Hybrid Artificial Neural Network Coupled with Kalman Filters for Air Quality Forecasting in Guadalajara, Mexico

Cargando...
Miniatura

Fecha

2018-03

Autores

González-Figueredo, Carlos
Egurrola-Hernández, E.A.
Ramírez-Briseño, R.L.
DeLosReyes-Corona, A.
DeAlba-Martínez, Hugo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

Descripción

This study aims to develop a novel hybrid scheme of Artificial Neural Networks (ARN) coupled to a non-linear Kalman filter for air quality forecasting in Guadalajara Metropolitan Area, in Mexico. ARN’s are widely used for air quality forecasting, however these schemes need large amounts of data regarding the pollutants concentration levels and meteorological data in order to manage reliable forecasting. To address this issue, we present a scheme consisting of Neural Network models assisted by nonlinear Kalman filter that manage to considerably improve the forecasting performance, adding robustness in case of lack of data, and reducing the need of retraining over time.

Palabras clave

Calidad del Aire, Filtros de Kalman, Redes Neuronales Artificiales

Citación

González-Figueredo, C., Egurrola-Hernández, E. A., Ramírez-Briseño, R. L., DeLosReyes-Corona, A., & DeAlba-Martínez, H. (2018). Hybrid Artificial Neural Network Coupled with Kalman Filters for Air Quality Forecasting in Guadalajara, Mexico. In Proceedings of Abstracts11th International Conference on Air Quality Science and Application, University of Hertfordshire.