Land Use Identification of the Metropolitan Area of Guadalajara Using Bicycle Data: An Unsupervised Classification Approach

dc.contributor.advisorVillalón-Turrubiates, Iván E.
dc.contributor.authorGracia-Rivera, Dulce M.
dc.date.accessioned2021-12-15T23:18:11Z
dc.date.available2021-12-15T23:18:11Z
dc.date.issued2021-11
dc.descriptionEl siguiente trabajo propone diferentes maneras de resolver una problemática que se encuentra en la actualidad, que es el hacer la investigación en el área de land-use, mapeo y comportamiento humano evaluando su movimiento por medio de fuentes de información que contienen información geo referenciada, también se comparte la meta de clasificar diferentes secciones y su relación entre ellas. Se utilizó como fuente de información MiBici que es una plataforma de compartimiento de bicicleta que existe en la ciudad de Guadalajara, Jalisco, la cual comparte mes tras mes un archivo consolidado de los viajes que se realizan en cada mes, cabe mencionar que el acceso de esta información es totalmente libre. Las metodologías utilizadas fueron agile para planeación del proyecto, KNN, Decision Trees y KMeans para la cauterización de las zonas, el lenguaje de programación utilizado fue Python, además se anexo una propuesta de implementación utilizando la plataforma de Amazon Web Service con el objetivo de proponer una solución más “sencilla” de implementar, pero con el mismo valor que hacerlo con puros recursos libres. El proceso se dividió primordialmente en 3 partes en donde la primera fue limpiar datos y entenderlos, se aplicaron algoritmos machine learning que fueron Decision tree y KNN, para la segunda etapa evaluando los resultados de la etapa anterior se hicieron modificaciones a los datos en donde se agregaron nuevos campos para mejor los resultados y se aplicó KMeans para la creación de grupos y como último paso se creó un flujo que inicio con la limpieza de los datos en crudo utilizando herramientas de AWS y se terminó con la interpretación de los resultados finales. Los resultados obtenidos fueron demasiados alentadores ya que los grupos que se obtuvieron fueron demasiados marcados y revisándolo con las zonas relacionadas a los nodos se encontró una gran relación. Sin duda alguna queda aún demasiado trabajo a desarrollar en esta rama de investigación.es_MX
dc.identifier.citationGracia-Rivera, D. M. (2021). Land Use Identification of the Metropolitan Area of Guadalajara Using Bicycle Data: An Unsupervised Classification Approach. Trabajo de obtención de grado, Maestría en Sistemas Computacionales. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/11117/7682
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.titleLand Use Identification of the Metropolitan Area of Guadalajara Using Bicycle Data: An Unsupervised Classification Approaches_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_MX

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TOG_DulceGracia_V5.0.pdf
Tamaño:
3.09 MB
Formato:
Adobe Portable Document Format
Descripción: