Long Short-Term Memory Recurrent Neural Network and Extreme Gradient Boosting Algorithms Applied in a Greenhouse’s Internal Temperature Prediction

dc.contributor.authorEsparza-Gómez, Juan M.
dc.contributor.authorLuque-Vega, Luis F.
dc.contributor.authorGuerrero-Osuna, Héctor A.
dc.contributor.authorCarrasco-Navarro, Rocío
dc.contributor.authorGarcía-Vázquez, Fabián
dc.contributor.authorMata-Romero, Marcela E.
dc.contributor.authorOlvera-Olvera, Carlos A.
dc.contributor.authorCarlos-Mancilla, Miriam A.
dc.contributor.authorSolís-Sánchez, Luis O.
dc.date.accessioned2025-10-06T17:39:28Z
dc.date.available2025-10-06T17:39:28Z
dc.date.issued2023-11
dc.description.abstractOne of the main challenges agricultural greenhouses face is accurately predicting environmental conditions to ensure optimal crop growth. However, the current prediction methods have limitations in handling large volumes of dynamic and nonlinear temporal data, which makes it difficult to make accurate early predictions. This paper aims to forecast a greenhouse’s internal temperature up to one hour in advance using supervised learning tools like Extreme Gradient Boosting (XGBoost) and Recurrent Neural Networks combined with Long-Short Term Memory (LSTM-RNN). The study uses the many-to-one configuration, with a sequence of three input elements and one output element. Significant improvements in the R2, RMSE, MAE, and MAPE metrics are observed by considering various combinations. In addition, Bayesian optimization is employed to find the best hyperparameters for each algorithm. The research uses a database of internal data such as temperature, humidity, and dew point and external data such as temperature, humidity, and solar radiation, splitting the data into the year’s four seasons and performing eight experiments according to the two algorithms and each season. The LSTM-RNN model produces the best results for the metrics in summer, achieving an R2 = 0.9994, RMSE = 0.2698, MAE = 0.1449, and MAPE = 0.0041, meeting the acceptability criterion of 2 C hysteresis.
dc.description.sponsorshipITESO, A.C.es
dc.identifier.citationEsparza-Gómez, J. M., Luque-Vega, L. F., Guerrero-Osuna, H. A., Carrasco-Navarro, R., García-Vázquez, F., Mata-Romero, M. E., Olvera-Olvera, C. A., Carlos-Mancilla, M. A., & Solís-Sánchez, L. O. (2023). Long Short-Term Memory Recurrent Neural Network and Extreme Gradient Boosting Algorithms Applied in a Greenhouse’s Internal Temperature Prediction. Applied Sciences, 13(22), 12341. https://doi.org/10.3390/app132212341
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/11117/11896
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesApplied Sciences
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed.es
dc.subjectSmart Farming
dc.subjectGreenhouse Forecasting
dc.subjectMachine Learning
dc.subjectMicroclimate Prediction
dc.titleLong Short-Term Memory Recurrent Neural Network and Extreme Gradient Boosting Algorithms Applied in a Greenhouse’s Internal Temperature Prediction
dc.title.alternativeRed neuronal recurrente de memoria a corto plazo y algoritmos de amplificación de gradientes extremos aplicados a la predicción de la temperatura interna de un invernadero
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
6 - applsci-13-12341.pdf
Tamaño:
6.11 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción: