A Digital Predistortion Technique Based on a NARX Network to Linearize GaN Class F Power Amplifiers (poster)

Cargando...
Miniatura

Fecha

2014-08

Autores

Aguilar-Lobo, Lina M.
Reynoso-Hernandez
García-Osorio, Alberto
Loo-Yau, José R.
Ortega-Cisneros, Susana
Moreno, Pablo
Rayas-Sánchez, José E.
Reynoso-Hernández, Apolinar

Título de la revista

ISSN de la revista

Título del volumen

Editor

IEEE

Resumen

Descripción

This work presents a novel Digital Predistortion (DPD) scheme based on a NARX network, suitable for linearizing power amplifiers (PAs). The NARX network is a Recurrent Neural Network (RNN) with embedded memory that allows efficient modeling of nonlinear systems. Its neural architecture is very effective to model long term dependencies, such as the typical memory effects of PAs. To demonstrate the feasibility of the NARX network as a DPD system, a GaN class F PA with two LTE signals with 5 MHz of bandwidth is used. Experimental results show a distortion correction better than 10 dB.

Palabras clave

PA Linearization, Long-term Memory Effects, NARX Network, Recurrent Neural Networks, Nonlinear Systems, Digital Predistortion

Citación

L.M. Aguilar-Lobo, A. Garcia-Osorio, J.R. Loo-Yau, S. Ortega-Cisneros, P. Moreno, J.E. Rayas-Sánchez, and A. Reynoso-Hernández, “A digital predistortion technique based on a NARX network to linearize GaN class F power amplifiers,” in IEEE Int. Midwest Symp. Circuits Syst., College Station, TX, Aug. 2014, poster.