of the analyte. 

There are different types of electrochemical sensors, including: 

1. Amperometric Sensors: Measure the current generated by an electrochemical 

reaction between the target analyte and the sensing electrode. 

2. Potentiometric Sensors: Measure the potential difference between the sensing 

electrode and the reference electrode, which is related to the concentration of the analyte. 

3. Conductometric Sensors: Measure the change in electrical conductivity of the 

electrolyte due to the presence of the analyte. 

Electrochemical sensors offer several advantages, such as high sensitivity, selectivity, and 

low power consumption. They can be highly specific to a particular analyte and exhibit excellent 

long-term stability. Additionally, they can be miniaturized and integrated into portable devices for 

on-site or point-of-care applications. 

1.2 Nanostructured Sensors 

Sensors with planar geometry can be improved by studying the effects of varying their 

geometry and measurement conditions. The presence of nanostructures increased sensor 

sensitivity. Some examples of nanostructures are nano walls, nanotubes, nanowires, nanoclusters, 

nanorods, and nanoparticles [Jia-09], [Cai-18], [Zong-17], [Chen-13], [Araujo-15], [Grupta-17]. 

These are just a few examples, and there are many other types of sensors available for different 

applications. 

The development of nanowires by the electrochemical synthesis method was chosen since 

the conditions for the growing of the nanowires are relatively simpler and more easily controllable. 

Self-supported nanowire arrays were fabricated using nano porous constraining membranes to 

assist the growth of nanowires by electrodeposition. Using the characteristics of commercial nano 

porous membranes with a known density and pore diameter allows it to have better control in the 

development of these nanostructures, since these membranes function as a template for growth. 

Another advantage when using these nano porous membranes can cover one side of them with a 
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metal, which will allow them to fix the nanowires and obtain a self-supporting nanowires array 

and the manufacture of nanostructured sensors. 

Nickel was chosen for the development of the nanowires, as it has a wide variety of 

electrochemical properties. Nickel is relatively easy to electrodeposit, even in complex geometries 

or nanostructured forms. Its electrodeposition process can be carried out using simple electrolytes 

and deposition setups. This ease of electrodeposition facilitates the fabrication of nanostructured 

nickel materials with controlled morphology, size, and composition. There advantages make of 

nickel a favorable choice for electrochemical synthesis, enabling the production of nanostructured 

materials, electrodes, and coatings for various applications, including electrocatalysis, energy 

storage, sensors, and electronic devices. These advantages of using nickel in electrochemical 

synthesis for numerous applications, including the following: high electrical conductivity, wide 

potential window, corrosion resistance, availability, and cost-effectiveness, versatility in nano 

structuring, and compatibility with other materials.  

Nickel possesses excellent electrical conductivity, making it an ideal material for 

electrochemical processes. Its high conductivity enables efficient electron transfer during 

electrodeposition, leading to improved electrochemical performance and enhanced efficiency in 

electrochemical synthesis.  Moreover, nickel exhibits a wide potential window, meaning it can 

operate over a broad range of potentials without undergoing significant electrode reactions. This 

property allows for versatile electrochemical processes, including electrodeposition, 

electroplating, and electrocatalysis, making nickel suitable for various applications. Furthermore, 

nickel demonstrates good corrosion resistance, particularly in aqueous environments. This 

resistance to corrosion helps ensure the stability and longevity of electrochemically synthesized 

nickel-based structures, making them suitable for long-term use in different conditions. In addition, 

nickel is widely available and relatively cost-effective compared to other metals. Its abundance in 

the crust of the Earth and its widespread industrial use contribute to its accessibility and 

affordability. This availability makes nickel a practical choice for large-scale electrochemical 

synthesis applications. 

Other characteristics of nickel, include its versatility to be processed into various 

nanostructured forms, including nanowires, nanoparticles, and thin films. This versatility in nano 

structuring allows for the fabrication of tailored nanostructured materials with specific properties 

and applications. Nanostructured nickel can exhibit enhanced surface area, improved catalytic 
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activity, and unique physical and chemical properties beneficial for electrochemical synthesis. 

Besides, nickel demonstrates compatibility with a wide range of materials, making it suitable for 

integration and hybridization with other elements or compounds. This compatibility allows for the 

development of composite or hybrid materials with enhanced functionalities, such as improved 

conductivity, catalytic activity, or stability. 

1.3 Biosensors 

A biosensor is a device that combines a biological recognition element (such as enzymes, 

antibodies, or DNA) with a physicochemical transducer to convert a natural response into a 

measurable signal. Biosensors are designed to detect and quantify specific target analytes, such as 

biomolecules, chemicals, or pathogens, by exploiting the highly selective interactions between the 

biological recognition element and the target analyte [Rahman-19], [Cheraghi-21], [Bauer-22]. 

The critical components of a biosensor include are the biological recognition element, the 

transducer, the signal amplification and processing, and the output and display. 

The biological recognition element of a biosensor can be classified into two main classes: 

biocatalysts (enzymes, tissues, etc.) and bioligands (antibodies, nucleic acids, lectins, etc.). The 

function of this biological recognition element is to bind to the target analyte of interest selectively. 

It can be a biological molecule, such as an enzyme, antibody, nucleic acid, or a whole cell, that 

exhibits specific binding affinity or catalytic activity towards the target analyte. The transducer 

converts the biological response or interaction between the recognition element and the analyte 

into a measurable signal. Depending on the specific detection principle employed, this can be an 

electrochemical, optical, piezoelectric, or thermal transducer. The biosensor may incorporate 

mechanisms for signal amplification or signal processing to enhance the sensitivity and accuracy 

of the detected signal. This can involve signal amplification through enzymatic reactions, 

nanomaterials, or signal enhancement techniques. Besides, the biosensor provides an output signal 

corresponding to the target concentration substance or presence. This output can be displayed or 

recorded for further analysis or interpretation. 

Biosensors find applications in various fields, including medical diagnostics, 

environmental monitoring, food safety, agriculture, and industrial process control. They offer 

several advantages, such as high specificity, sensitivity, rapid response, portability, and real-time 
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monitoring capabilities. Biosensors enable on-site, point-of-care testing, improving disease 

diagnosis, enhancing food quality control, and facilitating environmental monitoring and safety 

assessments. 

Overall, biosensors provide a powerful tool for sensitive and selective detection of target 

analytes, enabling various applications in different industries and sectors. 

To turn a nanostructured sensor into a biosensor by relating the target molecules hydrogen 

peroxide and glucose, an enzyme called glucose oxidase (GOx) would have to be attached to the 

nanowires. 

Glucose oxidase (GOx) catalyzes the oxidation of glucose, resulting in the production of 

gluconic acid and hydrogen peroxide. The hydrogen peroxide generated acts as a mediator, and its 

electrochemical detection in glucose biosensors provides a measurable signal that can correlate 

with the glucose concentration in the sample. This relationship forms the basis for the ability of 

the biosensor to detect glucose and quantify glucose levels in various applications, such as medical 

diagnostics and glucose monitoring in diabetes management [Liu-15], [Oliver-09]. 

Hydrogen peroxide (H2O2), glucose, and glucose oxidase (GOx) are interconnected in a 

biochemical pathway fundamental to the operation of glucose biosensors. Here is a schematic 

representation of their relationship: 

Glucose Oxidation by Glucose Oxidase (GOx): 

Glucose + O2 → Gluconic Acid + H2O2 

In this reaction, glucose oxidase (GOx) catalyzes glucose oxidation using molecular 

oxygen (O2) as a co-substrate. As a result, gluconic acid is produced along with hydrogen peroxide 

(H2O2) as a byproduct. 

 

H2O2 Detection in Glucose Biosensors: 

H2O2 + Electrode → Electrochemical Signal 

In glucose biosensors, the generated hydrogen peroxide acts as a redox mediator. It diffuses 

to the electrode surface, where it undergoes an electrochemical reaction. This reaction generates 

an electrochemical signal that can be measured and correlated with the glucose concentration in 

the sample. 

 

Glucose Detection in Glucose Biosensors: 
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Electrochemical Signal → Glucose Concentration 

The electrochemical signal obtained from the hydrogen peroxide detection is then 

converted into a quantifiable value, typically through calibration using known glucose 

concentrations. This calibration curve establishes the relationship between the detected signal and 

glucose concentration in the sample. 

1.4 Optimizing Sensors by Numerical Techniques 

Nanotechnology is a new and emerging science for developing nanostructured sensors. 

Methodologies such DoE and RSM, have not yet had a significant application impact in these 

areas. 

There are some common statistical methodologies that researchers may employ to optimize 

the sensitivity of electrochemical sensors: design of experiments (DoE), regression analysis, 

analysis of variance (ANOVA), principal component analysis (PCA), sensitivity analysis, and 

optimization algorithms. These are just a few examples of statistical methodologies that 

researchers may employ to optimize. In this thesis the following statistical methodologies to 

enhance the performance of the sensor were used: design of experiments, response surface 

methodology, and in data analysis techniques were applied: linear modeling and bootstrapping. 

The bootstrap is a statistical resampling technique used for the interval estimation of point 

estimates. 

DoE [Montgomery-17] and RSM methodologies provide an alternative to systematically 

exploring the space of variables with minimal experiments and at a low cost. 

Most studies with the same objective are based on two main approaches, as briefly 

described below.  

One of these strategies frequently explores the experimental space in a non-optimal way, 

one design variable at a time, which consumes time and money. Based on Multiphysics 

simulations, the other strategy is mathematically complex and computationally intractable [Goyal-

20], [Qiao-12], [Musa-12], [Dickinson-14]. 
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2. Methodology 

This chapter describes the standardization of Ni growth by electrodeposition with linear 

model and bootstrapping, the experimental design used according to the statistical tools of design 

of experiments (DoE), using a 2𝑘 factorial design, central composite circumscribed design and 

response surface methodology (RSM) and its principles, and the cyclic voltammetry (CV) 

characterization for data collection. 

2.1 Statistical Methodologies: Design of Experiments, 𝟐𝒌 

Design, Circumscribed Central Composite Design, and 

Response Surface Methodology 

In this subsection, the methodologies applied as statistical methods are described to define 

a design of experiments (DoE) working with one design variable and two variables as the testing 

conditions to identify the experimental workspace from actual experimental data. In addition, 

starting with a simple design such as the 2𝑘 design, in this case, 23 design, and adding four central 

points, one for each variable, and another one for the initially generated space, identifying the 

existence firstly of a linear behavior, getting a first-order model, after taking the slope steepest 

ascent. After several repetitions of those experiments, when observing a non-linear behavior due 

to the curvature found, a CCC design is applied to find the response surface identifying a 

theoretical maximum response point for those conditions (the optimal conditions). All these 

statistical methodologies will be described in the next subsections. 

 

2.1.1 Design of Experiments (DoE) 

The design of experiments is a powerful tool frequently used to research, design, develop, 

improve, and verify different processes, products, or devices in research and at an industrial level. 

DoE was used in this thesis because it allows knowing how many sensors are required and what 
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features must be evaluated and modified to evaluate them. The response variable was defined as 

the sensitivity response of the sensors in the presence of 𝐻2𝑂2. Considering the high costs of 

experimentation, the need to work with real devices and in a limited study or research time. In this 

thesis, the design of experiments (DoE) and RSM methodology were used. DoE defined how many 

sensors and what dimensions these nanostructured sensors should have to achieve a response 

surface (RSM) that allowed knowing the optimal theoretical conditions with the smallest number 

of sensors [López-Cárdenas-22c]. 

Accurate designs require knowledge of sensor behavior in such electrochemical processes, 

leading to complex and complicated models. Managing these components frequently generates 

complex mathematical representations that are inconvenient for the calculation and the need for 

model validation. Hence, it is opportune to consider other approaches based directly on the 

experimental data, representing inputs and outputs of the system and adjustable design variables. 

Therefore, sensor performance is often summed up in several statistics in the empirical literature. 

Data obtained by CV was employed [López-Cárdenas-22b]. The DoE design was developed to 

evaluate the hydrogen peroxide sensitivity response of the sensor considering different 

concentrations in mM 𝐻2𝑂2, the length of the nanowire sensors in micrometers (μm), and the 

potential in volts (V) [López-Cárdenas-22c], [López-Cárdenas-21e]. 

Whenever some process variables are intentionally modified in a DoE, it is possible to 

observe specific changes in one or more response variables of interest to study. These changes are 

convenient to make to evaluate all possible effects between the variables and their interactions. 

Statistically, DoE is an excellent method that allows experiments to be planned so that the data 

generated can be analyzed and objective conclusions can be obtained [Croarkin-12], [Lawson-14], 

[Gutierrez-Pulido-12], [Kyprioti-20].  

On the other hand, the DoE is a viable methodology, to generate knowledge of the process 

or the system through careful planning of tests. DoE offers several statistical and engineering 

techniques for the adequate understanding of cause-effect situations [López-Cárdenas-23a].  

A DoE begins by defining the objectives of an experiment and selecting the process factors 

to study. Adequate planning of concrete experimental works is required. If it is set a good design 

of experiments, this allows for obtaining relevant information with a particular punctual and 

specific work without being too extensive.  

An appropriate planning process of the experiment based on a statistical design of 
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experiments is of the utmost importance so that adequate data is collected and analyzed by 

statistical techniques, obtaining valid and objective conclusions. There are two aspects to 

experimental problems: the design of the experiment and the statistical analysis of the data. Both 

points are interrelated because the analysis method depends directly on the procedure [Croarkin-

12], [Montgomery-17], [Lawson-14].    

 

2.1.1.1 Identifying and Selecting the Study Variables 

Different characteristics or design variables were evaluated variables related to the system 

and the variables of electrochemical methods for synthesis and characterization. Firstly, the nickel 

ions metal was selected for developing the nanostructured sensors by electrochemical synthesis, 

as previous studies developed in the laboratory [López-Cárdenas-21a], [Alcalá-21], [Wasserman-

04]. Second, the geometry of the nanostructures chosen by the self-support nanowires array sensors 

or thin films (planar sensors) was a significant variable, and they were obtained by 

electrodeposition [López-Cárdenas-21d], [López-Cárdenas-21c]. The thirst variable analyzed was 

the length of nanowires (NW).  

Why is it so important to know the growth rate of nanowires? 

Knowing the growth rate of nanostructures, including nanowires, is essential for 

controlling their dimensions, optimizing growth conditions, ensuring predictability and 

reproducibility, designing functional devices, and advancing fundamental understanding. It allows 

researchers to tailor the synthesis process to achieve desired properties and characteristics, 

facilitating the development of efficient and reliable nanostructured materials and devices for a 

wide range of applications. 

The specific method chosen to determine the growth rate of nanowires depends on factors 

such as the growth technique, the properties of the nanowires, and the available characterization 

tools. The combination of different techniques and methods provides a more comprehensive 

understanding of the growth kinetics and allows for accurate determination of the growth rate. 

Overall, by employing experimental techniques, real-time monitoring, and growth rate 

modeling, knowledge of these elements facilitates investigating and measuring the growth rate of 

nanowires, enabling precise control and optimization of their synthesis for various applications. 
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2.1.1.2  Preliminaries: Bootstrap a Resampling Method Characteristics 

The bootstrap belongs to a class of statistical tools called resampling methods. These 

methods share three basic steps [Good-13], [Chihara-18], [Efron-86], [López-Cárdenas-21f]:  

1) Repeatedly (re)sampling (with or without replacement) from a dataset.  

2) Computing a statistic from the new sample (a subset of the original).  

3) Compute the summary statistics (for example, measures of variation).  

 The resampling methods are often conceptually more straightforward and accurate than 

the asymptotic approximation methods and require fewer assumptions [Good-13]. Other 

resampling methods include permutation tests for hypothesis testing, cross-validation for model 

assessment, and model selection based on the model performance [James-13]. This thesis used the 

bootstrap to obtain measures of accuracy of estimates, i.e., interval estimation [Calin-Jageman-

19], [Geng-13], [López-Cárdenas-21a], [Van-Beers-08], with linear regression, for the following 

purposes:  

a) Calculate the average length of the nanowires of the sensors using ImageJ [López-

Cárdenas-23b], [Abràmoff-04]. In Subsubsection 2.1.1.2.                                             

b) Determine the confidence intervals for the Limit of Determination (LOD) and the Limit 

of Quantification (LOQ) [López-Cárdenas-21a], [López-Cardens-21f], this explanation will be 

described in Subsection 2.3.5. 

c) Define the optimal measurement potential with a confidence margin of the CVs in the 

cyclic voltammograms [López-Cárdenas-21a], [López-Cárdenas-21d], this explanation can be 

seen in the Subsection 2.3.4. 

d) Determine the sensitivity to hydrogen peroxide of the sensors with their confidence 

intervals. [López-Cárdenas-21a]. See Subsection 2.3.4. 

   

In this thesis, interval estimates were considered 95% confidence intervals (CI) of the 

bootstrap percentile for point estimates and hypothesis testing. The p-values with a significance 

level α= 0.05 was used.  

The significance level (α) was considered like the probability of rejecting the null 

hypothesis when it is true. For example, a significance level of 0.05 indicates a 5% risk of 

concluding that there is a difference when there is no difference. 

The statistic p or p-value is the probability of obtaining a similar value by random. If p < 
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0.05 only means that, by convention, the null hypothesis (H0) is unlikely to be true, so we reject it, 

although always with a small probability of being wrong. On the other hand, if p > 0.05 it is not 

guaranteed that H0 is true since there may be a real effect and the study does not have enough 

power to detect it. The significance level, also denoted as alpha or α, is the probability of rejecting 

the null hypothesis when it is true. For example, a significance level of 0.05 indicates a 5% risk of 

concluding that there is a difference when, in fact, there is no difference. 

Here bootstrapping is used to obtain the length of the nanowires of the sensors. Those 

lengths were acquired from the scanning electron microscope (SEM) micrographs, shown in  Fig. 

2.1. ImageJ program was employed as a measurement tool in Fig. 2.1. 
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ImageJ was used to take about ten or more measurements of NWs lengths and computed 

the average length to make a scatter plot of the data [Armbruster-08], shown in Table 2.1.  

Bootstrapping was employed as described to calculate confidence intervals to have better 

approximate the NW lengths at 95 % CI of the desired length.  

 

 

  

 

TABLE 2.1. ELECTRODEPOSITION TIME AND LENGTHS 

Electrodeposition 

time (min) 

Average 

Length (µm) 

0.5 0.67 

0.6 0.472 

1.0 1.04 

1.3 1.11 

2.14 2.16 

2.23 1.932 

2.23 2.048 

3.0 2.92 

3.5 3.446 

4.0 3.94 

 

 

 

 

 

 

Fig. 2.1. Measurement of nanowire lengths using SEM pictures with ImageJ. 
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The relationship between the nanowires electrodeposition time and the resultant nanowires 

length experimentally obtained is shown in Table 2.1. 

 

2.1.1.3 The Linear Model and the Rate Growing of the Nickel Nanowires 

To obtain a growth curve of nanowires and determine the growth rate, data is typically 

collected through experimental measurements at different time intervals during the nanowire 

growth process. The data collection process requires the following steps: experimental setup, 

sample collection, characterization techniques, data analysis, and growth rate calculations. 

An additional point of interest in this thesis was obtaining a curve of the growth length of 

nickel nanowires concerning electrodeposition time. Its calibration is important in the 

electrochemical synthesis of nanostructured sensors with nickel nanowires for several reasons: 

understanding growth kinetics, optimizing the fabrication process, calibrating growth parameters, 

enhancing sensor performance and sensitivity, and ensuring reliability and reproducibility [López-

Cárdenas-21f], [Hocking-03a]. 

The growth length of nanowires, particularly nickel nanowires, is influenced by 

electrodeposition time, applied potential, electrolyte composition, and temperature. Understanding 

the growth kinetics of these nanowires is vital for sensor fabrication. By analyzing the relationship 

between electrodeposition time and nanowire length, it's possible to determine the optimal 

deposition time, ensuring consistent and reproducible fabrication. This calibration reference also 

helps standardize the fabrication process and enhances sensor performance, sensitivity, and 

response characteristics. Controlling nanowire length improves reliability and reproducibility, 

essential for implementing and commercializing nanostructured sensors. 

The experimental setup involves the electrochemical synthesis of nanowires by 

electrodeposition. The growth parameters, and reaction time, are controlled and adjusted according 

to the desired growth conditions. These samples can be obtained by interrupting the growth process 

at specific time points. The collected samples are then characterized using appropriate techniques 

to determine the length or dimensions of the nanowires [Abràmoff-04]. Characterization 

techniques include scanning electron microscopy (SEM). The measured length or dimensions of 

the nanowires from each sample are recorded. The data is then plotted as a function of growth time 
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or duration, creating a growth curve. The growth curve represents the change in nanowire length 

or dimensions over time and provides insights into the growth kinetics. The growth rate can be 

determined from the growth curve by analyzing the slope of the curve at different time points. The 

growth rate represents the rate at which the nanowires increase in length or dimensions per unit 

time. It is typically expressed in terms of nanometers per minute. Statistical analysis can be applied 

to the collected data to assess the reliability and significance of the growth rate determination using 

a bootstrapping. After collecting data on the growth of the nanowires, a growth curve was 

constructed, and the growth rate was calculated. The growth curve and growth rate information 

are valuable for understanding the growth kinetics, optimizing growth conditions, and designing 

nanowires with desired dimensions for specific applications. 

A linear model fitted to the Ni growth data relating the length of the NW arrays to the 

electrodeposition time was established. An electrochemical growth rate of 0.97 µm/min (p < 0.01, 

95% confidence interval (CI) [0.89, 1.06]) was achieved, with an 𝑅2 of 0.99, indicating a robust 

linear correlation between the two variables [López-Cárdenas-21f]. This linear model served as a 

crucial foundation for understanding the influence of the electrodeposition time on NW growth, 

which was indispensable for optimizing the response of nanostructured sensors [López-Cárdenas-

21a]. Moreover, thorough statistical analyses were conducted to confirm the accuracy and validity 

of the findings and to ensure the reproducibility of the results. The high 𝑅2 value obtained in this 

study demonstrated a strong correlation between the electrodeposition time and NW length, which 

was critical for the accurate modeling and optimization of nanostructured sensors [López-

Cárdenas-21f]]. 

 

Likewise, the calibration curve of the growth rate of the Ni NW was obtained in a 

standardized way, shown in Fig. 2.2.                             
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2.1.1.4 Polycarbonate Nanopores Membranes as Restrictive 

Template 

The type of membrane material was used as a restrictive template with polycarbonate 

(PCTE), whose pore density is 4x108, and the pore diameter size is Ø 100 nm. The thickness of 

such membranes is 6 µm [López-Cárdenas-21b], [López-Cárdenas-23b]. Fig. 2.3  shows a photo 

of PCTE nanopores membrane, before metallization.   

 

 

 

Fig. 2.2. Ni nanowires growth as a function of the electrodeposition time in PCTE 

membranes. 
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2.1.2 𝟐𝒌 Design 

A 2𝑘  design is a systematic and efficient approach to study the effects of multiple factors 

and their interactions. It allows to explore the factor space comprehensively and provides valuable 

insights into the factors influencing the response variable. The design is widely used in 

experimental research and statistical analysis to optimize processes, improve product quality, and 

make informed decisions based on the study of factor effects. The notation 2𝑘  specifies that there 

are two levels (typically high and low) for each of the k factors being studied. 

The design gets its name from the fact that it systematically explores all possible 

combinations of the factor levels.     

The first step in this process is to start with an uncomplicated design to fit a first-order 

model of the form: 

    y = x β + ε (2-1) 

 

 

Fig. 2.3. Photo of nanopores polycarbonate (PCTE) membranes before 

metallization. 
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where y is the response matrix, x is the k × 2 design matrix of coded variables with k rows from     

i = 1 to k factors, with the first column of 1 and the second column of factors.  𝜷 = (𝛽1, … , 𝛽𝑘) is 

the vector the coefficients of the model, for which we test the null hypothesis 𝐻0:  𝜷 =  𝟎, and ε is 

the source of irreducible variability, like measurement error.  

 

For which the null hypothesis 𝐻0: 𝛽 = 0 was evaluated. For efficiency, beginning with a 

simple 2𝑘 design is the usual, with two levels for each 1,2, …, 𝑘 factors. If we obtain results suggest 

a linear response, we move towards the direction of the 𝛽 coefficients of the first order model, that 

is, the direction of the steepest ascent. For regression analysis, and to evaluate the adequacy of the 

first order model, it is recommended to add 𝑛𝑐 center points on which the treatments are 𝑥𝑘 = 0, an 

addition that allows computing the experimental error [Myers-16], [López-Cárdenas-22c]. 

For illustration, without loss of generality, suppose we have an experiment with only two 

factors, 𝑥1, and 𝑥2, in coded variables. Next, it proceeds to choose sensible values of the natural 

variables and then augment the design with four center points. (nc = 4). 

Subsequently, the hypothesis that β = 0 is evaluated, and the lack-of-fit of the first order 

model. Suppose the lack-of-fit is verified. If the lack-of-fit is non-significant, and if the results 

suggest that the first order model is a good approximation (for example, plotting the response 

variable as a function of each natural variable and obtaining an almost linear response). When the 

linear behavior is not observed, another experiment is designed with new values of variables in the 

direction of improvement, that is, in the direction of the steepest ascent [López-Cárdenas-23b]. 

The equation (2-1) will be continuous using in the following sections 2.1.3.4  

 

2.1.2.1 Describing and Developing Design of Experiments by 𝟐𝒌 Design 

Before RSM, it is essential to find the region where the response was optimal with only the 

essential factors. Screening experiments are best suited for this exploration phase. Screening 

experiments make it possible to approach the region of optimality (the curvature) without using 

more levels than necessary. 

The experiment started at 2𝑘 design to keep the number of levels minimum. The number 

of levels is 2 and the number factors is k = 3 The selected factors are length of nanowires (factor 



2. METHODOLOGY 

 24 

A), hydrogen peroxide (𝐻2𝑂2) concentration (factor B), and potential measurement (factor C). As 

shown in  Fig. 2.4.       

 

 

 

 

 

2.1.2.2 Using and Applying Design of Experiments by 𝟐𝟑 Design 

Table 2.2 contains the design  23 with the treatments of factors.  

Levels were coded as – and + for low and high values respectively, as indicated in the 

treatment column of Table 2.2. To estimate experimental error and ensure linearity, the design was 

augmented by a third point, a center point level, coded as 0 for all factors [López-Cárdenas-22c].  

 

 

 

 

 

Fig. 2.4. Scheme of the designs of the experiment, the number of levels is 2 and the 

number factors is k = 3 The selected factors are length of nanowires (factor 

A), hydrogen peroxide concentration (factor B), and potential measurement 

(factor C). 
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Table 2.3 shows: The levels of all the factors: the length of nanowires, the hydrogen 

peroxide concentration, and the potential, including also, the center points. [López-Cárdenas 

2023b], López-Cárdenas 2022c], [Games 2013]. 

 

TABLE 2.2. DESIGNS OF EXPERIMENTS STARTING WITH 2K FOR K=3 FACTORS IN THE 

NEXT DISTRIBUTION 

Run A B C Treatment Replicates 

1 + + + A high, B high, C high 3 

2 - + + A low, B high, C high 3 

3 + - + A high, B low, C high 3 

4 - - + A low, B low, C high 3 

5 + + - A high, B high, C low 3 

6 - + - A low, B high, C low 3 

7 + - - A high, B low, C low 3 

8 - - - A low, B low, C low 3 

9-12 0 0 0 A center, B center 4 

 

 

 

 

 

 

TABLE 2.3. STARTED DOE WITH 23  ASSINGING FACTORS: FACTOR A (LENGTH), FACTOR 

B (H2O2 CONCENTRATION), AND FACTOR C (POTENTIAL) WITH EACH LEVELS VALUES 

Factors   Levels   

A Length 

+ 3 µm  

- 1.3 µm  

0 (center point) 2.15µm  

B 
H2O2 

Concentration 

+ 3.81 mM 

- 1.27 mM 

0 (center point) 2.54 mM 

C Potential 

+ 0.05 V 

- -0.05 V 

0 (center point) 0 V 
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Table 2.4  shows the total number of sensors for 23 design, which is five (two lengths and 

two 𝐻2𝑂2 concentrations, plus the center point). Note that even with the center point augmentation, 

this was still a 23  design [Montgomery-17], [Croarkin-12], [Lawson-14].  

 

 

 

 

 

2.1.3 Circumscribed Central Composite Design (CCC) 

From the Central Composite designs, the Circumscribed (CCC) was chosen. The design 

variable selected is the length of the nanowires, as system variables the measurement variables 

such as hydrogen peroxide concentration and potential measurement. Because the porous density 

turned out to be a constant per membrane, we ruled out the possibility of using the Box-Behnken 

method. 

2.1.3.1 Schema of a CCC Design 

A schematic representation of a CCC design is shown in Fig. 2.5. Starting with a 2𝑘 

hypothetical using k = 2 with an augmented center point (0,0), shown in Fig. 2.5 part (a), to better 

exemplify the process. If we augment the axial points (black stars), presented in Fig. 2.5 (b), they 

are obtained by rotating the basic layout 2𝑘. All axial points are at a distance α from the center. In 

TABLE 2.4. IN DOE 23 SELECTING CHARACTERISTICS OF THE NI NW SENSORS USED 

Sensors Length – H2O2 concentration 

1 3 µm – 3.81 mM 

2 3 µm – 1.27 mM 

3 1.3 µm – 3.81 mM 

4 1.3 µm – 1.27 mM 

5 2.15 µm – 2.54 mM 
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Fig. 2.5 (c), we can observe a factorial design by a 23 design cube augmented with axials points 

representing the CCC design, showing the region of the experimental space and the steepest ascent 

process. The curvature at which the maximum response can be reached by sequentially performing  

23 layouts until the first-order model can no longer account for the data and detected quadratic 

effects [Myers-16], [Gutierrez-Pulido-12]. 
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Fig. 2.5. Representation of experimental designs with two factors and the method of 

steepest ascent. (a): 2𝑘 design with k=2, augmented a center point at (0,0). (b): 

Axial points (black stars) are obtained by rotating the basic 2𝑘 design. All axial 

points are at α distance from the center. (c): Experimental space region and the 

process of steepest ascent with k =3. The curvature at which the response is 

maximum can be reached by sequentially performing 2𝑘 designs until the first-

order model can no longer account for the data and quadratic effects are 

detected. 
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The 2𝑘 design process was repeated until there was evidence that the first-order model was 

not a good approximation and is complemented with a curvature test. 

Suppose we conclude that quadratic effects cannot be rejected. The first-order model 

cannot be applied when this situation is achieved, and the steepest ascent method should be stopped 

[Montgomery-17], [Myers-16], [López-Cárdenas- 23b]. The application of the CCC design 

continues, and with RSM an optimal quadratic model is obtained. It will be described in the 

subsection 2.1.3.6.                

 

2.1.3.2 Formulating RSM by Description of CCC Design 

In RSM we model the response y as 

 

 𝑦 = 𝑓(𝝃𝟏, 𝝃𝟐, … , 𝝃𝒏) + 𝜀 (2-2) 

 

where f is unknown, but it can approximate it; 𝝃𝟏, 𝝃𝟐, … , 𝝃𝒏 are the variables (often called natural 

variables in the RSM jargon) upon which the response y depends, and ε is the source of irreducible 

variability, like measurement error. It will assume ε is distributed normally with mean zero and 

variance σ2. The expected value of y is thus: 

 

 𝐸[𝑦] = 𝐸[ 𝑓(𝝃𝟏, 𝝃𝟐, … , 𝝃𝒏 )] (2-3) 

2.1.3.3 Codification of Natural Variables 

Because the variables 𝜉𝑖 can have different units, it is advisable to transform the variables 

with feature scaling for to make easier the analysis and comparison in a common scale. The most 

common scaling is the linear transformation: 

 

 𝑥 = (𝑏 − 𝑎)
𝝃−𝝃𝒎𝒊𝒏

𝝃𝒎𝒂𝒙−𝝃𝒎𝒊𝒏
+ 𝑎 

 
(2-4) 

where x is the encoded variable, a and b correspond to the minimum and maximum values of x, 

that is, x1 = xmin = a, and x2 = xmax = b. Furthermore, 𝜉𝑚𝑖𝑛 and 𝜉𝑚𝑎𝑥 represent respectively the 
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minimum and maximum of the real values of the original variables. 

 

For x, the coded variable falls in the range of [a, b]. If we want x 𝜖 [-1,1] centered at zero, 

then the transformation becomes: 

 𝑥 =
𝝃−[𝝃𝒎𝒂𝒙+𝝃𝒎𝒊𝒏]/2

[𝝃𝒎𝒂𝒙−𝝃𝒎𝒊𝒏]/2
 (2-5) 

 

The original variables range of [a, b] were equivalent to [low, high]. It used the interval 

[−1, 1] centered at zero for the coded variable. The coded variables using the transformation (2-5)  

are shown in Table 2.5. 

 

 

 

 

2.1.3.4 Starting the RSM Process 

The RSM process is illustrated in Fig. 2.5 (a)-(c). The first step in this process is to start 

with an uncomplicated design to fit a first order model of the form like la equation (2-1). 

TABLE 2.5. DOE 23 WITH THE VALUES OF THE ORIGINAL VARIABLES AND THEIR CODED 

VALUES 

Run 
Length 

 μm 

H2O2 

concentration 

mM 

Potential 

 [V] 
x1 x2 x3 

1 1.3 1.27 -0.05 -1 -1 -1 

2 3 1.27 -0.05 1 -1 -1 

3 1.3 3.81 -0.05 -1 1 -1 

4 3 3.81 -0.05 1 1 -1 

5 1.3 1.27 0.05 -1 -1 1 

6 3 1.27 0.05 1 -1 1 

7 1.3 3.81 0.05 -1 1 1 

8 3 3.81 0.05 1 1 1 

9 2.15 2.54 0 0 0 0 

10 2.15 2.54 0 0 0 0 

11 2.15 2.54 0 0 0 0 

12 2.15 2.54 0 0 0 0 
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We proceed first by choosing sensible values of the natural variables 𝜉1 and 𝜉2, and then 

augment the design with nc = 4 center points. After conducting the experiment, it fit the model of 

equation (2-1), we can find the estimates of the coefficients in: 

 

    �̂� = x �̂�  (2-6) 

 

where �̂�  is the estimate response matrix, x is the matrix of coded variables with k rows from i = 1 

to k factors, with the first column of 1 and the second column of factors.  �̂� = (�̂�1, … , �̂�𝑘) are the 

estimated coefficient of the model. We then tested the hypothesis that 𝛽 = 𝟎, and test the lack-of-

fit of the first order model.  

 

2.1.3.5 The Method of Steepest Ascent 

If the lack-of-fit is non-significant, and the results suggest that the first order model is a 

good approximation (for example, plotting the response variable as a function of each natural 

variable and obtaining an almost linear response), it proceeds to design another experiment with 

new variable values in the direction of improvement. These new values can be obtained using the 

coefficients as follows (for 𝑥1): 

 

 ∆𝑥1 =
𝛽1

𝛽2
∆𝑥2 

 

(2-7) 

Then convert  ∆𝑥1 to the natural variable 𝜉1. This process is repeated until there is evidence 

that the first order model is not a good approximation and complemented with a test of curvature. 

 

2.1.3.6 Testing Curvature with Second-order Model 

 The test of curvature can be obtained using a F-test with the sum of squares of pure 

quadratic (SSquad.) and the mean squared (pure) error (MSE) [Montgomery-17], [Myers-16], 

[López-Cárdenas-23b]. The MSE can be computed as     
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 𝑀𝑆𝐸 =
∑ (

𝒏𝒄
𝒋=𝟏 𝒚𝒋−𝒚𝒄)

𝒏𝒄−𝟏
 (2-8) 

where 𝑦𝑗  is the values of the center points, the  𝑦
𝑐
   is the mean of the values center points, and  

𝑛𝑐  is the total number of center points. 

 

and the SSquad. with 

 

 𝑆𝑆𝑞𝑢𝑎𝑑. =
𝑛𝑓𝑛𝑐(𝑦𝑓−𝑦𝑐)

𝑛𝑓+𝑛𝑐
 (2-9) 

 

where 𝑦
𝑓
 and 𝑦

𝑐
 are the mean response for the factorial and center points, respectively, in addition  

𝑛𝑓  and 𝑛𝑐 are the total number of the factorial and center points correspondingly. 

The test is performed with the 𝐹𝛼 statistic at some α level of significance (explained in 

Subsubsection 2.1.1.2), with F = SSquad./MSE and nc - 1 error degrees of freedom. If, for example, 

nc = 4 and α = 0.05, the F0.05 = 10.13. So that any value of F below 10.13 is rejected, in which case 

it concludes that quadratic effects cannot be rejected. When this situation is achieved, the first 

order model cannot be applied, and the method of steepest ascent should stop [Montgomery-17], 

[Myers-16], [López-Cárdenas-23b]. However, for a quadratic model to be applied, it needs more 

data points to estimate the terms of equation (2-10), which requires that the main effects be not 

aliased, because the method of least-squares to solve equation (2-10) requires a full-rank matrix.  

 

 𝐲 = 𝐱𝜷 + 𝐱′𝓑𝐱 + 𝜺1 (2-10) 

 

where y is the response matrix, x is the matrix of coded variables,  𝐱′, likewise 𝜷 are the main 

effects coefficients as in equation (2-1), and 𝓑 is the k × k symmetric matrix. 

 

  (2-11) 

 
1 As with the first-order model, the estimates of the second-order model coefficients are β̂ and �̂�, and the estimated 

response is thus ŷ. 



2. METHODOLOGY 

 33 

𝓑 =

[
 
 
 
 𝛽11

1

2
𝛽12 …

1

2
𝛽1𝑘

𝛽22 …
1

2
𝛽2𝑘

⋱ 𝛽𝑘𝑘 ]
 
 
 
 

 

 

 

The quadratic terms 𝑥𝑖𝑗
2   with i = k have the diagonal coefficients of 𝓑, and the two-way 

interaction terms 𝑥𝑖𝑥𝑗 with i < j have coefficients that results of the sum of the off-diagonal terms, 

that is, when 𝛽𝑖𝑗 = 𝛽𝑗𝑖, which becomes  𝛽𝑖𝑗𝑥𝑖𝑥𝑗; x is the k × 2 design matrix as in equation (2-1). 

This matrix  𝓑  (2-11) has a main diagonal whose values correspond to the coefficients of the 

quadratic terms (𝛽𝑘𝑘) and outside of the diagonal principal, in the triangular superior part and in 

the triangular inferior part there are not zeros, numbers are the half of the value of the interaction  

terms coefficients of ( 
1

2
𝛽1𝑘). 

 

The quadratic model has (k + 1) (k + 2)/2 terms, so it needs at least the same number of 

independent runs to estimate the coefficients. The estimation of  𝜷 and 𝓑 is achieved by adding 

axial points to the 2k design.  

In the Fig. 2.5 (b) shows how it can add the axial (sometimes called star) points. If the 

square of the original 22 factorial design is rotated, the most extreme (axial) points are at α distance 

from the origin. (These axial points, also represented by the letter α, were explained in sub-

subsection 2.1.3.1; they are different from the α that represents the significance level explained in 

sub-subsection 2.1.1.2). The axial point in this part, is the value of α here is just the radius of the 

unit circle. In terms of the square sides, α is the distance of hypotenuse of the right triangle formed 

by the center and the perpendicular bisector of the rotated square; hence 𝛼 = √12 + 12 = √2 . 

This can be generalized to the unit hypersphere as 𝛼 = √𝑘 for k factors. The resulting optimal 

design is called spherical or Circumscribed Central Composite (CCC) design [Myers-16], [López-

Cárdenas-23b], [Croarkin-12], [López-Cárdenas-22b].], with 2k + 2k + 1 independent runs, 

allowing to fit the second-order model.  
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Fig. 2.5 (a) - (c) shows experimental space region and the process of steepest ascent. The 

curvature at which the response is maximum can be reached by sequentially performing 2𝑘 

designs until the first order model cannot longer account for the data and quadratic effects are 

detected. 

 

Fig. 2.5 (a) - (c) shows the sequential procedure for k = 3. As with the k = 2, we can start 

with a simple 2𝑘 design augmented with center points and repeat this process until it cannot reject 

the presence of curvature (quadratic effects). Then it can use a CCC adding axial points to the 

original 2𝑘 design, with the axial points with coordinates (0, −𝛼, 0), (−𝛼, 0, 0), (0, 𝛼, 0), (𝛼, 0, 0), 

(0, 0, −𝛼),  and (0,0, 𝛼), with 𝛼 = √3. If the axial points are added after running the 2𝑘, the 

analysis should be done by blocking the first set of runs in Block 1 (points 1 to 12) shown in Table 

2.5, and the second (added axial points since 13 to 18) in Block 2 [Montgomery-17], [Myers-16], 

[López-Cárdenas-23b], [Lawson-14]. Showed in Table 2.6.  

 

 

 

 

 

 

 

 

TABLE 2.6. CIRCUMSCRIBED CENTRAL COMPOSITE DESIGN CCC WITH AXIAL POINTS IN 

THE SECOND BLOCK OF VALUES OF THE ORIGINAL VARIABLES AND THEIR 

EQUIVALENT CODED VARIABLES (CENTRAL COMPOSITE DESIGN WITH AXIAL POINTS. 

THE RUNS FROM 1-12 ARE OMITTED AS THEY ARE THE SAME AS IN TABLE 2.5) 

Run 
Length 

 μm 

H2O2 

concentration 

mM 

Potential 

V 
x1 x2 x3 

13 0.68 2.54 0 -1.73 0 0 

14 3.62 2.54 0 1.73 0 0 

15 2.15 0.34 0 0 -1.73 0 

16 2.15 4.74 0 0 1.73 0 

17 2.15 2.54 -0.0867 0 0 -1.73 

18 2.15 2.54 0.0867 0 0 1.73 
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2.1.3.7  Applying Response Surface Methodology (RSM) 

RSM was applied to design nanostructured sensors from a data-driven approach using 

experimental data. Firstly, the general RSM problem was formulated. In previous subsections, 

2.1.2 and 2.1.3 , all the Design of Experiments (DoE) processes necessary to obtain the RSM were 

described and developed. In addition, all the results obtained from the DoE were used to continue 

developing and applying the Response Surface Methodology. Finally, an RSM model was 

obtained, and the optimized theoretical conditions were found [López-Cárdenas-21e], [López-

Cárdenas- 23b].  

However, for a quadratic model to apply, you will need more data points to estimate the 

terms. This process will be continued in the Results section of Chapter 4. 

 

2.2 Nanostructures Synthesis Methodology 

In this chapter section, the electrochemical methodologies used like electrochemical 

synthesis or electrodeposition for the development of nanowires are described, as well as the 

electrochemical characterization using the cyclic voltammetry method for the measurement of said 

nanostructured sensors. Also, it mentions the equipment of nano porous membrane metallization. 

There are descriptions about the processes for these techniques were developed, and the supports 

used for the development and characterization (measurement) of the self-support nanowires arrays 

nanostructured sensors whose objective is to optimize their sensitivity to hydrogen peroxide. 

 

2.2.1 Reagents and Materials  

Hydrogen peroxide solution 𝐻2𝑂2 (30 % w/w), sodium phosphate dibasic, (𝑁𝑎2𝐻𝑃𝑂4, 

ACS reagent, ≥99.0%) and sodium phosphate monobasic, (𝑁𝑎𝐻2𝑃𝑂4, ACS reagent, ≥99.0%), 

were obtained from Sigma-Aldrich. Deionized water, hydrochloric acid (HCl, 37%) and Sodium 

hydroxide (NaOH) flakes were purchased from Golden Bell and Jalmek, respectively. Ag pellets 

(99.99%) and Ti pellets (99.995%) were obtained from Kurt Lesker.        
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Nickel plating solution were obtained from Caswell Inc. All reagents were used without 

further purification. Polycarbonate track etched nano porous membranes, 47 mm in diameter, 0.1 

μm pore size, pore density of  4𝑥108 pores/cm2 and 0.6 μm thickness were obtained from 

STERLITECH. Colloidal Silver paint was purchased from Ted Pella. Commercial epoxy glue 

transparent, Resistol® strong repair, can be readily found [López-Cárdenas- 23a].  

