Statistical tools for the improvement and optimization of electrochemical sensors

dc.contributor.authorAlcalá, Emmanuel
dc.contributor.authorAraujo, Elsie
dc.contributor.authorSánchez-Torres, Juan D.
dc.contributor.authorLópez-Cárdenas, Patricia G.
dc.date.accessioned2022-05-06T19:26:02Z
dc.date.available2022-05-06T19:26:02Z
dc.date.issued2021-10
dc.descriptionThe response of electrochemical sensors for substance detection critically depends on the sensing potential, the value of which is often selected by the visual inspection of the sensor's response, as given by, for example, electrochemical methods like cyclic voltammetry (CV). Using experimental data from CV, we show how the selection of the sensing potential can affect the sensitivity and linear range of the measurements. Whenever the magnitude of the sensor's response is crucial, it can be better to optimize the sensor for its sensitivity; however, if the testing conditions involve a variable range of concentrations, with putative very small or high concentrations, a reliable response can be obtained if the sensor is optimized for the linear range.es_MX
dc.description.sponsorshipITESO, A.C.es
dc.identifier.citationE. Alcalá, P. G. López-Cárdenas, J. D. Sánchez-Torres and E. Araujo (2021). Statistical tools for the improvement and optimization of electrochemical sensors. International Conference on Surfaces, Materials and Vacuum 2021.es_MX
dc.identifier.issn1665-3521
dc.identifier.urihttps://hdl.handle.net/11117/7970
dc.language.isoenges_MX
dc.publisherSociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales A.C.es_MX
dc.rights.urihttp://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdfes_MX
dc.subjectNanowire arrayses_MX
dc.subjectResponse surface methodology (RSM)es_MX
dc.titleStatistical tools for the improvement and optimization of electrochemical sensorses_MX
dc.typeinfo:eu-repo/semantics/conferencePosteres_MX
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_MX

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
poster_emmanuel_SMC.pdf
Tamaño:
418.59 KB
Formato:
Adobe Portable Document Format
Descripción: