Cognitive Parameter Extraction for Space Mapping Design Optimization

dc.contributor.authorRayas-Sánchez, José E.
dc.date.accessioned2025-04-09T22:15:40Z
dc.date.available2025-04-09T22:15:40Z
dc.date.issued2025
dc.description.abstractParameter extraction (PE) is a key subproblem of space mapping (SM) design optimization. It consists of a local alignment between the coarse and fine models at each SM iteration. In this work, cognition-driven PE is proposed for SM. In contrast to classical PE, where the full fine model responses are used as targets, the proposed cognitive PE focuses on key features of the fine model response selected from an engineering perspective. It is demonstrated that the proposed cognitive PE approach: 1) yields more accurate extracted parameters regardless of the type of PE objective function employed; and 2) achieves a more meaningful matching to the fine model target response and with less variability. To proof this with independence of the optimization method employed for PE, plots of the PE objective functions are presented over large regions of the coarse model design space. Two synthetic examples are used to support these findings.
dc.description.sponsorshipITESO, A.C.es_MX
dc.identifier.citationJ. E. Rayas-Sánchez. Cognitive parameter extraction for space mapping design optimization, in IEEE MTT-S Latin America Microwave Conf. (LAMC-2025), San Juan, Puerto Rico, Jan. 2025, pp. 9-12.
dc.identifier.isbn979-8-3315-4041-8
dc.identifier.urihttps://hdl.handle.net/11117/11501
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofseriesIEEE MTT-S Latin America Microwave Conference (LAMC-2025)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectBroyden
dc.subjectChebyshev
dc.subjectEuclidean
dc.subjectKullback-Leibler
dc.subjectManhattan
dc.subjectCognition
dc.subjectNorm
dc.subjectObjective Function
dc.subjectOptimization
dc.subjectParameter Extraction
dc.subjectSpace Mapping
dc.titleCognitive Parameter Extraction for Space Mapping Design Optimization
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Rayas_25Jan_Cognitive_PE_for_SM_design_opt_Author_ver.pdf
Tamaño:
942.67 KB
Formato:
Adobe Portable Document Format