2.2.2 Synthesis and Characterization Equipment  

For membrane metallization, an e-beam system INTERCOVAMEX TE12 was employed. 

Synthesis by electrodeposition was performed with a Keithley™ 2400 Source Meter Unit 

controlled with LabView software [Keitley-11]. A scanning electron microscope (SEM) JEOL 

JSM-6010LA was used at 20 kV acceleration voltage for morphological and chemical 

characterization and for the measurements of the lengths of the nanowires (shown in Table 2.1 and 

in Fig. 2.1. The scanning electron microscope (SEM) is a type of electron microscope capable of 

producing high-resolution images of the surface of a sample using electron-matter interactions. A 

potentiostat/galvanostat EC301 by Stanford Research Systems was used for electrochemical 

characterizations and 𝐻2𝑂2 detections.  

The CV setting used the scan rate at 100 mVs-1, and a potential window of -0.6 V to 0.6 V.  

EC301 uses a free Windows software (SRSLab) to support all the primary electrochemical 

techniques, including voltammetry, and can be downloaded from the SRS web site. Data is 

acquired over the TCP/IP interface. In addition, the data is easily exported to spreadsheets and 

graphing packages.  

2.2.3 Synthesis of Self-Supported Nanowires Arrays 

(Nanostructured Sensors) 

The nanostructured electrodes of sensors consist of nickel self-supported nanowires array 

(Ni NW). Polycarbonate membranes were used as a restrictive nano porous membrane like 

templates to grow the Ni nanowires by electrodeposition, an electrochemical method [Nasirpouri-

17], [López-Cárdenas-21b], [López-Cárdenas-21f], [López-Cárdenas-22a]. Before 

electrodeposition, one side of PCTE membranes was metalized with a silver (Ag) thin film by 
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physical vapor deposition. First, a 5 nm titanium (Ti) layer was evaporated at 0.6 Å/s to guarantee 

Ag adherence, and then 500 nm of Ag was evaporated at 2.1 Å/s. Shown in Fig. 2.6. 

 

 

 

Firstly, the materials for electrochemical synthesis were washed with hydrochloric acid 

HCl at 30% to be free of grease and contaminants. All the materials were dried with an air gun. 

The metalized membranes cut off the acetate. They were arranged in the system in the following 

order. It used a piece of acrylic as a support, with dimensions of 3x3x0.7 cm. A rectangular 4x2 

cm piece of the copper metal sheet was put on the acrylic base. It worked like a current conductor 

to help a working electrode (WE). As well, putting the film membrane very carefully it will be 

electrodeposited, with the metallic face in contact with the copper sheet; on top, it placed a piece 

of rubber with a circular perforation to delimit the area to be electrodeposited on it the electrolytic 

cell was fixed with the help of two large butterfly clamps. It must be very well sealed so that the 

electrolyte solution is not spilled [López-Cárdenas-23b], [López-Cárdenas-22a]. It is shown in Fig. 

2.7. 

The electrochemical synthesis was performed in a typical three-electrode cell 

configuration. The electrodes used were a platinum (Pt) electrode of 3 mm diameter (eDAQ 

ET075) as the counter electrode (CE), a saturated silver-silver chloride (Ag/AgCl) electrode as 

 

Fig. 2.6. Polycarbonate nano porous membrane metalized with silver (500 nm of Ag) 

photo. 
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reference electrode (RE), and the working electrode (WE) was the metalized nano porous 

membrane in contact with a thin copper plate. Fig. 2.7 show two photos of experimental 

electrochemical synthesis [López-Cárdenas-21d].  

 

 

 

The electrolytic cell was conformed at the bottom of the cylinder, with a hole connecting 

the solution electrolyte with the membrane immersed, allowing the Ni ions to pass through the 

pores. The ions were electrodeposited using a constant potential of -1.1 V at different times. Fig. 

2.8 shows is a schematic representation of Ni nanowires electrochemical growth process [López-

Cárdenas-23b], [López-Cárdenas-22a].  

A plot of the electrochemical synthesis process is shown in Fig. 2.8. 

 

             

Fig. 2.7. Images of experimental electrochemical synthesis. 
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The electrodeposition times range were varied from 0 to 4 minutes to obtain widely 

different lengths.  

 

A representation of electrodeposition of Ni nanowires electrochemical growth process is 

shown in Fig. 2.9. 

 

 

Fig. 2.8. Plot of Ni NW PCTE with 3.7 minutes of electrochemical synthesis process 

using -1.1 volts of potential applying. 
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Fig. 2.9. Schematic representation of synthesis of self-supported nanowire arrays and 

collection data. A: Top and side views of the restrictive nano porous 

membranes used. Membrane pores are randomly distributed. B: Illustrative 

diagram of the electrodeposition process using the membranes in panel A. C: 

Self-supported nanowire arrays over the current collector (in the left). The 

process of data collection using CV is illustrated in the right. See sections 2.2 

and  2.3.  
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After electrodeposition, the treatment for the self-supporting nanowires array was released 

by chemical etching. The Ni NW was immersed in 3M NaOH solution for cleaning, and the 

membrane was removed. Once the Ni NW was dry, a small sample was cut and sent to be observed 

by the SEM [López-Cárdenas-23b].    

In SEM images, it was possible to measure the Ni NW lengths and verify their cleanliness.  

Fig. 2.10 shows some micrographs of Ni NW with different times of electrodeposition [Calin-

Jageman-19], [López-Cárdenas-21d], [Nasirpouri-17], [Thomas-17]. 

 

 

 

 

 

 

Fig. 2.10. Micrographs of nanowire arrays of Ni electrodeposited with different 

durations. The images were taken with a scanning electron microscope (SEM) 

JEOL JSM-6010LA in the ITESO facilities. a) with 0.5 min of 

electrodeposition, the nanowire lengths had a mean length of 0.67μm; b) with 

1 min, the mean length was of 1.04μm; c) with 2.23 min, the mean length was 

of 2.05μm and d) with 4 min, the mean length was of 3.95μm. 
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The energy dispersive spectroscopy (EDS) technique performed in the SEM was mainly 

used for chemical characterization, analysis of materials, identification, and quantification of 

chemical substances present in detectable concentrations in the samples of the self-supported 

nickel nanowires arrays observed in the SEM [López-Cárdenas-22a], [Nasirpouri-17], as shown 

in Fig. 2.11.        

 

 

 

Fig. 2.11 Elemental chemical characterization obtained by energy dispersive 

spectroscopy (EDS) from the SEM of Ni NW after PCTE membrane removal. 
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2.3 Electrochemical Characterization by Cyclic Voltammetry 

(CV) 

Electrochemical characterization is an excellent technique used to study the behavior 

sensors and understand the importance of reaction mechanisms implicated like charge transfer, 

electrolyte transport, and electron transport [López-Cárdenas-21d], [López-Cárdenas-22b], 

[López-Cárdenas-23b], [Nasirpouri-17], [Hua-11], where multiphysics phenomena are involved. 

 

2.3.1 Cyclic Voltammetry  

Cyclic voltammetry (CV) is one of the methods of electrochemical characterization used 

to measure potential, current, and charge. Also, CV is used to identify and detect electrolyte 

concentrations or a chemical reactivity substance [López-Cárdenas-22b], [Chen-13].  

Electrochemical characterization in an electrochemical cell depends on many factors, 

including the condition of the working electrode, counter electrode, the ions of the electrolyte 

solution, the current, the charge, and the potential. All of them are responsible for the oxide-

reduction reaction changes. A scheme of cyclic voltammetry and a type of voltammogram are 

shown in  Fig. 2.12.                 
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The electric potential is measured between the reference electrode and the working 

electrode. In contrast, the auxiliary electrode closes the electric circuit. The potential of the 

working electrode is sensitive to the substance concentration. At the same time, the current flows 

through the counter and the working electrodes. The reference electrode was selected to avoid a 

polarizable behavior [López-Cárdenas-22b], [Chen-13], [Thomas-17]. Fig. 2.13 shows an 

electrochemical characterization, including a Ni NW nanostructured sensor and the nickel 

nanowires in a SEM micrograph. 

 

 

Fig. 2.12  Cyclic voltammetry process and data acquisition. a) Schematic of 

electrochemical characterization in a typical three-electrode cell configuration 

for the cyclic voltammetry (CV). b) A standard voltammogram generated by 

CV data acquisition computation. 
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Since some years ago, nanotechnology has been used for developing nanostructured 

sensors, and many researchers have been interested in applying electrochemical methods for 

testing hydrogen peroxide (𝐻2𝑂2), using more sensitive and selective non-enzymatic sensors. 

[López-Cárdenas-23a], [Hua-11], [Thomas-17].  

On the other hand, hydrogen peroxide is a common substance and has many uses in 

different industries: clinical laboratory, medical diagnostics, pharmaceutical, food processes, 

environmental, mining, textile industry, pulp, paper bleaching, antiseptic, disinfecting agents, 

beverage, cleaning products applications [López-Cárdenas-21b], [López-Cárdenas-21c], [López-

Cárdenas-22b], [Cai-18]. 

 

Fig. 2.13 Electrochemical characterization in a typical three-electrode cell. The 

working electrode (WE) is the nickel self-supported nanowires array with 2.2 

minutes of electrodeposition time and a Ni NW SEM micrograph. 

 

 

20 ml PB 
buffer + 

x Mol 

RE
CE

WE
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The literature mentions the mechanism of electrochemical reduction for 𝐻2𝑂2 in reducing 

of cathodic peak [Zong-17], [Chen-12], [Cai-18], [Rahman-19]. It can be represented in the 

following form: 

𝐻2𝑂2 + 𝑒− → 𝑂𝐻𝑎𝑑 + 𝑂𝐻− 

𝑂𝐻𝑎𝑑 + 𝑒−  →  𝑂𝐻− 

2𝑂𝐻− + 2 𝐻+  → 2𝐻2𝑂 

 

2.3.2 Electrochemical Characterization Measurements and 

Quantitative Detection of 𝑯𝟐𝑶𝟐     

The electrochemical sensors measurements were carried out using 𝐻2𝑂2 at different 

concentrations in a phosphates buffer solution of 0.05M PB with pH = 7.0. The 𝐻2𝑂2 

concentrations employed were 0, 0.34, 0.5, 1.0, 1.5, 2.54, 3.25, 4.74 and 6.5 mM, utilizing a 

distinct container in each one. Solutions were prepared by directly adding the volume 

corresponding to the desired  𝐻2𝑂2 concentration to a necessary volume of 0.05M PB solution, 

sufficient to obtain a total of 20 ml of the mixture for each of the different concentrations. One 

concentration was used independently for every CV measurement without stirring. After each 

𝐻2𝑂2 concentration was measured for five cycles, the electrodes were cleaned and rinsed with 

deionized water, removing the excess with anti-static Kimtech wipes. All experimental work was 

carried out at room temperature [López-Cárdenas-21b], [López-Cárdenas-23b].   

 

2.3.3 Data Acquisition of the CV Measurements 

The manufacturing characteristics of the sensor used in Fig. 2.14 were developed with 

restrictive nano porous membranes by electrodeposition of Ni ions (previously described in 

Subsections 2.2.3 and 2.3.1) [López-Cárdenas-21d], [López-Cárdenas-22b ], [Musa -12], 

[Dickinson-14]. In these experiments, the information generated from the initial experimental 

designs was applied. 
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Fig. 2.14 shows seven cyclic voltammograms, characterizing a single Ni NW sensor with 

a nanowire length of 0.68 µm, detecting its response at seven different concentrations of hydrogen 

peroxide. 

 

 

 

2.3.4 The Electrochemical Response (Current Intensity and 

Current Density) 

The response current intensity was transformed to current density (I density, in mA/cm2), 

dividing the current intensity by the sensor area. This thesis has been interested in the sensitivity 

of the sensor, which was defined as the change in current density by a unitary increment in 𝐻2𝑂2 

concentration, with dimensions mA/ (mM cm2). Because the sensitivity critically depends on the 

 

Fig. 2.14  Seven cyclic voltammograms of seven different concentrations of  𝐻2𝑂2 

obtained from a single chip by electrochemical characterization. 
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potential applied [López-Cárdenas-21b], [López-Cárdenas-23b], the potential V* at which is 

maximized was identified. The process is as follows: in the reduction peak region of the CV 

(approximately from -0.6 V to 0.6 V), I density was interpolated for each of the i-th potential with 

a step size of 0.0005 V [Hayfield-08], [Rojo-Álvarez-18], [Paternoster-98], [Guideline-05]. All 

CVs were taken with each concentration by five cycles to get stabilization. Hence, for each V[i] 

the pairs (I density V[i], concentrations) were obtained, for the k = 7 concentrations, where the 

intercept of the equation is represented by 𝛼𝑉[𝑖]
, and estimated the sensitivity of the sensor with the 

slope of the linear regression 𝛽𝑉[𝑖]
 = β as follows:  

 

 𝐼 density𝑉[𝑖]
= 𝛼𝑉[𝑖]

+ 𝛽𝑉[𝑖]
∗  H2O2 concentration (2-12) 

 

The potential at which the sensitivity is maximized is, therefore, 

 

 argmax 
𝑉

𝛽 =  𝑉∗ (2-13) 

 

Using (2-12), the sensitivity was obtained for the Ni planar; it was β = 0.1 
𝑚𝐴

𝑚𝑀 𝑐𝑚2 
  , and 

for a Ni NW with length mean of 0.68 µm, the sensitivity was β =1.55 
𝑚𝐴

𝑚𝑀 𝑐𝑚2 

 

Fig. 2.15 shows the voltammograms (CVs) obtained with different concentrations in five 

different sensors with the following lengths: 0.68 µm, 1.3 µm, 2.15 µm, 3.0 µm, and 3.62 µm. 

These CVs allow us to observe the different responses or electrochemical characterizations of five 

Ni NW sensors. 
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 Fig. 2.16  shows the seven voltammograms of each of the three Ni sensors, allowing us to 

observe their different responses. 

 

 

 

Fig. 2.15  Comparing CVs of different sensors with different concentrations. 

 

 

 

Fig. 2.16 Comparing CVs of three different sensors with the same seven concentrations, 

(a) Planar sensor with 0 µm of length. (b) Ni NW with 2.62 µm of length, and 

(c) Ni NW with 0.68 µm of length. 
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2.3.5 Limit of Detection (LOD), and Limited of Quantification 

(LOQ) 

Limit of Detection (LOD) is the lowest concentration of a substance in a test sample that 

can be easily distinguished from zero [López-Cárdenas-21d], [Armbruster-08].  

 

 𝐿𝑂𝐷 =  
3∗𝑅𝑆𝐸

𝛽
 (2-14) 

 

where, β is the slope of the linear regression with units mA/ (mM cm2), and SE is the standard 

error of the β. The limit of detection (LOD) and the limit of quantification (LOQ), both in mM of 

H2O2, were obtained with (2-14) and (2-15), using RSE like the residual standard error. 

 

Limit of Quantification (LOQ) is the lowest concentration of a substance in a test sample 

that can be determined with acceptable repeatability and precision. 

 

 𝐿𝑂𝑄 =  
10∗𝑅𝑆𝐸

𝛽
 (2-15) 

 

However, accurate designs require knowing most of the behavior present in the sensors, 

leading to complex and complicated models. Using those representations often presents drawbacks 

for computation and the need for model validation [López-Cárdenas-21b], [López-Cárdenas-22b], 

[Armbruster-08], [Guideline-05], [Paternoster-98].  

 

Using (2-14) and (2-15), the LOD and LOQ values of two different nickel sensors were 

obtained: a nanostructured Ni sensor (Ni NW) with a length of 0.68 microns, its LOD = 0.81 and 

LOQ = 2.71 mM H2O2, while for the Ni planar sensor its LOD = 0.95 and LOQ = 3.17 mM H2O2, 

it is observed that the values that can be detected and quantified of hydrogen peroxide are lower 

with a Ni NW  sensor than with a Ni planar sensor. The planar geometry was used as a reference 
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for the comparison of the response to H2O2 since it represents the most extreme case of a non-

nanostructured sensor [López-Cárdenas-21b], [López-Cárdenas-21d]. These results were 

calculated from the data obtained by cyclic voltammetry to the hydrogen peroxide response in 

seven different concentrations: 0, 0.5, 1.0, 1.5, 2.54, 3.25, and 6. 5 mM H2O2. 
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3. Data Analysis Tools and Procedures  

The raw CV was processed with customized R package [Lenth-20] or scripts. The fourth 

cycle was taken as it was the most stable of the five CV cycles run for each concentration and per 

manufactured sensor. From this, only the reduction peak corresponding to the lower semicircle of 

the cyclic voltammogram was analyzed, where the current intensity was measured negatively. This 

reduction peak was normally considered with a window potential between -0.25 to 0.25 volts. The 

current intensity was transformed into current density in milliamps per square centimeter, dividing 

the intensity by the sensor area. The sensor area was calculated by measuring its contour with a 

rule-scale and helping with a stereoscopic microscope. 

 

For the 2𝑘 experimental design, the R package rsm was used [Lenth-20]. With the data 

from the 2𝑘 experimental design, linear models were fitted using ordinary least squares (OLS), 

and the evidence of curvature was evaluated with a Fisher Test (F-test) [López-Cárdenas-23b], 

[López-Cárdenas-22d]. This test of curvature can be obtained using an F-test with the sum of 

squares of pure quadratic (𝑆𝑆𝑞𝑢𝑎𝑑.), and the mean squared (pure) error (MSE) [Montgomery-17], 

[Myers-16].  The MSE can be computed as F-test. See sub-sub-section 2.1.3.6  [López-Cárdenas-

22d]. An extended quadratic model was adjusted to optimize the response (current density), also 

with the R package rsm [Lenth-20], [Lawson-14], [Good-13], [Chihara-18].  

 

As mentioned in Chapter 1, the bootstrap is a statistical resampling technique used for the 

interval estimation of point estimates. The main idea is to simulate the sampling distribution 

variation by taking samples, with replacements, from the original data. A statistic of interest (like 

the slope of a linear regression model) is computed and stored for each resample. After B 

resamples, the resulting variation can be summarized with the lower and upper 95% percentile 

[Efron-86], [Löpez-Cárdenas-21f]. In almost all the analyses, one thousand resamples were used 

with reposition B=1000, except in the rate growing that was used B=250 [López-Cárdenas-21a]. 

The results of the statistical tests are evaluated with an alpha significance level of 0.05, and 

confidence intervals of 95% were obtained using the bootstrapping method. See Sub-subsection 
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2.1.1.2  [Efron-86], [López-Cárdenas-21f], [Good-13], [Chihara-18].  

The lengths of nanowires were determined on the SEM images (as can be explained before 

in Sub-subsection 2.1.1.2) using ImageJ [Abràmoff-04] as shown in Fig. 2.1. Bootstrapping was 

employed to calculate confidence intervals to have better approximate the NW lengths at 95 % CI 

of the desired length. 

ImageJ was used to take about ten or more measurements of NWs lengths and computed 

the average length to make a scatter plot of the data, as shown in Fig. 2.2. 

In the same way, the rate growth with the bootstrapping technique was measured and 

obtained using Scanning Electron Microscope (SEM) micrographs.  

The transformed data was smoothed using nonparametric regression with the R package 

np [Hayfield-08].   
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4. Results and Discussion 

This chapter presents the results obtained throughout the optimization process of the self-

supported nanowires array sensors employing RSM and DoE. In addition, the nanostructured 

development of sensors with the optimal theoretical conditions of the variables obtained in the 

RSM for validating the results, and a discussion. 

 

4.1 Describing Results from Response Surface Methodology 

This section presents some statistical processes for obtaining the RSM results, which are a 

continuation of those previously mentioned in Sub-subsection 2.1.3.7. 

 

4.1.1 Processes Using the Response Surface Methodology 

In this section, the different experimental designs applied, 2𝑘 design, CCC, and RSM, are 

presented to get the optimal theoretical characteristics of the sensor to achieve its optimal 

sensitivity to hydrogen peroxide. [Myers-16], [Lenth-20], [Box-87], [Box-92], [López-Cárdenas-

23b], [Cumming-05], [Cumming-13], [Cleveland-79]. 

 

4.1.2 Getting the Response Surface in a Factorial Design Augmented 

with Center Points. 

This study continues from the results of the Table 2.5.      

Based on previous findings, [López-Cárdenas-21b], [López-Cárdenas-21f], [Croarkin-12], 

[Lawson-14], [Gutierrez-Pulido-12], [Kyprioti-20], we start from the following 23 design, with 

𝐻2𝑂2 concentrations of 1.27 and 3.81 mM (low and high), lengths of 1.3 and 3 μm, and potential 

of -0.05 and 0.05 V. Four center points (nc = 4) runs were added with 2.54 mM, 2.15 μm and 0 V.  

Shown in Table 2.5, Sub-subsection 2.1.3.3 it is called the Block 1 from 12 runs, with the naturals 
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and the coded variables. This process is repeated until there is evidence that the first order model 

is not a good approximation and is complemented with a curvature test [Lawson-14]. Explain Fig. 

4.1 here.      

 

 

 

 

As mentioned before, the response was normalized by the sensor area, so when it refers to 

the response of the sensor it means a density of current intensity, in units of mA/cm2 [López-

Cárdenas-23b], 

The model was fitted from (2-1) using the R package rsm [Lenth-20], [Myers-16]. All the 

coefficients were non-significant (see Table 4.1), but the lack-of-fit (F (5, 3) = 18.27, p < 0.05) 

and curvature (F (1, 3) = 66.71, p < 0.01), using (2-8) and (2-9), were significant, suggesting 

quadratic effects. Furthermore, we plotted the response variable as a function of the factors levels 

and found that the response was nonlinear and possibly quadratic, as shown in Fig. 4.1. 

 

 

 

 

 

 

Fig. 4.1  Response as a function of length, H2O2 concentration and potential. In all 

cases, the response is evidently nonlinear. The line shows a fitted LOESS 

[locally estimated scatterplot smoothing; [Cleveland-79] regression to 

emphasize the nonlinearities of the relationship between the response and the 

independent variables.   
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4.1.3 Applying the Circumscribed Central Composite Design 

After the fit to a linear model failed on the 23 design, the design was augmented with axial 

points to yield a CCC Design (see Fig. 2.5c); added axial points are shown in natural and coded 

variables in Table 2.5. With this design, a second-order model was fitted from on (2-10), with main 

effects 𝛽12𝑥1𝑥2 ,  𝛽13𝑥1𝑥3 and 𝛽23𝑥2𝑥3;  and quadratic terms 𝛽11𝑥1
2,  𝛽22𝑥2

2,  and 𝛽33𝑥3
2. 

   Table 4.2 presents the statistical results for the coefficients obtained by fitting the second-

order model. The effects of the length and H2O2 concentration were non-significant; however, the 

effect of the potential was significant. The interactions length × concentration and length × 

potential also was non-significant, whereas concentration × potential was significant. All the 

quadratic terms were significant. 

 

The ANOVA of the model showed significant joint first-order (linear) effects (F (3, 16) = 

15.83, p < 0.001), two-way interactions (F (3, 16) = 4.16, p < 0.05 and quadratic effects (F (3, 16) 

= 35.31, p < 0.001). Overall, the model was statistically significant (F (10, 16) = 17.87, p < 0.001) 

[Hocking-03b], [Stahle-89], [Stahle-89], [López-Cárdenas-23b]. 

TABLE 4.1. STATISTICAL SUMMARY OF THE FIRST ORDER MODEL WITHOUT 

INTERACTION TERMES 

 Estimate 95% CI t (8) p-value 

𝛽1 

 

-0.062 [3.5, 3.37] 

 

-0.041 > 0.05 

𝛽2 1.44 [-2, 4.88] 0.97 > 0.05 

𝛽3 1.1 [-2.33, 4.53] 0.74 

 

> 0.05 
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The sensor response (�̂�) is optimized where its partial derivatives are zero,  
𝜕�̂�

𝜕𝑥𝑘
= 0. This 

is achieved by differentiating  (2-10) with respect to x and setting the result equal to 0. In matrix 

form we get (4-1) 

 

 
𝜕�̂�

𝜕𝒙
= �̂� + 2�̂�𝒙 = 𝟎 (4-1) 

 

Solving for x we can find the k points at which the response can be optimal. Those points 

are given by  

 

TABLE 4.2. STATISTICAL SUMMARY OF THE SECOND-ORDER MODEL 

  Estimate 95% CI t (14) p-value 

 

 

Main effects 

𝛽1 

 

0.22 [-0.71, 1.15] 

 

0.50 > 0.05 

𝛽2 0.83 [-0.10, 1.76] 1.92 > 0.05 

𝛽3 2.10 [1.42, 2.78] 6.60 

 

< 0.05 

 

 

Interaction 

terms 

𝛽12 

 

1.36 [0.13, 2.59] 

 

2.38 > 0.05 

𝛽13 1.32 [0.09, 2.55] 2.31 > 0.05 

𝛽23 -0.70 [-1.93, 0.53] -1.23 

 

< 0.05 

 

 

Quadratic 

terms 

𝛽11 

 

-1.24 [-2.09, -0.40] 

 

-3.15 < 0.05 

𝛽22 -1.23 [-2.07, -0388] -3.11 < 0.05 

𝛽33 -3.61 [-4.36, -2.86] -10.29 

 

< 0.05 
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 𝒙0 = −0.5�̂�−1�̂� (4-2) 

 

Now, it is unknown if this stationary point is a maximum, a minimum or a saddle point. To 

know this, we can find the eigenvalues of the matrix �̂�, which contains the coefficients of the two-

way interaction and quadratic terms. The eigen decomposition of �̂� into its eigenvalues and 

eigenvectors can be done as usual. Let M be the k × k matrix whose columns are the eigenvectors 

of  �̂� so 

 

 �̂�𝚳 = 𝜆𝚳 (4-3) 

 

where 𝜆 are the eigenvalues of �̂�. Rearranging (4-3)  (�̂� −  𝜆𝚰)𝚳 = 0 and using the determinant, 

the eigenvalues can be obtained by solving. 

 

 (�̂� −  𝜆𝚰) = 𝟎 (4-4) 

 

From Table 4.2, we have the following matrix (symmetric) and vector. 

 

�̂� =  [
−1.24 0.68 0.66
0.68 −1.23 −0.35
0.66 −0.35 −3.61

] , �̂� =  [0.22 0.83 2.10] 

 

Therefore, using (4-2), the stationary point was  𝐱0 = [0.57, 0.56, 0.34] in coded variables, 

and   𝜉0 = [2.64, 3.25, 0.02] in natural variables. To ensure that this point is a maximum, the 

eigenvalues must be negative, 𝜆𝑘 < 0 [Myers-16], [Lenth-20], [López-Cárdenas-23b], [Lawson-

14]. Solving the (4-4), it was obtained 𝜆𝑘 = [−0.54, −1.66, −3.88], which allows to conclude there 

is a maximum at 𝐱0. Fig. 4.2 shows some contours and 3D plots of the surface just found. Having 

found the (theoretical) optimal conditions (length of 2.64 μm, at 𝐻2𝑂2 concentration of 3.25 mM, 

measured at a sensing potential of 0.02 V). 
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 The above theoretical values were obtained within the following ranges: for 𝐻2𝑂2 

concentration [0.34, 4.74] mM 𝐻2𝑂2, for the length [0.68, 3.62] μm; and, for the potential [-0.0867, 

0.0867] V [López-Cárdenas-22d]. 

 

4.2 Empirical Validation of the Optimal Design 

After determining the (theoretical) optimal conditions (2.64 µm NW length, 3.25 mM H2O2 

 

 

Fig. 4.2. Contours and perspective plots show the region at which the response reached 

the maximum (theoretical) response at the optimal length, concentration, and 

detection potential of 2.64 µm, 3.25 mM H2O2, and 0.02 V (natural variables), 

respectively.   
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concentration, and 0.02 V sensing potential), a sensor with the optimal length was fabricated for 

further analysis and confirmation by electrodepositing Ni on PCTE membranes at different 

deposition times (between 2.6 and 3.5 min). The NW lengths of the sensors were measured using 

ImageJ software [Abràmoff-04]. The 95% CI for the mean length was computed using 1000 

resamples for all the measured samples [Efron-86], [López-Cárdenas-21a], and then, the sample 

for which the 95% CI contained the desired length of 2.64 µm was selected. For the selected length, 

the mean length was 2.62 µm with a 95% CI [2.48, 2.76] µm and a min-max range of 2.1-3.3 µm. 

See Fig. 4.3.  

 

 

 

The desired length was 2.64 µm ∈ [2.48,2.76] µm. Fig. 4.4 shows micrographs of the 

optimal synthesized NW arrays, and the response to H2O2 of this sensor was characterized, see 

Fig. 4.3. 

 

 

 

Fig. 4.3. Response of the optimized sensor measured by CV. (a) Sensitivity as a 

function of the applied potential in CV; the dot shows the potential at which 

the sensitivity is maximized. The inset shows the CV reduction peak region. 

(b) Regression plot of the response as a function of the H2O2 concentration. 

Note that above the concentration of 3.25 mM H2O2, the response decreases 

with respect to the expected trend (blue line). The second fit in red shows a 

better performance between 0 and 3.25 mM H2O2. 
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Also, the H2O2 concentration detection of the optimal sensor was compared with a 

nanostructured sensor fabricated in a previous study [López-Cárdenas-2ba], [López-Cárdenas-

23b], [López-Cárdenas-21e],  and with two non-optimal sensors as a benchmark (0 µm (Ni planar)) 

and 0.68 µm mean length nanostructured sensor used previously as an axial point; their CV and 

response sensitivity can be seen in Fig. 4.5. 

The surroundings of the reduction peak in the CV curve were analyzed for the different 

H2O2 concentrations of 0, 0.5, 1, 1.5, 2.54, 3.25, 3.5 and 6.5 mM (inset of Fig. 4.3 (a), Fig. 4.5 (a), 

and Fig. 4.5 (c)). Linear regression was used to interpolate the sensor response in the range of -

0.25 V to 0.25 V with a step size of 0.025 V [López-Cárdenas-21d], [Efron-16], at every i-th 

potential V. Moreover, the slope of the simple linear regression was obtained, relating the sensor 

response at V [i] to all the concentrations used. The slope of the linear regression was interpreted 

as the sensitivity of the sensor in units of mA/ (mM cm2).  

 

 

Fig. 4.4. Micrographs of the optimal length of the sensor. (a) Top view at 2000 X and 

(b) a view with detach nanowires from Ag film to distinguish the length of Ni 

NWs.   
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Finally, our fabricated optimal NW sensor had a length of 2.62 μm with a 95% CI [2.48, 

2.76] μm and showed a 𝐻2𝑂2 sensitivity of 3.55 mA/(mM cm2) with a limit of detection (LOD) of 

0.78 mM 𝐻2𝑂2 and a limit of quantification (LOQ) of 2.6 mM𝐻2𝑂2, significantly improved versus 

a planar sensor (Ni planar with a length of 0 μm) with a sensitivity of 0.1 mA/(mM cm2), a LOD 

of 0.95 mM 𝐻2𝑂2 and LOQ of 3.17 mM 𝐻2𝑂2 and versus other fabricated as non-optimal Ni NW 

sensor (with a length of 0.68 μm) with a 𝐻2𝑂2 sensitive of 1.55 mA/(mM cm2), LOD of 0.81 mM 

𝐻2𝑂2 and LOQ of 2.71 mM𝐻2𝑂2. 

Table 4.3 shows the values for comparation of the sensitivities, LOD and LOQ of Ni planar 

(0 µm of length) and two Ni NW sensors non-optimal 0.68 µm and the optimal with length 2.62 

µm in contrast with others two sensors developed [López-Cárdenas-21b]. 

 

Fig. 4.5. Analysis of a non-optimum sensor that uses a 0.68 µm NW length.  (a) 

sensitivity as a function of applied potential; the dot shows the potential at 

which sensitivity is maximized, (b) sensor response at the optimal potential 

for the different concentrations. The same goes for (c) and (d), but for the 

planar sensor. In both cases, the departure from linearity is smaller for the 

optimal sensor, as confirmed in Fig. 4.3. 
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Our optimized sensor achieves a 50% reduction in the limit of detection (LOD) and an 18% 

increase in sensitivity compared with the previously investigated nanostructured sensor. Moreover, 

the optimized sensor is at least 35 times more sensitive for 𝐻2𝑂2  detection than sensors with planar 

geometries, which are standard in commercial applications [López-Cárdenas-22e], [López-

Cárdenas-23b].  

 

4.3 Discussion   

Were developed, manufactured and sensed the hydrogen peroxide response of two Ni 

sensors, one Ni planar sensor and a second nanostructured Ni NW sensor with 1.2 µm length of 

nanowires The data generated by these sensors from previous equipment were given to us to 

evaluate their behavior, allowing us to start a survey, as well as the study and analysis of data, 

which allowed us to report it at an international Congress, publishing it in July 2021 [López- 

Cárdenas 21b] in a first conference article and a second conference in November [lópez-Cardenas-

TABLE 4.3. COMPARISON BETWEEN SENSORS WITH DIFFERENT LENGTHS. 

