Drone Flight Performance Evaluation Methodology Based on Data Science

dc.contributor.advisorLuque-Vega, Luis F.
dc.contributor.authorMoreno-García, Adrián H.
dc.date.accessioned2022-09-07T21:27:47Z
dc.date.available2022-09-07T21:27:47Z
dc.date.issued2022-04
dc.descriptionNowadays Unmanned Aerial Vehicle (UAV) consist of collaborators for hazardous jobs like deliveries, from commerce to clients, and emergency scenarios, like fire fighting and rescue humanitarian jobs. The pilot’s responsibility has increased as the new requirements settle for new applications, so in this way, they need to have enough capabilities to perform this valuable work. However, this required knowledge, skills, and attitudes not provided in a formal educational institute with an established process. Therefore, there is no method defined to know the level of performance of a Pilot, and this is essential before giving a duty as valuable of delivery. This thesis presents an effort to establish a detailed structured methodology for evaluating a pilot’s ability to coordinate psycho-motor and evaluate this determined pilot’s learning rate in a sequence of flights. Furthermore, to generate a predictive model representing this learning for a specific pilot and give formal evidence of the improvement in the near future and which orientation coordination ability can improve.es_MX
dc.identifier.citationMoreno-García, A. H. (2022). Drone Flight Performance Evaluation Methodology Based on Data Science. Trabajo de obtención de grado, Maestría en Ciencia de Datos. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/11117/8180
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectDroneses_MX
dc.subjectRoute Flightses_MX
dc.subjectUAVses_MX
dc.subjectANOVAes_MX
dc.subjectFlight Performancees_MX
dc.subjectLinear Regressiones_MX
dc.titleDrone Flight Performance Evaluation Methodology Based on Data Sciencees_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_MX

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Maestria_ITESO_Adrian_Moreno.pdf
Tamaño:
34.57 MB
Formato:
Adobe Portable Document Format
Descripción: