A Low-Cost Wearable Device to Estimate Body Temperature Based on Wrist Temperature

dc.contributor.authorMata-Romero, Marcela E.
dc.contributor.authorSimental-Martínez, Omar A.
dc.contributor.authorGuerrero-Osuna, Héctor A.
dc.contributor.authorLuque-Vega, Luis F.
dc.contributor.authorLopez-Neri, Emmanuel
dc.contributor.authorOrnelas-Vargas, Gerardo
dc.contributor.authorCastañeda-Miranda, Rodrigo
dc.contributor.authorMartínez-Blanco, María R.
dc.contributor.authorNava-Pintor, Jesús A.
dc.contributor.authorGarcía-Vázquez, Fabián
dc.date.accessioned2025-10-06T18:36:48Z
dc.date.available2025-10-06T18:36:48Z
dc.date.issued2024-03
dc.description.abstractThe remote monitoring of vital signs and healthcare provision has become an urgent necessity due to the impact of the COVID-19 pandemic on the world. Blood oxygen level, heart rate, and body temperature data are crucial for managing the disease and ensuring timely medical care. This study proposes a low-cost wearable device employing non-contact sensors to monitor, process, and visualize critical variables, focusing on body temperature measurement as a key health indicator. The wearable device developed offers a non-invasive and continuous method to gather wrist and forehead temperature data. However, since there is a discrepancy between wrist and actual forehead temperature, this study incorporates statistical methods and machine learning to estimate the core forehead temperature from the wrist. This research collects 2130 samples from 30 volunteers, and both the statistical least squares method and machine learning via linear regression are applied to analyze these data. It is observed that all models achieve a significant fit, but the third-degree polynomial model stands out in both approaches. It achieves an R2 value of 0.9769 in the statistical analysis and 0.9791 in machine learning.
dc.description.sponsorshipITESO, A.C.es
dc.identifier.citationMata-Romero, M. E., Simental-Martínez, O. A., Guerrero-Osuna, H. A., Luque-Vega, L. F., Lopez-Neri, E., Ornelas-Vargas, G., Castañeda-Miranda, R., Martínez-Blanco, M. R., Nava-Pintor, J. A., & García-Vázquez, F. (2024). A Low-Cost Wearable Device to Estimate Body Temperature Based on Wrist Temperature. Sensors, 24(6), 1944. https://doi.org/10.3390/s24061944
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/11117/11897
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesSensors
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed.es
dc.subjectCOVID-19
dc.subjectInternet of Things
dc.subjectMachine Learning
dc.subjectBody Temperature
dc.subjectWearabñe Device
dc.titleA Low-Cost Wearable Device to Estimate Body Temperature Based on Wrist Temperature
dc.title.alternativeDispositivo portátil de bajo costo para estimar la temperatura corporal basándose en la temperatura de la muñeca
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
5 - sensors-24-01944.pdf
Tamaño:
5.52 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: