A Novel SVM Voltage Supervisor

dc.contributor.advisorRuizo, Luis
dc.contributor.advisorRizo-Domínguez, Luis
dc.contributor.authorRodríguez-García, Francisco J.
dc.date.accessioned2021-08-27T17:29:47Z
dc.date.available2021-08-27T17:29:47Z
dc.date.issued2021-08
dc.descriptionVoltage supervisors ensure that an electronic system is turned off whenever the rail voltage drops below the threshold value. Common implementations rely on hard decisions to assert the system’s reset; however, these schemes lack flexibility in configuration. In this paper, we introduce a soft-decision system using a machine learning algorithm called support vector machine (SVM). The proposed monitoring system’s software is built on top of scikit-learn SVM libraries and experimentation was conducted in the Raspberry Pi 4 platform. Confusion matrix for the SVM model shows that the system will perform well on new and training data. Overall, the resulting system is configurable and, unlike other implementations, it can be trained in online and offline modes.es_MX
dc.description.sponsorshipITESO, A. C.es
dc.identifier.citationRodríguez-García, F. J. (2021). A Novel SVM Voltage Supervisor. Trabajo de obtención de grado, Especialidad en Sistemas Embebidos. Tlaquepaque, Jalisco: ITESO.es_MX
dc.identifier.urihttps://hdl.handle.net/11117/7499
dc.language.isoenges_MX
dc.publisherITESOes_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectSupport Vector Machinees_MX
dc.subjectRaspberry Pies_MX
dc.subjectVoltage Monitoringes_MX
dc.titleA Novel SVM Voltage Supervisores_MX
dc.typeinfo:eu-repo/semantics/academicSpecializationes_MX
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_MX

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
a_novel_svm_voltage_supervisor.pdf
Tamaño:
716.47 KB
Formato:
Adobe Portable Document Format
Descripción: