Reconocimiento de expresiones faciales mediante redes neuronales convolucionales ligeras

dc.contributor.advisorMartínez-Sánchez, Víctor H.
dc.contributor.authorCárdenas-Gil, Víctor R.
dc.date.accessioned2025-08-06T19:22:05Z
dc.date.available2025-08-06T19:22:05Z
dc.date.issued2025-07
dc.description.abstractFacial Expression Recognition (FER) is an active research area within Artificial Intelligence (AI) with increasing relevance in real-world applications. This work explores the development of a deep learning-based FER system focused on achieving competitive performance using lightweight architectures that are suitable for environments with limited computational resources. While high-capacity models were initially explored, their computational requirements exceeded the available hardware, prompting a shift in focus toward lightweight alternatives. The final system was built around ResNet-18 and trained using transfer learning on a hybrid dataset comprising real-world, AI-generated, and publicly available images from MMI, OULU-CASIA, EFE, FERD and AffectNet. Experimental results showed that the proposed ResNet-18 model achieved a mean accuracy of 91.74% ± 0.40% (n=3), with a maximum observed accuracy of 92.27%. EfficientNet and MobileNetV3 were also evaluated and achieved competitive accuracy levels; however, their training curves plateaued early, suggesting unstable learning and limited convergence compared to ResNet-18. The system's compact design and strong results on a diverse, resolution-consistent dataset indicate its potential for future application in low-resource settings.
dc.description.sponsorshipITESO, A. C.es
dc.identifier.citationCárdenas-Gil, V. R. (2025). Reconocimiento de expresiones faciales mediante redes neuronales convolucionales ligeras. Trabajo de obtención de grado, Maestría en Sistemas Computacionales. Tlaquepaque, Jalisco: ITESO.
dc.identifier.urihttps://hdl.handle.net/11117/11690
dc.language.isoeng
dc.publisherITESO
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectDeep Learning
dc.subjectConvolutional Neural Networks
dc.subjectAI
dc.subjectFER
dc.subjectFacial Expression Recognition
dc.subjectLightweight
dc.subjectAritificial Intelligence
dc.subjectAffective Computing
dc.subjectResNet
dc.subjectResidual Networks
dc.titleReconocimiento de expresiones faciales mediante redes neuronales convolucionales ligeras
dc.title.alternativeFacial Expression Recognition Using Lightweight Convolutional Neural Networks
dc.typeinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
msc_tog_cardenasvictor_rei_f.pdf
Tamaño:
3.57 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: