Prediction of Internal Temperature in Greenhouses Using the Supervised Learning Techniques: Linear and Support Vector Regressions

dc.contributor.authorGarcía-Vázquez, Fabián
dc.contributor.authorPonce-González, Jesús R.
dc.contributor.authorGuerrero-Osuna, Héctor A.
dc.contributor.authorCarrasco-Navarro, Rocío
dc.contributor.authorLuque-Vega, Luis F.
dc.contributor.authorMata-Romero, Marcela E.
dc.contributor.authorMartínez-Blanco, María R.
dc.contributor.authorCastañeda-Miranda, Celina L.
dc.contributor.authorDíaz-Flórez, Germán
dc.date.accessioned2025-10-06T17:27:51Z
dc.date.available2025-10-06T17:27:51Z
dc.date.issued2023-07
dc.description.abstractAgricultural greenhouses must accurately predict environmental factors to ensure optimal crop growth and energy management efficiency. However, the existing predictors have limitations when dealing with dynamic, non-linear, and massive temporal data. This study proposes four supervised learning techniques focused on linear regression (LR) and Support Vector Regression (SVR) to predict the internal temperature of a greenhouse. A meteorological station is installed in the greenhouse to collect internal data (temperature, humidity, and dew point) and external data (temperature, humidity, and solar radiation). The data comprises a one year, and is divided into seasons for better analysis and modeling of the internal temperature. The study involves sixteen experiments corresponding to the four models and the four seasons and evaluating the models’ performance using R2, RMSE, MAE, and MAPE metrics, considering an acceptability interval of +-2 °C. The results show that LR models had difficulty maintaining the acceptability interval, while the SVR models adapted to temperature outliers, presenting the highest forecast accuracy among the proposed algorithms.
dc.description.sponsorshipITESO, A.C.es
dc.identifier.citationGarcía-Vázquez, F., Ponce-González, J. R., Guerrero-Osuna, H. A., Carrasco-Navarro, R., Luque-Vega, L. F., Mata-Romero, M. E., Martínez-Blanco, M. R., Castañeda-Miranda, C. L., & Díaz-Flórez, G. (2023). Prediction of Internal Temperature in Greenhouses Using the Supervised Learning Techniques: Linear and Support Vector Regressions. Applied Sciences, 13(14), 8531. https://doi.org/10.3390/app13148531
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/11117/11895
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesApplied Sciences
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed.es
dc.subjectSmart Agriculture
dc.subjectData Science
dc.subjectSupervised Learning
dc.titlePrediction of Internal Temperature in Greenhouses Using the Supervised Learning Techniques: Linear and Support Vector Regressions
dc.title.alternativePredicción de la temperatura interna en invernaderos mediante técnicas de aprendizaje supervisado: regresiones lineales y de vectores de soporte
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
9 - applsci-13-08531.pdf
Tamaño:
17.64 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.91 KB
Formato:
Item-specific license agreed upon to submission
Descripción: