Enhancing LLM Performance in Specialized Spanish Domains Using RAG and PEFT QLoRA

dc.contributor.advisorEscobar-Vega, Luis M.
dc.contributor.authorBadillo-Rangel, Erick
dc.date.accessioned2025-06-25T19:56:05Z
dc.date.available2025-06-25T19:56:05Z
dc.date.issued2024-11
dc.description.abstractThis project explores improving the performance of large language models (LLMs) in Spanish legal domains by combining Retrieval-Augmented Generation (RAG) with Parameter-Efficient Fine-Tuning (PEFT) using the QLoRA technique. Four experiments were conducted to evaluate zero-shot performance across open-ended, closed-ended, and summarization tasks. These included a vanilla baseline, a RAG-enhanced version, and two fine-tuned models (with and without RAG). The training and retrieval data were synthetically generated through a cloud-based, serverless ETL process aligned with medallion architecture principles. Experiments focused on the Ley de Impuesto sobre la Renta 2024. Evaluation used BERTScore, ROUGE, and BLEU metrics to assess semantic similarity, n-gram overlap, and linguistic precision.
dc.description.sponsorshipITESO, A. C.es
dc.identifier.citationBadillo-Rangel, E. (2024). Enhancing LLM performance in Specialized Spanish Domains using RAG and PEFT QLoRA. Trabajo de obtención de grado, Maestría en Sistemas Computacionales. Tlaquepaque, Jalisco: ITESO.
dc.identifier.urihttps://hdl.handle.net/11117/11630
dc.language.isoeng
dc.publisherITESO
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectRAG
dc.subjectLarge Language Models
dc.subjectLLM
dc.subjectETL
dc.subjectPEFT
dc.titleEnhancing LLM Performance in Specialized Spanish Domains Using RAG and PEFT QLoRA
dc.title.alternativeMejora del rendimiento de los LLM en dominios especializados en español utilizando RAG y PEFT QLoRA
dc.typeinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TOG-ErickBadillo-741550-vf4.1.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.86 KB
Formato:
Item-specific license agreed upon to submission
Descripción: