A digital predistortion technique based on a NARX network to linearize GaN class F power amplifiers

Cargando...
Miniatura

Fecha

2014-08

Autores

Aguilar-Lobo, Lina M.
Rayas-Sánchez, José E.
Loo-Yau, José R.
Garcia-Osorio, Alberto
Ortega-Cisneros, Susana
Moreno, Pablo
Reynoso-Hernández, Apolinar

Título de la revista

ISSN de la revista

Título del volumen

Editor

IEEE International Midwest Symposium on Circuits and Systems

Resumen

Descripción

This work presents a novel Digital Predistortion (DPD) scheme based on a NARX network, suitable for linearizing power amplifiers (PAs). The NARX network is a Recurrent Neural Network (RNN) with embedded memory that allows efficient modeling of nonlinear systems. Its neural architecture is very effective to model long term dependencies, such as the typical memory effects of PAs. To demonstrate the feasibility of the NARX network as a DPD system, a GaN class F PA with two LTE signals with 5 MHz of bandwidth is used. Experimental results show a distortion correction better than 10 dB.

Palabras clave

Digital Predistortion, Power Amplifiers, Artificial Neural Networks

Citación

L. M. Aguilar-Lobo, Reynoso-Hernández, A.; A. Garcia-Osorio, J. R. Loo-Yau, S. Ortega-Cisneros, P. Moreno, J. E. Rayas-Sánchez, “A digital predistortion technique based on a NARX network to linearize GaN class F power amplifiers,” in IEEE Int. Midwest Symp. Circuits Syst., College Station, TX, Aug. 2014, pp. 717-720. (ISSN: 1548-3746, P-ISBN: 978-1-4799-4134-6, INSPEC: 14631538, DOI: 10.1109/MWSCAS.2014.6908515).