Material Study 
Length 

[µm] 

Sensitivity H2O2 

[mA/(mM*cm2)] 

LOD 

[mM] 

LOQ 

[mM] 

Ni 
(López-Cárdenas et 

al., 2021) 
0 0.0003 9.3 31 

Ni This studya 0 0.1 0.95 3.17 

Ni This studyb 0.68 1.55 0.81 2.71 

Ni 
(López-Cárdenas et 

al., 2021) 
1.2 3.02 1.53 5.1 

Ni This studyc 2.62 3.55 0.78 2.6 
                   aNi Planar sensor, bNi NW non-optimal sensor, and cNi NW our optimal sensor 
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21e]. The analysis of the data was our task which allowed us to obtain and understand relevant 

behaviors that gave us the guideline for the development of DoE and to develop new sensors and 

compare their sensitivity with those previously studied. The results are shown in Table 4.3. 

 

The response of a Ni planar (0 µm length) sensor was also measured over the same 𝐻2𝑂2  

concentration range from 0 mM to 3.25 mM, comparing with the optimal sensor also improved 

considerably with respect to this sensor, which had an LOD of 0.95 mM H2O2 with a sensitivity of 

0.1 mA/(mM cm2). Previously [López-Cárdenas-21b], [López-Cárdenas-21e], [López-Cárdenas-

23b], an LOD of 9.3 mM H2O2 and a sensitivity of 0.0003 mA/(mM cm2) for a Ni planar sensor 

were reported. Table 4.3 also shows a comparison with a sensor with the length of 0.68 µm at the 

axial point. Again, the optimal sensor performed better in all metrics. Fig. 4.6 compares the CV 

results of different Ni NW lengths, including the planar (line a) and optimal length (line e), and an 

increase in current density is observed for the 2.62 µm sensor, corresponding to our optimal value 

that demonstrates the non-linearity in the catalytic response [López-Cárdenas-22e], [López-

Cárdenas-23a].  

 

 

These results demonstrate that RSM can improve sensors based on self-supported Ni NW 

 

Fig. 4.6. CVs of NWs sensor in 2.54 mM H2O2 and PB 0.05 M pH=7 aqueous solution 

at a scan rate of 100 mV/s. Planar electrode in (a) and lengths of 0.68 μm in 

(b), 2.15 μm in (c), 3.62 μm in (d) and 2.62 μm in (e). 
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arrays. The function relating the sensor response to the NW length is nonmonotonic, which could 

be related to the spatial disposition and formation of NWs with larger lengths, as shown in Fig. 

4.7. As the size of NWs increases, they become more irregular and bent, which partially cancels 

the increase in response owing to the increased contact surface of the cylindrical NWs. 

 

  

 

Fig. 4.7. Micrograph of self-supported Ni nanowires after removal PCTE membrane at 

different time depositions. (a) and (b) 3.5 minutes, (c) and (d) 4 minutes; and 

(e) and (f) 4.5 minutes. 
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General Conclusions 

The development of highly sensitive sensors is a burgeoning area of research owing to the 

widespread potential applications of these sensors in the food industry [Buledi-22], [López-

Cárdenas-21b], medical diagnostics [Wang-17], [Cheraghi-21],  [López-Cárdenas-21b], [López-

Cárdenas-19], [Zamfir-16], [Gupta-17], [Hwang-18], [Oliver-09], [Park-06], and environmental 

applications [Buledi-22], [Zhang-23], [Karimi-Maleh-23], [Meng-11]. Hence, developing a 

practical method to improve the design-build-test cycle of nanostructures with sensing capabilities 

is highly relevant and is not trivial. Although simulation studies can provide valuable information, 

they can be computationally restrictive as the simulations become more fine-grained, which is 

necessary to simulate realistic nanostructures [Goyal-20]. RSM is an efficient, theoretically 

agnostic (it uses generic first order and second-order functions to approximate the response), and 

low-cost approach to designing and evaluating nanostructured sensors. It can be easily 

implemented in almost all major statistical software, as it only requires estimation methods such 

as the ordinary least squares method [Myers-16]. With appropriate domain knowledge that can be 

used to select the initial testing conditions [Cheraghi-21], RSM can rapidly approximate the 

optimal response as a function of the design variables, as shown in this study. 

This thesis was mainly focused on the study of the detection of H2O2 aided by RSM to 

optimize the design of nanostructures with sensing capabilities. One design variable of the sensors 

was evaluated, namely, the NW length, while varying the measurement conditions, such as the 

applied potential and H2O2 concentration, using voltametric methods. This optimal design was at 

least 35 times more sensitive than the planar electrode for detecting H2O2, which is the standard 

for commercial applications [López-Cárdenas-23b]. Coupled with immobilized glucose oxidase 

enzymes, this sensor can be used to significantly improve the detection of glucose in samples 

known to have low concentrations, such as tears or saliva [Liu-15], [Grupta-17], [Sánchez-

Hernández-23], which are two non-invasive samples that can be used for continuous glucose 

monitoring in patients with diabetes mellitus. 

Applied in experimental works of an electrochemical nature in nanotechnology, an RSM 

methodology widely used in the industry to optimize and make redesigns, reducing the number of 

experiments, costs, and time. 
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Apply data science to the large volume of information generated or actual data obtained in 

the experimental field (CV, SEM) using non-parametric statistics with resampling techniques, 

managing to determine variability measures with intervals and 95% confidence levels. 

Bootstrapping a resampling method, using no parametric statistics, was employed for 

obtaining confidence intervals in LOD and LOQ where it is not frequent to know their variability.              

Other essential design variables, such as the porous density, synthesis materials (e.g., gold), 

and geometrical arrangements (e.g., hexagonal versus random pore grids), require further 

investigation. Further investigation is also required for substances other than H2O2, which require 

different design variable levels and testing conditions. 

As nanotechnology is a newer field of work and reviewing its state of the art, it was 

observed that, in many articles consulted, they only share results obtained for a specific 

nanostructure and that they manage to measure something, but their results do not present optimal 

results and formal validation, that is, they do not use support from mathematical tools or statistical 

methods. 

The RSM methodology widely used in the industry to optimize and carry out redesigns, 

proved to be a very useful tool to apply in experimental work of an electrochemical nature, 

reducing the number of experiments, costs, and work times. 

Applying data science to the large volume of information generated in experimental 

electrochemical processes (CV, SEM) contributes significantly to the study, generation, and 

analysis of results, using statistical techniques. 

  Using Bootstrap, a non-parametric statistical tool with resampling techniques, managing 

to determine variability measures with 95% confidence intervals and levels. 

With this resampling technique, it allowed us to obtain confidence intervals in the limit of 

Determination (LOD) and limit of quantification (LOQ) where it is not common to know their 

variability. 
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Conclusiones generales 

El desarrollo de sensores altamente sensibles es un área de investigación floreciente debido 

a las amplias aplicaciones potenciales de estos sensores en la industria alimentaria [Buledi-22], 

[López-Cárdenas-21b], diagnósticos médicos [Wang-17], [Cheraghi-21], [López-Cárdenas-21b], 

[López-Cárdenas-19], [Zamfir-16], [Gupta-17], [Hwang-18], [Oliver-09], [Park-06], y 

aplicaciones medioambientales [Buledi-22], [Zhang-23], [Karimi-Maleh-23], [Meng-11]. Por lo 

tanto, desarrollar un método práctico para mejorar el ciclo de diseño, construcción y prueba de 

nanoestructuras con capacidades de detección es muy relevante y no trivial. Aunque los estudios 

de simulación pueden proporcionar información valiosa, pueden ser computacionalmente 

restrictivos a medida que las simulaciones se vuelven más detalladas, lo cual es necesario para 

simular nanoestructuras realistas [Goyal-20]. RSM es un enfoque eficiente, teóricamente agnóstico 

(utiliza funciones genéricas de primer y segundo orden para aproximar la respuesta) y de bajo 

costo para diseñar y evaluar sensores nanoestructurados. Se puede implementar fácilmente en casi 

todas las herramientas de software estadísticas, ya que solo requiere métodos de estimación como 

el método de mínimos cuadrados ordinarios [Myers-16]. Con el conocimiento de dominio 

adecuado que se puede utilizar para seleccionar las condiciones de prueba iniciales [Cheraghi-21], 

RSM puede aproximarse rápidamente a la respuesta óptima en función de las variables de diseño, 

como se muestra en este estudio. 

Esta tesis se enfocó principalmente al estudio de la detección de H2O2 auxiliada por 

técnicas de RSM para optimizar el diseño de nanoestructuras con capacidad de detección. Se 

evaluó una variable de diseño de los sensores, a saber, la longitud NW, variando las condiciones 

de medición, como el potencial aplicado y la concentración de 𝐻2𝑂2 mediante métodos 

voltamperométricos. El diseño óptimo obtenido fue al menos 35 veces más sensible que el 

electrodo plano para detectar 𝐻2𝑂2, que es el estándar para aplicaciones comerciales [López-

Cárdenas-23b]. Junto con las enzimas glucosa oxidasa inmovilizadas, este sensor se puede usar 

para mejorar significativamente la detección de glucosa en muestras que se sabe que tienen bajas 

concentraciones, como lágrimas o saliva [Liu-15], [Grupta-17], [Sánchez-Hernández-23], que son 

dos muestras no invasivas que se pueden usar para monitoreo continuo de glucosa en pacientes 

con diabetes mellitus. 
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Otras variables de diseño esenciales, como la densidad de poros, los materiales de síntesis 

(p. ej., oro) y las disposiciones geométricas (p. ej., cuadrículas de poros hexagonales versus 

aleatorias), requieren una mayor investigación. También se requiere investigación adicional para 

sustancias distintas del 𝐻2𝑂2, que requieren diferentes niveles de variables de diseño y condiciones 

de prueba. 

Al ser la nanotecnología un campo de trabajo más nuevo y revisando su estado del arte, se 

observó que, en un número grande de los artículos consultados, solo comparten resultados 

obtenidos para una nanoestructura en específico y que logran medir algo, pero sus resultados no 

presentan resultados óptimos y una validación formal, es decir, no utilizan apoyos de herramientas 

matemáticas o métodos estadísticos.  

La metodología RSM ampliamente utilizada en la industria para optimizar y realizar 

rediseños, demostró ser una herramienta muy útil para aplicarla en trabajos experimentales de 

naturaleza electroquímica, reduciendo el número de experimentos, costos y tiempos de trabajo. 

Aplicar la ciencia de datos al gran volumen de información generada en procesos 

electroquímicos experimentales (CV, SEM) contribuyen de manera significativa al estudio, 

generación y análisis de resultados, utilizando técnicas estadísticas.  

 Utilizamos Bootstrapp, una herramienta estadística no paramétrica con técnicas de 

remuestreo, logrando determinar medidas de variabilidad con intervalos y niveles de confianza del 

95%.  

Con esta técnica de remuestreo, nos permitió obtener intervalos de confianza en el límite 

de Determinación (LOD) y límite de cuantificación (LOQ) donde no es frecuente conocer su 

variabilidad. 
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